Observing the Oceans Acoustically
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development of the GEBCO World Bathymetry Grid (Beta Version)
USER GUIDE TO THE GEBCO ONE MINUTE GRID Contents 1. Introduction 2. Developers of regional grids 3. Gridding method 4. Assessing the quality of the grid 5. Limitations of the GEBCO One Minute Grid 6. Grid format 7. Terms of use Appendix A Review of the problems of generating a gridded data set from the GEBCO Digital Atlas contours Appendix B Version 2.0 of the GEBCO One Minute Grid (November 2008) Please note that the GEBCO One Minute Grid is made available as an historical data set. There is no intention to further develop or update this data set. For information on the latest versions of GEBCO’s global bathymetric data sets, please visit the GEBCO web site: www.gebco.net. Acknowledgements This document was originally prepared by Andrew Goodwillie (Formerly of Scripps Institution of Oceanography) in collaboration with other members of the informal Gridding Working Group of the GEBCO Sub-Committee on Digital Bathymetry (now called the Technical Sub-Committee on Ocean Mapping (TSCOM)). Originally released in 2003, this document has been updated to include information about version 2.0 of the GEBCO One Minute Grid, released in November 2008. Generation of the grid was co-ordinated by Michael Carron with major input provided by the gridding efforts of Bill Rankin and Lois Varnado at the US Naval 1 Oceanographic Office, Andrew Goodwillie and Peter Hunter. Significant regional contributions were also provided by Martin Jakobsson (University of Stockholm), Ron Macnab (Geological Survey of Canada (retired)), Hans-Werner Schenke (Alfred Wegener Institute for Polar and Marine Research), John Hall (Geological Survey of Israel (retired)) and Ian Wright (formerly of the New Zealand National Institute of Water and Atmospheric Research). -
Marine Mammals Around Marine Renewable Energy Devices Using Active Sonar
TRACKING MARINE MAMMALS AROUND MARINE RENEWABLE ENERGY DEVICES USING ACTIVE SONAR GORDON HASTIE URN: 12D/328: 31 JULY 2013 This document was produced as part of the UK Department of Energy and Climate Change's offshore energy Strategic Environmental Assessment programme © Crown Copyright, all rights reserved. 1 SMRU Limited New Technology Centre North Haugh ST ANDREWS Fife KY16 9SR www.smru.co.uk Switch: +44 (0)1334 479100 Fax: +44 (0)1334 477878 Lead Scientist: Gordon Hastie Scientific QA: Carol Sparling Date: Wednesday, 31 July 2013 Report code: SMRUL-DEC-2012-002.v2 This report is to be cited as: Hastie, G.D. (2012). Tracking marine mammals around marine renewable energy devices using active sonar. SMRU Ltd report URN:12D/328 to the Department of Energy and Climate Change. September 2012 (unpublished). Approved by: Jared Wilson Operations Manager1 1 Photo credit (front page): R Shucksmith (www.rshucksmith.co.uk) 2 TABLE OF CONTENTS Table of Contents ----------------------------------------------------------------------------------------------------------------------------------------- 3 Table of Figures ------------------------------------------------------------------------------------------------------------------------------------------- 5 1. Non technical summary --------------------------------------------------------------------------------------------------------------------- 9 2. Introduction ----------------------------------------------------------------------------------------------------------------------------------- 12 -
Barotropic Tide in the Northeast South China Sea
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2004-10 Barotropic Tide in the Northeast South China Sea Beardsley, Robert C. Monterey, California. Naval Postgraduate School Vol.29, no.4, October 2004 http://hdl.handle.net/10945/35040 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 29, NO. 4, OCTOBER 2004 1075 Barotropic Tide in the Northeast South China Sea Robert C. Beardsley, Timothy F. Duda, James F. Lynch, Senior Member, IEEE, James D. Irish, Steven R. Ramp, Ching-Sang Chiu, Tswen Yung Tang, Ying-Jang Yang, and Guohong Fang Abstract—A moored array deployed across the shelf break in data using satellite advanced very high-resolution radiometer, the northeast South China Sea during April–May 2001 collected altimeter, and other microwave sensors [8]. sufficient current and pressure data to allow estimation of the The SCS study area was centered over the shelf break near barotropic tidal currents and energy fluxes at five sites ranging in depth from 350 to 71 m. The tidal currents in this area were 21 55 N, 117 20 E, approximately 370 km west of the mixed, with the diurnal O1 and K1 currents dominant over the southern tip of Taiwan (Fig. 1). This area was chosen in part upper slope and the semidiurnal M2 current dominant over the for three reasons: 1) large-amplitude high-frequency internal shelf. The semidiurnal S2 current also increased onshelf (north- waves generated near the Luzon Strait propagate through the ward), but was always weaker than O1 and K1. -
Ocean Acoustic Tomography: a Missing Element of the Ocean Observing System
UACE2017 - 4th Underwater Acoustics Conference and Exhibition OCEAN ACOUSTIC TOMOGRAPHY: A MISSING ELEMENT OF THE OCEAN OBSERVING SYSTEM Brian Dushawa, John Colosib, Timothy Dudac, Matthew Dzieciuchd, Bruce Howee, Arata Kanekof, Hanne Sagena, Emmanuel Skarsoulisg, Xiaohua Zhuh aNansen Environmental and Remote Sensing Center, Thormøhlens gate 47, 5006 Bergen, NORWAY bNaval Postgraduate School, 833 Dyer Road, Monterey, CA 93943 USA cApplied Ocean Physics and Engineering, MS 11, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA dScripps Institution of Oceanography, University of California, San Diego 92093-0225 USA eOcean and Resources Engineering, University of Hawaii at Manoa, Honolulu HI 96822 USA fInstitute of Engineering, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima, JAPAN 739-8511 gFoundation for Research and Technology Hellas, Institute of Applied and Computational Mathematics, P.O. Box 1385, GR-71110 Heraklion, GREECE hSecond Institute of Oceanography, State Oceanic Administration, 36 Baochubei Road, Hangzhou, CHINA 310012 Brian Dushaw, Nansen Environmental and Remote Sensing Center, Thormøhlens gate 47, 5006 Bergen, NORWAY fax: (+47) 55 20 58 01, e-mail: [email protected] Abstract: Ocean acoustic tomography now has a long history with many observations and experiments that highlight the unique capabilities of this approach to detecting and understanding ocean variability. Examples include observations of deep mixing in the Greenland Sea, mode-1 internal tides radiating far into the ocean interior (coherent in time and space), relative vorticity on multiple scales, basin-wide and antipodal measures of temperature, barotropic currents, coastal processes in shallow water, and Arctic climate change. Despite the capabilities, tomography, and its simplified form thermometry, are not yet core observations within the Ocean Observing Systems (OOS). -
Mapping Bathymetry
Doctoral thesis in Marine Geoscience Meddelanden från Stockholms universitets institution för geologiska vetenskaper Nº 344 Mapping bathymetry From measurement to applications Benjamin Hell 2011 Department of Geological Sciences Stockholm University Stockholm Sweden A dissertation for the degree of Doctor of Philosophy in Natural Sciences Abstract Surface elevation is likely the most fundamental property of our planet. In contrast to land topography, bathymetry, its underwater equivalent, remains uncertain in many parts of the World ocean. Bathymetry is relevant for a wide range of research topics and for a variety of societal needs. Examples, where knowing the exact water depth or the morphology of the seafloor is vital include marine geology, physical oceanography, the propagation of tsunamis and documenting marine habitats. Decisions made at administrative level based on bathymetric data include safety of maritime navigation, spatial planning along the coast, environmental protection and the exploration of the marine resources. This thesis covers different aspects of ocean mapping from the collec- tion of echo sounding data to the application of Digital Bathymetric Models (DBMs) in Quaternary marine geology and physical oceano- graphy. Methods related to DBM compilation are developed, namely a flexible handling and storage solution for heterogeneous sounding data and a method for the interpolation of such data onto a regular lattice. The use of bathymetric data is analyzed in detail for the Baltic Sea. With the wide range of applications found, the needs of the users are varying. However, most applications would benefit from better depth data than what is presently available. Based on glaciogenic landforms found in the Arctic Ocean seafloor morphology, a possible scenario for Quaternary Arctic Ocean glaciation is developed. -
Tidal Hydrodynamic Response to Sea Level Rise and Coastal Geomorphology in the Northern Gulf of Mexico
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2015 Tidal hydrodynamic response to sea level rise and coastal geomorphology in the Northern Gulf of Mexico Davina Passeri University of Central Florida Part of the Civil Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Passeri, Davina, "Tidal hydrodynamic response to sea level rise and coastal geomorphology in the Northern Gulf of Mexico" (2015). Electronic Theses and Dissertations, 2004-2019. 1429. https://stars.library.ucf.edu/etd/1429 TIDAL HYDRODYNAMIC RESPONSE TO SEA LEVEL RISE AND COASTAL GEOMORPHOLOGY IN THE NORTHERN GULF OF MEXICO by DAVINA LISA PASSERI B.S. University of Notre Dame, 2010 A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Civil, Environmental, and Construction Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Spring Term 2015 Major Professor: Scott C. Hagen © 2015 Davina Lisa Passeri ii ABSTRACT Sea level rise (SLR) has the potential to affect coastal environments in a multitude of ways, including submergence, increased flooding, and increased shoreline erosion. Low-lying coastal environments such as the Northern Gulf of Mexico (NGOM) are particularly vulnerable to the effects of SLR, which may have serious consequences for coastal communities as well as ecologically and economically significant estuaries. -
Soundscape Ecology
Soundscape Ecology “Over increasingly large areas of the United States, spring now comes unheralded by the return of the birds, and the early mornings are strangely silent where once they were filled with the beauty of bird song.” Rachel Carson – The Silent Spring 1962 Dr. Bryan Pijanowski Department of Forestry & Natural Resources Overview 1. What is a soundscape? 2. Play example soundscapes (5-8 recordings) 3. Describe how we measure soundscapes 4. Summarize some of our research surrounding Purdue University 5. Describe the role of engineers in research like this 1. WHAT IS A SOUNDSCAPE? Biophony – sounds created by biological Soundscapes organisms, mostly insects, amphibians, birds and mammals. Signals carry information and are thus complex. Geophony – sounds from the movement of wind and water. Driven mostly by climate. Running streams, rain and wind. Anthrophony – sounds by human-made objects such as machines, friction from road noise, bells, sirens. Definitions of Soundscapes • R. Murray Schafer (1994): “the soundscape is any acoustic field of study… We can isolate an acoustic environment as a field of study just as we can study the characteristics of a given landscape. However, it is less easy to formulate an exact impression of a soundscape than of a landscape” (p. 7). • Bernie Krause (1987, 2002): all of the sounds (biophony, geophony and anthrophony) present in an environment at a given time, soundscape as a finite resource-competing for spectral space (acoustic niche hypothesis). What it is not • Bioacoustics: traditionally focused on species specific traits or a single group of organisms – this is a 70 year old field of study • Noise research: examining how noise is created in human-dominated areas 2. -
The Psychophysiological Implications of Soundscape: a Systematic Review of Empirical Literature and a Research Agenda
International Journal of Environmental Research and Public Health Review The Psychophysiological Implications of Soundscape: A Systematic Review of Empirical Literature and a Research Agenda Mercede Erfanian * , Andrew J. Mitchell , Jian Kang * and Francesco Aletta UCL Institute for Environmental Design and Engineering, The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London WC1H 0NN, UK; [email protected] (A.J.M.); [email protected] (F.A.) * Correspondence: [email protected] (M.E.); [email protected] (J.K.); Tel.: +44-(0)20-3108-7338 (J.K.) Received: 16 September 2019; Accepted: 19 September 2019; Published: 21 September 2019 Abstract: The soundscape is defined by the International Standard Organization (ISO) 12913-1 as the human’s perception of the acoustic environment, in context, accompanying physiological and psychological responses. Previous research is synthesized with studies designed to investigate soundscape at the ‘unconscious’ level in an effort to more specifically conceptualize biomarkers of the soundscape. This review aims firstly, to investigate the consistency of methodologies applied for the investigation of physiological aspects of soundscape; secondly, to underline the feasibility of physiological markers as biomarkers of soundscape; and finally, to explore the association between the physiological responses and the well-founded psychological components of the soundscape which are continually advancing. For this review, Web of Science, PubMed, Scopus, and -
OCEANS ´09 IEEE Bremen
11-14 May Bremen Germany Final Program OCEANS ´09 IEEE Bremen Balancing technology with future needs May 11th – 14th 2009 in Bremen, Germany Contents Welcome from the General Chair 2 Welcome 3 Useful Adresses & Phone Numbers 4 Conference Information 6 Social Events 9 Tourism Information 10 Plenary Session 12 Tutorials 15 Technical Program 24 Student Poster Program 54 Exhibitor Booth List 57 Exhibitor Profiles 63 Exhibit Floor Plan 94 Congress Center Bremen 96 OCEANS ´09 IEEE Bremen 1 Welcome from the General Chair WELCOME FROM THE GENERAL CHAIR In the Earth system the ocean plays an important role through its intensive interactions with the atmosphere, cryo- sphere, lithosphere, and biosphere. Energy and material are continually exchanged at the interfaces between water and air, ice, rocks, and sediments. In addition to the physical and chemical processes, biological processes play a significant role. Vast areas of the ocean remain unexplored. Investigation of the surface ocean is carried out by satellites. All other observations and measurements have to be carried out in-situ using research vessels and spe- cial instruments. Ocean observation requires the use of special technologies such as remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), towed camera systems etc. Seismic methods provide the foundation for mapping the bottom topography and sedimentary structures. We cordially welcome you to the international OCEANS ’09 conference and exhibition, to the world’s leading conference and exhibition in ocean science, engineering, technology and management. OCEANS conferences have become one of the largest professional meetings and expositions devoted to ocean sciences, technology, policy, engineering and education. -
Cetacean Population Density Estimation from Single Fixed Sensors Using Passive Acoustics
Cetacean population density estimation from single fixed sensors using passive acoustics Elizabeth T. Ku¨sela) and David K. Mellinger Cooperative Institute for Marine Resources Studies (CIMRS), Oregon State University, Hatfield Marine Science Center, Newport, Oregon 97365 Len Thomas Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews KY16 9LZ, Scotland Tiago A. Marques Centro de Estatı´stica e Aplicac¸o˜es da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal David Moretti and Jessica Ward Naval Undersea Warfare Center Division, Newport, Rhode Island 02841 (Received 17 December 2010; revised 18 March 2011; accepted 30 March 2011) Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a func- tion of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville’s beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Baha- mas. -
Report of the Ad-Hoc Group on the Impacts of Sonar on Cetaceans and Fish (AGISC) (2Nd Edition)
ICES AGISC 2005 ICES Advisory Committee on Ecosystems ICES CM 2005/ACE:06 Report of the Ad-hoc Group on the Impacts of Sonar on Cetaceans and Fish (AGISC) (2nd edition) By correspondence International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H.C. Andersens Boulevard 44-46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2005. Report of the Ad-hoc Group on Impacts of Sonar on Cetaceans and Fish (AGISC) CM 2006/ACE:06 25pp. For permission to reproduce material from this publication, please apply to the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2005 International Council for the Exploration of the Sea ICES AGISC report 2005, 2nd edition | i Contents 1 Introduction ................................................................................................................................... 1 1.1 Participation........................................................................................................................... 1 1.2 Terms of Reference ............................................................................................................... 1 1.3 Justification of Terms of Reference....................................................................................... 1 1.4 Framework for response -
Passive Acoustics for Monitoring Marine Animals - Progress and Challenges
Proceedings of ACOUSTICS 2006 20-22 November 2006, Christchurch, New Zealand Passive acoustics for monitoring marine animals - progress and challenges Douglas Cato (1), Robert McCauley (2), Tracey Rogers (3) and Michael Noad (4) (1) Defence Science and Technology Organisation and University of Sydney Institute of Marine Science, Sydney, Australia (2) Centre for Marine Science and Technology, Curtin University, Perth, Western Australia (3) Australian Marine Mammal Research Centre, Zoological Parks Board of NSW and University of Sydney, Sydney, Australia (4) School of Veterinary Science, University of Queensland, Brisbane, Australia ABSTRACT Pioneering recordings of underwater sounds off New Zealand showed a wide range of high level sounds from marine animals, particularly whales [Kibblewhite et al, J. Acoust. Soc. Am. 41, 644-655, 1967]. Almost 40 years later, a much greater amount of data is available on marine animal sounds and there is now considerable interest in using the sounds to monitor the animals for studies of abundance, migrations and behaviour. Passive acoustic monitoring shows much promise because the animal vocalisations are usually detectable over long distances, allowing a large area to be surveyed. Marine mammals are detectable acoustically at much greater distances than they are visible and passive acoustics has the potential to fill in the gaps in open ocean surveying. There are however challenges, and this paper discusses progress and the steps needed to develop robust methods of surveying the abundance and migrations of marine animals, illustrated by studies in our region. Effective use of passive monitoring requires an understanding of the acoustic behaviour of the animals, a knowledge of the acoustic propagation and ambient noise at the time of the survey and a rigorous statistical analysis.