Active Tectonics of the Northeastern Mojave Desert, California. David F

Total Page:16

File Type:pdf, Size:1020Kb

Active Tectonics of the Northeastern Mojave Desert, California. David F Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1996 Active Tectonics of the Northeastern Mojave Desert, California. David F. Macconnell Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Macconnell, David F., "Active Tectonics of the Northeastern Mojave Desert, California." (1996). LSU Historical Dissertations and Theses. 6156. https://digitalcommons.lsu.edu/gradschool_disstheses/6156 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 ACTIVE TECTONICS OF THE NORTHEASTERN MOJAVE DESERT, CALIFORNIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology and Geophysics by David F. MacConnell B.S., San Diego State University, 1988 May 1996 UMI Number: 9628310 UMI Microform 9628310 Copyright 1996, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 A cknowledgments No project as large and encompassing as that of a dissertation is performed by an individual acting alone. This project has cost me many years in its achievement; some, now behind me, and some, I’m quite sure, have been paid for off the tail end of my life. However, the cost surely would have been much dearer had I not had the help of my friends, family and associates. My advisor, Roy Dokka, has been a most valued and demanding critic, a loyal working associate, and a close friend. Thank you, Roy, for providing an environment rich in technologies, ideas and quality student associates-an academic climate which has stimulated my growth as a geologist. I thank Chad McCabe for the use of the LSU paleomagnetism laboratory and for his considerable time and effort spent on this project, both in the field and in the lab. Ajoy Baksi conducted geochronological studies on rocks from my field area. This manuscript has benefited greatly from the reviews and suggestions of Darrell Henry and Oscar Huh. I have always enjoyed geological field research especially when the days are bright and the air is cool; however, when the weather gets rough, as it often does in the Mojave Desert, one truly develops an understanding of how misery is far less painful when shared. I especially thank Minji Chu, Rob Lewis, Molly Malone, Chad McCabe, Mike McCurry, Tim Ross, and Hodge Walker for the arduous work performed, the camaraderie shared and the valuable discussions held in "the field." My family has been a great source of inspiration to me; for my every achievement they have given fanfare far out of proportion, and for every disappointment they were ready with thoughtful words. Regardless of the distance separating us, their love and support have helped to keep my spirits high and motivation strong. I thank the Department of Geology and Geophysics for providing financial as well as logistical support. I am grateful for the monetary contributions I have received from Amoco Oil Co., Arco Oil and Gas, Shell Oil Co., Exxon Exploration Co., and the Houston Geological Society. This work was also supported by the Geodynamics Branch of NASA under contract awarded to M.Miller (P.I.) and R. K.Dokka (Co-I.), a NSF grant (EAR9219191), and a contract with the U.S. Army (#959353). Much appreciated help with the logistics of field operations and living accommodations were provided by W. McNutt and L. Sturgis (Bendix Corp.) and R. Quinones and Lt. Col. Schnable (U.S. Army, NTC). I also thank Exxon Exploration Company for providing me with the greatest incentive to knuckle down and finish this dissertation-a job. Finally I thank my beloved Elizabeth Keller for coloring life rich and vibrant with love and adventure, for making every hour away from work a chance to remember how sweet life can be...nothing has had more of an impact on my sense of purpose. T a b l e o f C o n t e n t s A C K N O W L E D G M E N T S ........................................................................................... ii LIST OF TABLES .......................................................................................................... vii LIST OF FIGURES ....................................................................................................... viii LIST OF PLATES .......................................................................................................... x ABSTRACT ........................................................................................................................ xi CHAPTER 1: INTRODUCTION ........................................................................... 1 OVERVIEW ..................................................................................................................... 1 P u rp o s e........................................................................................................................ 1 Significance ............................................................................................................... 4 O b je c tiv e s .................................................................................................................. 6 APPROACH AND METHODS .............................................................................. 6 Field Methods ......................................................................................................... 7 Remote Sensing Studies .................................................................................... 8 Landsat Thematic Mapper ........................................................................... 9 SPOT-Landsat TM Merge .......................................................................... 9 High Altitude Color-infrared Aerial Photographs................................... 10 Interpretation..................................................................................................... 10 Seismicity Data ..................................................................................................... 11 Paleomagnetism Data.......................................................................................... 11 Geographic Information System...................................................................... 12 CHAPTER 2: GEOLOGY OF THE NORTHEASTERN MOJAVE DESERT ....................................................................................................... 13 INTRODUCTION .......................................................................................................... 13 OVERVIEW OF GEOLOGICAL HISTORY ..................................................... 13 Pre-Tertiary Geology.......................................................................................... 13 Late Cretaceous to Early Cenozoic Erosional Epoch................................... 14 Early Miocene Extensional Tectonics............................................................ 15 Early Miocene Regional Dextral Shear.......................................................... 15 Early Miocene Volcanism in the Northeastern Mojave Desert..................... 16 Late Cenozoic Tectonics.................................................................................... 17 STRATIGRAPHY OF THE GOLDSTONE LAKE REGION .......................... 20 Introduction............................................................................................................... 20 Basement Rocks of the Goldstone Lake Region........................................... 21 Early Miocene Volcanic and Volcaniclastic Rocks of the Goldstone Lake Region.....................................................................................
Recommended publications
  • California Vegetation Map in Support of the DRECP
    CALIFORNIA VEGETATION MAP IN SUPPORT OF THE DESERT RENEWABLE ENERGY CONSERVATION PLAN (2014-2016 ADDITIONS) John Menke, Edward Reyes, Anne Hepburn, Deborah Johnson, and Janet Reyes Aerial Information Systems, Inc. Prepared for the California Department of Fish and Wildlife Renewable Energy Program and the California Energy Commission Final Report May 2016 Prepared by: Primary Authors John Menke Edward Reyes Anne Hepburn Deborah Johnson Janet Reyes Report Graphics Ben Johnson Cover Page Photo Credits: Joshua Tree: John Fulton Blue Palo Verde: Ed Reyes Mojave Yucca: John Fulton Kingston Range, Pinyon: Arin Glass Aerial Information Systems, Inc. 112 First Street Redlands, CA 92373 (909) 793-9493 [email protected] in collaboration with California Department of Fish and Wildlife Vegetation Classification and Mapping Program 1807 13th Street, Suite 202 Sacramento, CA 95811 and California Native Plant Society 2707 K Street, Suite 1 Sacramento, CA 95816 i ACKNOWLEDGEMENTS Funding for this project was provided by: California Energy Commission US Bureau of Land Management California Wildlife Conservation Board California Department of Fish and Wildlife Personnel involved in developing the methodology and implementing this project included: Aerial Information Systems: Lisa Cotterman, Mark Fox, John Fulton, Arin Glass, Anne Hepburn, Ben Johnson, Debbie Johnson, John Menke, Lisa Morse, Mike Nelson, Ed Reyes, Janet Reyes, Patrick Yiu California Department of Fish and Wildlife: Diana Hickson, Todd Keeler‐Wolf, Anne Klein, Aicha Ougzin, Rosalie Yacoub California
    [Show full text]
  • NPCA Comments on Proposed Silurian
    Stanford MillsLegalClinic Environmental Law Clinic Crown Quadrangle LawSchool 559 Nathan Abbott Way Stanford, CA 94305-8610 Tel 650 725-8571 Fax 650 723-4426 www.law.stanford.edu September 9, 2014 Via Electronic Mail and Federal Express James G. Kenna, State Director Bureau of Land Management California State Office 2800 Cottage Way, Suite W-1623 Sacramento, CA 95825 (916) 978-4400 [email protected] Katrina Symons Field Manager Bureau of Land Management Barstow Field Office 2601 Barstow Road Barstow, CA 92311 (760) 252-6004 [email protected] Dear State Director Kenna and Field Manager Symons: Enclosed please find comments by the National Parks Conservation Association (“NPCA”) on the solar and wind projects proposed by Iberdrola Renewables, Inc., in Silurian Valley, California. We understand that the U.S. Bureau of Land Management (“BLM”) is currently considering whether to grant the Silurian Valley Solar Project a variance under the October 2012 Record of Decision for Solar Energy Development in Six Southwestern States. We also understand that BLM is currently evaluating the Silurian Valley Wind Project under the National Environmental Policy Act. As the enclosed comments make clear, NPCA has serious concerns about the proposed projects’ compliance with applicable laws and policies, and about their potentially significant adverse effects on the Silurian Valley and surrounding region. We thank you for your consideration of these comments. NPCA looks forward to participating further in the administrative processes associated with the proposed projects. Respectfully submitted, Elizabeth Hook, Certified Law Student Community Law ❖ Criminal Defense ❖ Environmental Law ❖ Immigrants’ Rights ❖ International Human Rights and Conflict Resolution ❖ Juelsgaard Intellectual Property and Innovation ❖ Organizations and Transactions ❖ Religious Liberty ❖Supreme Court Litigation ❖ Youth and Education Law Project Mr.
    [Show full text]
  • San Bernardino & Inyo Counties, California
    BLM-California Old Spanish National Historic Trail Recreation & Development Strategy San Bernardino & Inyo Counties, California—September, 2015 14 Old Spanish National Historic Trail Recreation & Development Strategy Department of the Interior Bureau of Land Management Utah State Office Prepared For: The Bureau of Land Management, Barstow Field Office The Old Spanish Trail Association Prepared By: Michael Knight, BLM, ACE Landscape Architect Intern Graydon Bascom, BLM, ACE Historic Trails Intern September, 2015 Contents Note to the Reader 1 Participants 2 Explanation of Document Sections 3 Project Overview Old Spanish Trail Map 7 Recreation Route Map 9 Typical Trail Elements 11 Trail Zone Details Cajon Junction to Barstow (Zone 1) 15 Barstow to Harvard Rd (Zone 2) 19 Harvard Rd to Salt Creek (Zone 3) 27 Zzyzx to Piute Gorge (Zone 4) 31 Salt Creek to California State Line (Zone 5) 37 Summary 41 Above: Old Spanish Trail Marker at Emigrant Pass Cover Page: Top photo: Salt Creek ACEC, Bottom Photo: Mouth of Spanish Canyon looking southwest Note To The Reader National Historic Trails are trails that have a historical significance to the nation, and can only be designated by an act of Congress. There are currently 19 National Historic Trails in the United States. In 1968, the National Trails System Act, which is intended to provide for the outdoor recreation needs of the public, opened the door to federal involvement in all types of trails. Today, the Bureau of Land Management, along with the National Park Service and National Forest Service, are responsible for the administration and management of National Historic Trails.
    [Show full text]
  • The Structural Geology of the Shadow Mountains Area, San Bernadino County, California by Raymond C
    3 1272 00095 6803 BICE ffiiim&SX?2 Ths Stmr&wral Goology of tbo Shadow JSm&alns Axoa# San Bemadim Comity $ Cc&Afognia W Basrcaomi C» saiooa &?* A mss st&BsmsD IB PARTIAL 1ULLW OF HIE BBQOZRSEIEBSS FOR Tf!B DBSBiiS OF tlaatjos? of As$s Thesis Directors algmtm'SJ Housbor^ Team UQF 2.966 ABSTRACT The Structural Geology of the Shadow Mountains Area, San Bernadino County, California by Raymond C. Y/ilson, Jr. Within the Shadow Mountains area, located in the northeast corner of San Bernadino County, California, a series of alloch¬ thonous blocks of Precambrian gneisses rest on Late Tertiary non-marine sediments. The Precambrian gneisses consist of dioritic sills and granitic country rock. The Tertiary sediments consist of Pliocene (?) non-marine gravels, sands, tuffs, bentonitic playa clay, and lenses of massive, recemented dolomite megabreccia up to 500 feet thick. During the-Sevier Orogeny, the Mesquite and the Winters thrusts developed in the Mesquite Range and Winters Pass area to the east of the Shadow Mountains, and the Halloran and the Kingston Peak batholiths were intruded south and north of the area respectively. In the early Tertiary (?), the Riggs thrust was emplaced in the Silurian Hills west of the Shadow Mountains, and the Kingston Valley graben formed between the Silurian Hills, the Kingston Range, and the Mesquite Range. During middle and late Tertiary (?), a thick sequence of non-marine sediments were deposited in the Kingston Valley graben. Interbedded with these sediments are a series of thick lenses of dolomite megabreccia which were emplaced by a comb- ination of sedimentation and incoherent gravity sliding.
    [Show full text]
  • West Mojave Route Management Plan, Historic Properties Treatment Plan, Attachment 5: Historic Trails Context Study FINAL VERSION May 2019
    West Mojave Route Management Plan, Historic Properties Treatment Plan, Attachment 5: Historic Trails Context Study FINAL VERSION May 2019 Prepared for: United States Department of the Interior Bureau of Land Management California Desert District Office 22835 Calle San Juan de Los Lagos Moreno Valley, California 92553 Prepared by: Diane L. Winslow, M.A., RPA, Shannon Davis, M.A., RPH, Sherri Andrews, M.A., RPA, Marilyn Novell, M.S., and Lindsey E. Daub, M.A., RPA 2480 N. Decatur Blvd., Suite 125 Las Vegas, NV 89108 (702) 534-0375 ASM Project Number 29070 West Mojave Route Management Plan, Historic Properties Treatment Plan, Attachment 5: Historic Trails Context Study Prepared for: United States Department of the Interior Bureau of Land Management California Desert District Office 22835 Calle San Juan de Los Lagos Moreno Valley, California 92553 Prepared by: Diane L. Winslow, M.A., RPA, Shannon Davis, M.A., RPH, Sherri Andrews, M.A., RPA, Marilyn Novell, M.S., and Lindsey E. Daub, M.A., RPA ASM Affiliates, Inc. 2480 North Decatur Boulevard, Suite 125 Las Vegas, Nevada 89108 May 2019 PN 29070 Table of Contents TABLE OF CONTENTS Chapter Page MANAGEMENT SUMMARY ................................................................................. v 1. INTRODUCTION ............................................................................................. 1 2. LITERATURE REGARDING TRAILS, ROADS, AND HIGHWAYS ............... 7 3. DEFINING TRAILS, ROADS, AND HIGHWAYS ........................................... 9 4. PREHISTORIC, PROTO-HISTORIC, AND
    [Show full text]
  • California Desert Protection Act of 1993 CIS-NO
    93 CIS S 31137 TITLE: California Desert Protection Act of 1993 CIS-NO: 93-S311-37 SOURCE: Committee on Energy and Natural Resources. Senate DOC-TYPE: Hearing DOC-NO: S. Hrg. 103-186 DATE: Apr. 27, 28, 1993 LENGTH: iii+266 p. CONG-SESS: 103-1 ITEM-NO: 1040-A; 1040-B SUDOC: Y4.EN2:S.HRG.103-186 MC-ENTRY-NO: 94-3600 INCLUDED IN LEGISLATIVE HISTORY OF: P.L. 103-433 SUMMARY: Hearings before the Subcom on Public Lands, National Parks, and Forests to consider S. 21 (text, p. 4-92), the California Desert Protection Act of 1993, to: a. Expand or designate 79 wilderness areas, one wilderness study area in the California Desert Conservation Area, and one natural reserve. b. Expand and redesignate the Death Valley National Monument as the Death Valley National Park and the Joshua Tree National Monument as the Joshua Tree National Park. c. Establish the Mojave National Park and the Desert Lily Sanctuary. d. Direct the Department of Interior to enter into negotiations with the Catellus Development Corp., a publicly owned real estate development corporation, for an agreement or agreements to exchange public lands or interests for Catellus lands or interests which are located within the boundaries of designated wilderness areas or park units. e. Withdraw from application of public land laws and reserve for Department of Navy use certain Federal lands in the California desert. f. Permit military aircraft training and testing overflights of the wilderness areas and national parks established in the legislation. Title VIII is cited as the California Military Lands Withdrawal and Overflights Act of 1991.
    [Show full text]
  • Stratigraphy and Paleogeographic Significance of Metamorphic Rocks in the Shadow Mountains, Western Mojave Desert, California
    Stratigraphy and paleogeographic significance of metamorphic rocks in the Shadow Mountains, western Mojave Desert, California Mark W. Martin* Isotope Geochemistry Laboratory and Department of Geology, University of Kansas, J. Douglas Walker } Lawrence, Kansas 66045 ABSTRACT work of the Late Proterozoic to early Mesozoic tectonic develop- ment of the southwestern Cordillera. In addition, the affinity of the Stratigraphic correlations presented here for the ductilely de- Shadow Mountain strata is critical to evaluating models for the formed and metamorphosed rocks exposed in the Shadow Moun- Mesozoic and Paleozoic paleogeography of the southwestern Cor- tains indicate that they formed on the North American continental dillera, which call for major tectonic boundaries to be present in the margin and are not exotic or significantly displaced from their site area (e.g., Walker, 1988; Stone and Stevens, 1988; Lahren et al., of origin. These strata represent a depositional history that spans 1990). Late Proterozoic and Paleozoic passive margin development, late The significance of the Shadow Mountains stratigraphy for un- Paleozoic transitional passive to active plate margin tectonics, and derstanding the regional geology can best be appreciated by review- late Paleozoic–early Mesozoic establishment of a convergent mar- ing our current knowledge of the Proterozoic and Paleozoic tectonic gin along the western edge of the North American craton. history of this region. The Late Proterozoic and Paleozoic western The stratigraphic sequence in the Shadow Mountains is rep- margin of North America, as defined by cratonal, miogeoclinal, and resented by a basal siliceous and calcareous section that is corre- eugeoclinal facies patterns, generally trends northeast (Fig. 1; lated with upper Proterozoic and Cambrian miogeoclinal strata.
    [Show full text]
  • A Historical Context and Archaeological Research Design for Mining Properties in California
    Mining Cvr FINAL.indd 1 Cover Photos: Woman Miner at the Kendon Pit, Mono County, 1930; African American Miners at the Andrade Dredge Mine, California; Cornish Miners on Skip at the Empire Mine, Grass Valley, 1900 (used with permission, California State Department of Conservation, California Geological Survey). Cite as: California Department of Transportation. Historical Context and Archaeological Research Design for Mining Properties in California. Division of Environmental Analysis, California Department of Transportation, Sacramento, CA. 2008. For individuals with sensory disabilities, this document is available in alternate formats upon request. Please call: (916) 653-0647 Voice, or use the CA Relay Service TTY number 1-800-735-2929 or write: Caltrans Division of Environmental Analysis P.O. Box 942874, MS-27 Sacramento, CA 94274-0001 Mining Cvr FINAL.indd 2 12/10/08 4:48:58 PM MANAGEMENT SUMMARY The California Department of Transportation (Caltrans), in cooperation with the Federal Highway Administration, California Division, and the California State Historic Preservation Officer (SHPO), prepared this thematic study to assist with evaluating the information potential of mining properties in California, that is, for their eligibility for the National Register of Historic Places under Criterion D. To be eligible under Criterion D, National Register guidance states that a property must have, or have had, information to contribute to our understanding of human history or prehistory, and the information must be considered important. An integral part of this study is the development of a research design. The archaeological research design explicitly demonstrates the connection between the information a property contains and important research issues or questions associated with a particular property.
    [Show full text]
  • Late Cenozoic Crustal Extension and Magmatism, Southern Death Valley Region, California
    Geological Society of America Field Guide 2 2000 Late Cenozoic crustal extension and magmatism, southern Death Valley region, California J.P. Calzia U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025 USA O.T.Ramo Department of Geology, University of Helsinki, P.O. Box 11, FTN-00014, Finland ABSTRACT The late Cenozoic geologic history of the southern Death Valley region is characterized by coeval crustal ex­ tension and magmatism. Crustal extension is accommodated by numerous listric and planar normal faults as well as right- and left-lateral strike slip faults. The normal faults dip 30°-50°W near the surface and flatteri and merge at depth into a detachment zone at or near the contact between Proterozoic cratonic rocks and Proterozoic and Pa­ leozoi_c miogeoclinal rocks; the strike-slip faults act as tear faults between crustal blocks that have extended at dif­ ferent times and at different rates. Crustal extension began 13.4-13.1 Ma and migrated northwestward with time; undef'ormed basalt flows and lacustrine deposits suggest that extension stopped in this region (but continued north of the Death Valley graben) between 5 and 7 Ma. Estimates of crustal extension in this region vary from 30-50 per­ cent to more than 100 percent. Magmatic rocks syntectonic with crustal extension in the southern Death Valley region include 12.4-6.4 Ma granjtic rocks as well as bimodal14.~.0 Ma volcanic rocks. Geochemical and isotopic evidence suggest that the granjtic rocks get younger and less alkalic from south to north; the volcanic rocks become more mafic with less evidence of crustal interaction as they get younger.
    [Show full text]
  • Structural Geology of the Southern Silurian Hills, San Bernardino County, California
    RICE UNIVERSITY STRUCTURAL GEOLOGY OP THE SOUTHERN SILURIAN HILLS SAN BERNARDINO COUNTY* CALIFORNIA by Earl William Abbott 3 1272 00095 0491 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS Thesis Director's signature: Houston, Texas May, 1971 TABLE OF CONTENTS Page INTRODUCTION 1 Purpose i Location 1 Previous Investigations 2 Economic Geology „ 2 Acknowledgements 3 LITHOLOGIC UNITS 4 o Introduction 4 Earlier Precambrian Gneiss Complex 4 Later Precambrian Pahrump Group 9 Precambrian (?) Metasedimentary Complex 15 Precambrian (?) Metadioritic and Metasedimentary Complex 22 Paleozoic Riggs Formation 27 Mesozoic (?) Basic Intrusives 28 Mesozoic Acidic Intrusives 29 STRUCTURAL GEOLOGY 34 Introduction 34 Folding 34 Riggs Thrust Fault 37 Other Faults 43 CONCLUSIONS 45 REFERENCES CITED 46 ILLUSTRATIONS Following Page 1 Regional geographic location map 1 2 Sample locality map 7 3 Photograph of minor doming by forceful intrusion of granitic rock 35 4 Stereographic projection of poles to bedding or foliation In the talc mine area 36 5 Stereographic projection of lineations in the talc mine area 36 6 Stereographic plot of poles to bedding of the Riggs Formation 37 7 Stereographic plot of poles to bedding of the Pahrump Group ... 37 8 Photograph of the Riggs thrust fault near the western mouth of Through Canyon.. 37 LIST OF PLATES .a 1 Geologic map of the southern Silurian Hills in pocket LIST OP TABLES Table Page 1 Modal compositions for Precambrian gneissic rocks (in percent) 8 2 Modal compositions for Precambrian Pahrump Group rocks (in percent) . 12 3 Composite stratigraphic section in the western part of the Silver Lake Talc Mine area 17 4 Modal analyses for Precambrian (?) meta¬ sedimentary complex (in percent) 19 5 Modal analyses of metadioritic rocks from Precambrian (?) metadioritic and metasedimentary complex (in percent) .
    [Show full text]
  • Public Land Statistics 2020 U.S
    Public Land Statistics 2020 U.S. Department of the Interior • Bureau of Land Management U.S. Department of the Interior Bureau of Land Management The Bureau of Land Management’s mission is to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. Production services were provided by the Bureau of Land Management’s National Operations Center in Denver, Colorado. PUBLIC LAND STATISTICS 2020 Volume 205 June 2021 BLM/OC/ST-21/001+1165 P-108-10 WELCOME TO PUBLIC LAND STATISTICS 2020 Welcome to the 2020 edition of Public Land Statistics (PLS), published by the U.S. Department of the Interior, Bureau of Land Management (BLM). The 80-plus tables provide numerical data and detailed footnotes related to the BLM’s mission, programs, and accomplishments. Many of the minor acreage changes from one year to the next occur because: 1. Inholdings have been acquired, or some other land exchange has taken place during the year. 2. Improved geographic information system (GIS) mapping of land boundaries has enabled the BLM to recalculate the total acres within the units. Note that data presented in the 2020 PLS tables may not exactly match data in other BLM publications covering fiscal year (FY) 2020 operations and accomplishments. Such discrepancies occur because the databases that provide table data are not static; they are constantly being updated to provide the latest information, sometimes many months after the end of the fiscal year. The BLM remains committed to publishing a PLS report each year that is timely, complete, and as helpful as possible to readers.
    [Show full text]
  • Mojave National Preserve Geologic Resource Evaluation Scoping Summary
    MOJAVE NATIONAL PRESERVE GEOLOGIC RESOURCES MANAGEMENT ISSUES SCOPING SUMMARY Sid Covington Geologic Resources Division November 6, 2003 Executive Summary In a Geologic Resources Evaluation scoping meeting held in Barstow, California, April 30, 2003, the scoping meeting participants identified the following geologic resources management issues. 1. Caves in the Preserve are being impacted by human (recreational) use and by drought. At present there is no estimate of the amount of use that caves receive. 2. Windblown dust is an important source of nutrients as well airborne toxins and radioactivity. 3. Desert crusts are very sensitive to human disturbance, especially recreational activities such as ORV use and hiking as well as from grazing. 4. Paleontological resources are not well-known in the Preserve and a baseline inventory is needed. Location and identification of vertebrate fossils are a high priority. There may be collecting (theft) by visitors. 5. Sand dunes are prominent geologic features in the Preserve. There is a need to monitor the continuing impact of visitors as well as document impacts from past mining. 6. There are abandoned mines that may pose visitor safety issues. Some are being preserved as cultural resources (headframes, draw works, abandoned vehicles, etc.). Tailings, especially uranium may be a health hazard. 7. There is potential for groundwater contamination especially in high use areas. Pesticides, waste oil, trash, fertilizer, and nitrates are possible pollutants. Introduction The National Park Service held a Geologic Resources Evaluation scoping meeting at the headquarters of Mojave National Preserve on Wednesday, April 30, 2003. The purpose of the meeting was to discuss the status of geologic mapping in Preserve, the associated bibliography, and the geologic issues in the park.
    [Show full text]