MA30055 Introduction to Topology, Spring 2017

Total Page:16

File Type:pdf, Size:1020Kb

MA30055 Introduction to Topology, Spring 2017 MA30055 Introduction to Topology, Spring 2017 G.K. Sankaran February 6, 2018 What this course is about This course is about topology, which is really not a subject you have yet seen. The prerequisites tell you that you need metric spaces: that's true (just about) but misleading, because it suggests that it is yet another analysis course. It isn't an analysis course. There is barely an " in sight and we shan't differentiate anything in earnest. The ideas and patterns of thinking often (not always) resemble things you have seen in algebra; but it's not an algebra course either. It is often said that a topologist is a person who cannot distinguish between a doughnut and a coffee cup, because they both have one hole. Then you are told that topology is about things that don't change when you stretch or bend spaces. That's true, at last partly, but it isn't the mechanism we use for thinking about topology. A lot of the time we use, quite simply, sets: topology is rather fundamental in the same way that set theory is. De Morgan's rules will turn up from time to time. The way we present topology in this course uses the language of categories, which is another way of looking at the fundamentals of mathematics. Part of the idea is to give a (very light) introduction to category theory, but in a context. Category theory is hugely general (almost everything is a category), but topology is a good place to encounter it, as well as being historically the place it came from. This has one odd consequence. Pretty much every pure mathematics course you have done so far (Analysis I was perhaps an exception) started with some familiar concrete things and gradually became more abstract. This course does the opposite. We shall begin with the general idea of a topological space, which allows for some fairly wild animals; then we shall gradually impose conditions making things less exotic, and eventually we shall end up talking about surfaces, doughnuts and coffee cups. The course is in four sections. In Section 1 we shall see some very general definitions and basic properties. In Section 2 we shall meet ways to construct topological spaces that have interesting properties. In Section 3 we shall see 1 various special conditions that a topological space may have, and in Section 4 we shall look at surfaces and (cheating only once) classify them, i.e. give a complete list of all of them. Books There are lots of books on topology, easily spotted by the word \Topology" (and frequently nothing else) in the title. Some of these are on algebraic topology, which is a different thing (we see just a hint of it near the end of this course), but then they say so. What we are doing is sometimes called \general topology" or \point-set topology". I am not following any book, but two which some people find helpful, at least for parts of the course, are Topology by J.R. Munkres and Basic topology by M.A. Armstrong. The standard reference book is generally General topology by J.L. Kelley: this is a bit more usable than standard references often are. My own lecture notes are extremely brief, being just reminders to myself. These are more extended notes, based on what I actually did in 2017. Local information There is a web page for the course at people.bath.ac.uk/masgks/Topology I will link to that from the Moodle page, but I probably shan't use the Moodle page very much directly. The course structure is simple and Moodle, invaluable for big complicated courses, is too heavy a tool for this one. 1 Topological spaces Definitions and examples 1.1 The basic idea of the definition of topological space is this: when you do metric spaces, after a while you find you stop writing the metric quite so often, and instead work with open sets a lot. So why not jettison the metric altogether, and simply say from the start which ones the open sets are? Maybe that is more general? (It is, of course.) How much survives of metric space theory if you do do that? 1.2 Recall that for any set S, the power set of S is P(S) := fA j A ⊆ Sg, the set of all subsets of S (thus A 2 P(S) () A ⊆ S). You can also think of it as the set of all functions from S to a 2-point set such as f0; 1g (for which reason set theorists sometimes call it 2S): the set A corresponds to the indicator function IA, which takes the value 1 on A and 0 elsewhere. Definition 1.3 A topological space X is a set equipped with a collection TX ⊆ P(X) of subsets (of X) satisfying the following properties: 2 (a) X 2 TX ; (b) ? 2 TX ; S (c) if Uα 2 TX 8 α 2 A (some index set), then α2A Uα 2 TX ; (d) if U; V 2 TX then U \ V 2 TX . The collection T is called the topology of the topological space. 1.4 Things to note: • I am abusing notation already. I really ought to use a different symbol such as jXj for the set X (\just a set") and the topological space X (\a set with a chosen topology"). After all, I could easily find two different subsets T and T 0 of P(X), both satisfying (a){(d), and then I wouldn't want to have to call both the topological spaces X. But very often the set X is a special one { R, for instance { that has a \usual" topology, and I don't want to have to keep writing jRj when I'm not thinking about the topology. So I will use X for both the topological space and the set. If I need to be careful about it, as will happen sometimes, I will write jXj to denote just the set, and (X; T ) to denote the topological space. • Although (d) only tells us that the intersection of two open sets is open, a trivial induction shows that then any finite intersection of open sets is open, and we could have made the axiom say that if we had preferred. • The four axioms should be memorised by repeating to yourself the words \all, nothing, arbitrary unions, finite intersections". Terminology 1.5 The set jXj is called the underlying set of X and its elements are called the points of X { my abuse of notation allows me to write x 2 X instead of x 2 jXj, which is just as well. The collection TX , or T if we all know perfectly well what X is and don't need reminding, is called the topology of X (or \on jXj"). A subset U ⊆ jXj is said to be open, or an open subset of X, if and only if U 2 TX . Notice that whether a subset is open or not depends on the topology, not just jXj { in fact, the topology is nothing but a list of all the open subsets. 1.6 As a general set-theory rule, an empty collection of subsets of a set X has union ? and intersection X. Think of this as a convention if you like, or argue that x 2 S Y exactly when it belongs to a Y 2 , and there Y 2? ? aren't any such Y so that never happens. so if we were really determined, we could ditch axioms (a) and (b) and make do with (c) and (a slight modification of) (d). But there are no prizes for having fewer axioms than anybody else. Nevertheless, these rules are convenient. 3 Example 1.7 Any metric space can be made into a topological space X by defining the topology TX to be the set of all open subsets with respect to the metric d. That is, if U ⊆ X then U 2 TX if and only if 8x 2 U 9δ > 0 such that fx0 2 X j d(x; x0) < δg ⊆ U: TX is called the topology induced by the metric d or the metric topology. 1.8 The example in (1.7) is the basic motivating example for the definition, and the axioms in (1.3) are what they are because that is what open sets in metric spaces do. Nevertheless, topological spaces are a lot more general than metric spaces: we shall see many examples of topological spaces that are interesting and important and definitely not metric spaces. Definition 1.9 Let X, X0 be topological spaces with the same underlying 0 set jXj = jX j. The topology TX0 is said to be finer or stronger than TX if 0 TX ⊆ TX0 (that is, X has more open subsets); TX is then said to be coarser or weaker than TX0 (that is X has fewer open subsets). (This is a case where I need the notation jXj because I am changing the topology while leaving the set alone, so using the same name for the set with or without the topology won't do.) Example 1.10 (i) The strongest topology on a set S is called the discrete topology: every subset is open and the topology is P(S). (ii) The weakest topology on a set S is called the trivial topology or the indiscrete topology: the only open subsets are ? and S. Please note: (in)discrete, not (in)discreet. Only mathematicians ever use the word \indiscrete".
Recommended publications
  • [DRAFT] a Peripatetic Course in Algebraic Topology
    [DRAFT] A Peripatetic Course in Algebraic Topology Julian Salazar [email protected]• http://slzr.me July 22, 2016 Abstract These notes are based on lectures in algebraic topology taught by Peter May and Henry Chan at the 2016 University of Chicago Math REU. They are loosely chrono- logical, having been reorganized for my benefit and significantly annotated by my personal exposition, plus solutions to in-class/HW exercises, plus content from read- ings (from May’s Finite Book), books (e.g. May’s Concise Course, Munkres’ Elements of Algebraic Topology, and Hatcher’s Algebraic Topology), Wikipedia, etc. I Foundations + Weeks 1 to 33 1 Topological notions3 1.1 Topological spaces.................................3 1.2 Separation properties...............................4 1.3 Continuity and operations on spaces......................4 2 Algebraic notions5 2.1 Rings and modules................................6 2.2 Tensor products..................................7 3 Categorical notions 11 3.1 Categories..................................... 11 3.2 Functors...................................... 13 3.3 Natural transformations............................. 15 3.4 [DRAFT] Universal properties.......................... 17 3.5 Adjoint functors.................................. 20 1 4 The fundamental group 21 4.1 Connectedness and paths............................. 21 4.2 Homotopy and homotopy equivalence..................... 22 4.3 The fundamental group.............................. 24 4.4 Applications.................................... 26
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • The Fixed-Point Property for Represented Spaces Mathieu Hoyrup
    The fixed-point property for represented spaces Mathieu Hoyrup To cite this version: Mathieu Hoyrup. The fixed-point property for represented spaces. 2021. hal-03117745v1 HAL Id: hal-03117745 https://hal.inria.fr/hal-03117745v1 Preprint submitted on 21 Jan 2021 (v1), last revised 28 Jan 2021 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The fixed-point property for represented spaces Mathieu Hoyrup Universit´ede Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France [email protected] January 21, 2021 Abstract We investigate which represented spaces enjoy the fixed-point property, which is the property that every continuous multi-valued function has a fixed-point. We study the basic theory of this notion and of its uniform version. We provide a complete characterization of countable-based spaces with the fixed-point property, showing that they are exactly the pointed !-continuous dcpos. We prove that the spaces whose lattice of open sets enjoys the fixed-point property are exactly the countably-based spaces. While the role played by fixed-point free functions in the diagonal argument is well-known, we show how it can be adapted to fixed-point free multi-valued functions, and apply the technique to identify the base-complexity of the Kleene-Kreisel spaces, which was an open problem.
    [Show full text]
  • Admissibly Represented Spaces and Qcb-Spaces
    Admissibly Represented Spaces and Qcb-Spaces∗ Matthias Schr¨oder Abstract A basic concept of Type Two Theory of Effectivity (TTE) is the notion of an admissibly represented space. Admissibly represented spaces are closely related to qcb-spaces. The latter form a well-behaved subclass of topological spaces. We give a survey of basic facts about Type Two Theory of Effectivity, admissibly represented spaces, qcb-spaces and effective qcb-spaces. Moreover, we discuss the relationship of qcb-spaces to other categories relevant to Computable Analysis. 1 Introduction Computable Analysis investigates computability on real numbers and related spaces. Type Two Theory of Effectivity (TTE) constitutes a popular approach to Com- putable Analysis, providing a rigorous computational framework for non-discrete spaces with cardinality of the continuum (cf. [48, 49]). The basic tool of this frame- work are representations. A representation equips the objects of a given space with names, giving rise to the concept of a represented space. Computable functions be- tween represented spaces are those which are realized by a computable function on the names. The ensuing category of represented spaces and computable functions enjoys excellent closure properties. Any represented space is equipped with a natural topology, turning it into a arXiv:2004.09450v1 [cs.LO] 20 Apr 2020 qcb-space. Qcb-spaces form a subclass of topological spaces with a remarkably rich structure. For example it is cartesian closed, hence products and function spaces can be formed. Admissibility is a notion of topological well-behavedness for representations. The category of admissibly represented spaces and continuously realizable functions is equivalent to the category QCB0 of qcb-spaces with the T0-property.
    [Show full text]
  • Topology of Differentiable Manifolds
    TOPOLOGY OF DIFFERENTIABLE MANIFOLDS D. MART´INEZ TORRES Contents 1. Introduction 1 1.1. Topology 2 1.2. Manifolds 3 2. More definitions and basic results 5 2.1. Submanifold vs. embedding 7 2.2. The tangent bundle of a Cr-manifold, r ≥ 1. 7 2.3. Transversality and submanifolds 9 2.4. Topology with Cr-functions. 9 2.5. Manifolds with boundary 13 2.6. 1-dimensional manifolds 16 3. Function spaces 19 4. Approximations 27 5. Sard's theorem and transversality 32 5.1. Transversality 35 6. Tubular neighborhoods, homotopies and isotopies 36 6.1. Homotopies, isotopies and linearizations 38 6.2. Linearizations 39 7. Degree, intersection number and Euler characteristic 42 7.1. Orientations 42 7.2. The degree of a map 43 7.3. Intersection number and Euler characteristic 45 7.4. Vector fields 46 8. Isotopies and gluings and Morse theory 47 8.1. Gluings 48 8.2. Morse functions 49 8.3. More on k-handles and smoothings 57 9. 2 and 3 dimensional compact oriented manifolds 60 9.1. Compact, oriented surfaces 60 9.2. Compact, oriented three manifolds 64 9.3. Heegard decompositions 64 9.4. Lens spaces 65 9.5. Higher genus 66 10. Exercises 66 References 67 1. Introduction Let us say a few words about the two key concepts in the title of the course, topology and differentiable manifolds. 1 2 D. MART´INEZ TORRES 1.1. Topology. It studies topological spaces and continuous maps among them, i.e. the category TOP with objects topological spaces and arrows continuous maps.
    [Show full text]
  • 1.1.3 Reminder of Some Simple Topological Concepts Definition 1.1.17
    1. Preliminaries The Hausdorffcriterion could be paraphrased by saying that smaller neigh- borhoods make larger topologies. This is a very intuitive theorem, because the smaller the neighbourhoods are the easier it is for a set to contain neigh- bourhoods of all its points and so the more open sets there will be. Proof. Suppose τ τ . Fixed any point x X,letU (x). Then, since U ⇒ ⊆ ∈ ∈B is a neighbourhood of x in (X,τ), there exists O τ s.t. x O U.But ∈ ∈ ⊆ O τ implies by our assumption that O τ ,soU is also a neighbourhood ∈ ∈ of x in (X,τ ). Hence, by Definition 1.1.10 for (x), there exists V (x) B ∈B s.t. V U. ⊆ Conversely, let W τ. Then for each x W ,since (x) is a base of ⇐ ∈ ∈ B neighbourhoods w.r.t. τ,thereexistsU (x) such that x U W . Hence, ∈B ∈ ⊆ by assumption, there exists V (x)s.t.x V U W .ThenW τ . ∈B ∈ ⊆ ⊆ ∈ 1.1.3 Reminder of some simple topological concepts Definition 1.1.17. Given a topological space (X,τ) and a subset S of X,the subset or induced topology on S is defined by τ := S U U τ . That is, S { ∩ | ∈ } a subset of S is open in the subset topology if and only if it is the intersection of S with an open set in (X,τ). Alternatively, we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map ι : S X is continuous.
    [Show full text]
  • Topology Via Higher-Order Intuitionistic Logic
    Topology via higher-order intuitionistic logic Working version of 18th March 2004 These evolving notes will eventually be used to write a paper Mart´ınEscard´o Abstract When excluded middle fails, one can define a non-trivial topology on the one-point set, provided one doesn’t require all unions of open sets to be open. Technically, one obtains a subset of the subobject classifier, known as a dom- inance, which is to be thought of as a “Sierpinski set” that behaves as the Sierpinski space in classical topology. This induces topologies on all sets, rendering all functions continuous. Because virtually all theorems of classical topology require excluded middle (and even choice), it would be useless to reduce other topological notions to the notion of open set in the usual way. So, for example, our synthetic definition of compactness for a set X says that, for any Sierpinski-valued predicate p on X, the truth value of the statement “for all x ∈ X, p(x)” lives in the Sierpinski set. Similarly, other topological notions are defined by logical statements. We show that the proposed synthetic notions interact in the expected way. Moreover, we show that they coincide with the usual notions in cer- tain classical topological models, and we look at their interpretation in some computational models. 1 Introduction For suitable topologies, computable functions are continuous, and semidecidable properties of their inputs/outputs are open, but the converses of these two state- ments fail. Moreover, although semidecidable sets are closed under the formation of finite intersections and recursively enumerable unions, they fail to form the open sets of a topology in a literal sense.
    [Show full text]
  • September 2020 INTRODUCTION to TOPOLOGY (SOME ADDITIONAL
    September 2020 INTRODUCTION TO TOPOLOGY (SOME ADDITIONAL BASIC EXERCISES) MICHAEL MEGRELISHVILI Abstract. We provide some additional exercises in the course Topology-8822205 (Bar-Ilan University). We are going to update this file several times (during the current semester). Contents 1. Metric spaces 1 2. Topological spaces 5 3. Topological products 8 4. Compactness 9 5. Quotients 11 6. Hints and solutions 12 References 25 1. Metric spaces Exercise 1.1. Give an example of a metric space (X; d) containing two balls such that B(a1; r1) ( B(a2; r2) but r2 < r1: Hint: think about metric subspaces of R. Exercise 1.2. Let (X; d) be a metric space and 0 < r + d(a; b) < R: Prove that B(b; r) ⊆ B(a; R). Conclude that the ball B(a; R) is an open subset of X. Exercise 1.3. Let X be a set. Define ( 0 for x = y d (x; y) := ∆ 1 for x 6= y Show that (X; d∆) is an ultrametric space and describe the balls and spheres according to their radii. Date: September 14, 2020. 1 2 Exercise 1.4. Find non-isometric metric spaces X; Y such that there exist isometric embeddings f : X,! Y , g : Y,! X. Exercise 1.5. Let (V; jj · jj) be a normed space. Show that every translation Tz : V ! V; Tz(x) = z + x is an isometry. Conclude that all open balls B(a; r) with the same radius r (and a 2 V ) are isometric. Exercise 1.6. Give geometric descriptions of B[v; r];B(v; r);S(v; r) in R2 for v = (1; 2), r = 3 with respect to the following metrics: (a) Euclidean d; (b) d1; (c) dmax.
    [Show full text]
  • Basis (Topology), Basis (Vector Space), Ck, , Change of Variables (Integration), Closed, Closed Form, Closure, Coboundary, Cobou
    Index basis (topology), Ôç injective, ç basis (vector space), ç interior, Ôò isomorphic, ¥ ∞ C , Ôý, ÔÔ isomorphism, ç Ck, Ôý, ÔÔ change of variables (integration), ÔÔ kernel, ç closed, Ôò closed form, Þ linear, ç closure, Ôò linear combination, ç coboundary, Þ linearly independent, ç coboundary map, Þ nullspace, ç cochain complex, Þ cochain homotopic, open cover, Ôò cochain homotopy, open set, Ôý cochain map, Þ cocycle, Þ partial derivative, Ôý cohomology, Þ compact, Ôò quotient space, â component function, À range, ç continuous, Ôç rank-nullity theorem, coordinate function, Ôý relative topology, Ôò dierential, Þ resolution, ¥ dimension, ç resolution of the identity, À direct sum, second-countable, Ôç directional derivative, Ôý short exact sequence, discrete topology, Ôò smooth homotopy, dual basis, À span, ç dual space, À standard topology on Rn, Ôò exact form, Þ subspace, ç exact sequence, ¥ subspace topology, Ôò support, Ô¥ Hausdor, Ôç surjective, ç homotopic, symmetry of partial derivatives, ÔÔ homotopy, topological space, Ôò image, ç topology, Ôò induced topology, Ôò total derivative, ÔÔ Ô trivial topology, Ôò vector space, ç well-dened, â ò Glossary Linear Algebra Denition. A real vector space V is a set equipped with an addition operation , and a scalar (R) multiplication operation satisfying the usual identities. + Denition. A subset W ⋅ V is a subspace if W is a vector space under the same operations as V. Denition. A linear combination⊂ of a subset S V is a sum of the form a v, where each a , and only nitely many of the a are nonzero. v v R ⊂ v v∈S v∈S ⋅ ∈ { } Denition.Qe span of a subset S V is the subspace span S of linear combinations of S.
    [Show full text]
  • Introduction to Algebraic Topology MAST31023 Instructor: Marja Kankaanrinta Lectures: Monday 14:15 - 16:00, Wednesday 14:15 - 16:00 Exercises: Tuesday 14:15 - 16:00
    Introduction to Algebraic Topology MAST31023 Instructor: Marja Kankaanrinta Lectures: Monday 14:15 - 16:00, Wednesday 14:15 - 16:00 Exercises: Tuesday 14:15 - 16:00 August 12, 2019 1 2 Contents 0. Introduction 3 1. Categories and Functors 3 2. Homotopy 7 3. Convexity, contractibility and cones 9 4. Paths and path components 14 5. Simplexes and affine spaces 16 6. On retracts, deformation retracts and strong deformation retracts 23 7. The fundamental groupoid 25 8. The functor π1 29 9. The fundamental group of a circle 33 10. Seifert - van Kampen theorem 38 11. Topological groups and H-spaces 41 12. Eilenberg - Steenrod axioms 43 13. Singular homology theory 44 14. Dimension axiom and examples 49 15. Chain complexes 52 16. Chain homotopy 59 17. Relative homology groups 61 18. Homotopy invariance of homology 67 19. Reduced homology 74 20. Excision and Mayer-Vietoris sequences 79 21. Applications of excision and Mayer - Vietoris sequences 83 22. The proof of excision 86 23. Homology of a wedge sum 97 24. Jordan separation theorem and invariance of domain 98 25. Appendix: Free abelian groups 105 26. English-Finnish dictionary 108 References 110 3 0. Introduction These notes cover a one-semester basic course in algebraic topology. The course begins by introducing some fundamental notions as categories, functors, homotopy, contractibility, paths, path components and simplexes. After that we will study the fundamental group; the Fundamental Theorem of Algebra will be proved as an application. This will take roughly the first half of the semester. During the second half of the semester we will study singular homology.
    [Show full text]
  • HOMOTOPIES and DEFORMATION RETRACTS THESIS Presented To
    A181 HOMOTOPIES AND DEFORMATION RETRACTS THESIS Presented to the Graduate Council of the University of North Texas in Partial Fulfillment of the Requirements For the Degree of MASTER OF ARTS By Villiam D. Stark, B.G.S. Denton, Texas December, 1990 Stark, William D., Homotopies and Deformation Retracts. Master of Arts (Mathematics), December, 1990, 65 pp., 9 illustrations, references, 5 titles. This paper introduces the background concepts necessary to develop a detailed proof of a theorem by Ralph H. Fox which states that two topological spaces are the same homotopy type if and only if both are deformation retracts of a third space, the mapping cylinder. The concepts of homotopy and deformation are introduced in chapter 2, and retraction and deformation retract are defined in chapter 3. Chapter 4 develops the idea of the mapping cylinder, and the proof is completed. Three special cases are examined in chapter 5. TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS . .0 . a. 0. .a . .a iv CHAPTER 1. Introduction . 1 2. Homotopy and Deformation . 3. Retraction and Deformation Retract . 10 4. The Mapping Cylinder .. 25 5. Applications . 45 REFERENCES . .a .. ..a0. ... 0 ... 65 iii LIST OF ILLUSTRATIONS Page FIGURE 1. Illustration of a Homotopy ... 4 2. Homotopy for Theorem 2.6 . 8 3. The Comb Space ...... 18 4. Transitivity of Homotopy . .22 5. The Mapping Cylinder . 26 6. Function Diagram for Theorem 4.5 . .31 7. The Homotopy "r" . .37 8. Special Inverse . .50 9. Homotopy for Theorem 5.11 . .61 iv CHAPTER I INTRODUCTION The purpose of this paper is to introduce some concepts which can be used to describe relationships between topological spaces, specifically homotopy, deformation, and retraction.
    [Show full text]
  • Grothendieck-Topological Group Objects
    GROTHENDIECK-TOPOLOGICAL GROUP OBJECTS JOAQU´IN LUNA-TORRES In memory of Carlos J. Ruiz Salguero Abstract. In analogy with the classical theory of topological groups, for finitely complete categories enriched with Grothendieck topologies, we provide the concepts of localized G-topological space, initial Grothendieck topologies and continuous morphisms, in order to obtain the concepts of G-topological monoid and G-topological group objects. 1. Introduction Topological groups (monoids) are very important mathematical objects with not only applications in mathematics, for example in Lie group theory, but also in physics. Topological groups are defined on topological spaces that involve points as fundamental objects of such topological spaces. The aim of this paper is to introduce a topological theory of groups within any category, finitely complete, enriched with Grothendieck topologies. The paper is organized as follows: We describe, in section 2, the notion of Grothendieck topology as in S. MacLane and I. Moerdijk [8] . In section 3, we present the concepts of localized G-topological space, initial Grothendieck topologies and continuous morphisms, and we study the lattice structure of all Grothendieck topologies on a category C ; after that, in section 4, as in M. Forrester-Baker [3], we present the concepts of monoid and group objects. In section 5 we present the concepts of G-topological monoid and G-topological group objects; finally, in section 6 we give some examples of arXiv:1909.11777v1 [math.CT] 25 Sep 2019 these ideas. 2. Theoretical Considerations Throughout this paper, we will work within an ambient category C which is finitely complete. From S. MacLane and I.
    [Show full text]