Introduction to Non-Linear Physics Lecture 1

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Non-Linear Physics Lecture 1 Introduction to Nonlinear Physics IntroductionLecture I to Non-linear physics Lecture 1 Tobias Galla Anne Juel Nonlinear Dynamics room G.12 [email protected] http://www.maths.manchester.ac.uk/~ajuel / Adapted from T. Galla’s slides Nonlinear physics Why did you choose this course ? Reasons why you should choose this course • interesting and timely topic • combination of mathematical methods, numerical studies and experimental applications. • most phenomena in physics due to nonlinear effects • applications in a variety of different fields (in physics, but also biology, epidemiology, economics ... you name it) • essential for a broad Physics education. Reasons why you should not choose this course Reasons why you should not choose this course None Nonlinear physics Why did I choose to give this course ? • Research in complexity and soft matter : focus on instabilities in fluid dynamics and solid mechanics, which are inherently nonlinear phenomena. • Manchester Centre for Nonlinear Dynamics : multi- pronged approach of quantitative experiments and mathematical analysis/numerical simulations. • Concepts of nonlinear dynamics fundamental to understanding complex systems . e.g. game theory and evolutionary dynamics, biological systems (gene regulation, epidemics, metabolic systems), models in economics, models of socio-dynamics (traffic, opinion spreading, decision making). • Lots of interest in the public Nonlinear dynamics in a nutshell 1. http://en.wikipedia.org/wiki/Fractal 2. Bifurcation diagram of the logistic map: Universality in chaos http://en.wikipedia.org/wiki/Logistic_map 3. Lorenz model for weather prediction [www.metoffice.gov.uk ] [wikipedia ] Historical perspective Nonlinear dynamics and chaos theory is contemporary science! Edward Norton Lorenz (May 23 1917 - April 16 2008) "Predictability: Does the Flap of a Butterfly's Wings in Brazil Set Off a Tornado in Texas?" [wikipedia ] Archimedes - Eureka What year ? [wikipedia ] Archimedes - Eureka What year ? Answer: 287-212 BC [wikipedia ] Galileo objects fall at rate independent of mass ? [wikipedia ] Galileo objects fall at rate independent of mass 1589 [wikipedia ] Isaac Newton "Mathematical Principles of Natural Philosophy " Unified the three laws of motion ? [wikipedia ] Isaac Newton "Mathematical Principles of Natural Philosophy " Unified the three laws of motion 1687 [wikipedia ] Andre Ampere force on electric current in a magnetic field ? [wikipedia ] Andre Ampere force on electric current in a magnetic field 1820 [wikipedia ] James Clerk Maxwell equations ? [wikipedia ] James Clerk Maxwell equations 1864 [wikipedia ] Schroedinger equation ? [www.nobelprice.org ] Schroedinger equation 1926 [www.nobelprice.org ] Murray Gell-Mann (+Zweig) “Quarks” ? [http://asymptotia.com/2009/09/16/happy-birthday-murray-gell-mann/] Murray Gell-Mann (+Zweig) “Quarks” 1964 [http://asymptotia.com/2009/09/16/happy-birthday-murray-gell-mann/] Nonlinear dynamics and chaos 1961 Lorenz chaos theory [wikipedia ] Nonlinear dynamics and chaos 1961 Lorenz chaos theory 1962 Mandelbrot Mandelbrot set [wikipedia ] Nonlinear dynamics and chaos 1961 Lorenz chaos theory 1962 Mandelbrot Mandelbrot set 1975 Feigenbaum universality in nonlinear systems [http://www.rockefeller.edu/research/l abmembers.php?id=38&memberId=6 2] [wikipedia ] Nonlinear dynamics and chaos 1961 Lorenz chaos in weather prediction model 1962 Mandelbrot fractals 1975 Li & Yorke coin the term “Chaos” 1975 Feigenbaum universality 1976 May chaos in logistic map [http://www.zoo.ox.ac.uk/staff/ academics/may_r.htm] [wikipedia ] 1987 Chaos becomes trendy, “Chaos” is published by James Gleick. Two views of classical physics Deterministic Probabilistic • Laplace: We ought to regard • Maxwell: The true logic of the present state of the the world is the calculus of universe as the effect of the probabilities. preceding state and the cause of the succeeding state. • Newtonian dynamics: Present state Predict future. • Examples of deterministic • Examples of probabilistic processes are: processes are: -Planetary motions, -Many body problems, -Fluid motion, -Coin toss, -Weather prediction, -Throw of dice. -Containment of plasmas. Two views of classical physics Deterministic Probabilistic • Write down equations. • In principle, each of the Cannot solve them! above is deterministic, but the probabilistic approach is • Is it just the case of waiting a useful means of until a large enough representing complicated computer is available? problems. • Three body problem - • Success of probabilistic restricted versions have approach in statistical exact solutions but general mechanics, for instance. form… Looks like a random process! Nonlinearity • The source of the ‘difficulty’ is nonlinearity . • Newton's equations of motion for a ‘simple’ problem such as the three body problem are nonlinear due to coupling between the three bodies. Poincaré 1903 • Nonlinearity means that the output of a system is not proportional to its input. • Often no analytical solution to nonlinear equations! Deterministic dynamics: linear system Deterministic dynamics: nonlinear system ‘Chaos’ in common parlance Football crowd. • The scientific meaning of chaos is much more subtle. • It refers to a well-characterised state of a dynamical system. • An important signature of chaos is the `Butterfly effect, i.e. extreme sensitivity to initial conditions. Extreme sensitivity to initial conditions • Two velocity time series records obtained from numerical integrations of the equations of motion of the parametrically excited pendulum in the chaotic regime. • Angular position q versus time. • Starting conditions differ by 1 part in 10 6. • Butterfly effect Unpredictable dynamics Poincaré (1903): pioneer of chaos • After tackling the 3-body problem, Poincaré identified the phenomenon of sensitive dependence on initial conditions (SDIC), this provided a definition of “chaos”. •“If we knew exactly the laws of nature and the situation of the universe at the initial moment, we could predict exactly the situation of that same universe at a succeeding moment. But even if it were the case that the natural laws had no longer any secret for us, we could still only know the initial situation approximately. If that enabled us to predict the succeeding situation with the same approximation, that is all we require, and we should say that the phenomenon had been predicted, that is is governed by laws. But it is not always so; it may happen that small differences in the initial conditions produce very great ones in the final phenomena. A small error in the former will produce an enormous error in the latter. Prediction becomes impossible, and we have the fortuitous phenomenon.” [H. Poincaré, 1903] Some highlights Nonlinear systems in one dimension stability analysis, bifurcations, numerical methods Nonlinear systems in two and three dimensions stability analysis, impossibility of chaos in 2D Spatio-temporal dynamics and pattern formation. chaos in fluid dynamics. Chaos in discrete maps logistic map, Lyapunov exponent, Feigenbaum diagram Fractals fractal (non-integer) dimensions, Mandelbrot set. Strange attractors stretching and folding, evolution of volumes in phase space At the end of this course you should • be able to analyse (simple) non-linear systems • have a good control over the fundamental mathematical and numerical techniques used to study nonlinear systems • understand what constitutes chaotic behaviour • know the basic concept of a fractal and to explain the idea of a non-integer dimension • know how these ideas can be used to progress our understanding of complicated behaviour in practice Some applications of non-linear dynamics basically everything in physics/science • pattern formation, fluid dynamics, turbulence • lasers, non-linear optics • heart cell synchronisation • eco-systems, predator-prey, population dynamics • plasma physics • chemical kinetics • non-linear electronics • brain, neural networks, cortex • learning dynamics, game theory • ... Some general points: • Two lectures a week: •Monday 9-10am (Chaplaincy) •Wednesday 12-1pm (Moseley, Schuster) • Course is going to be fairly mathematical, so you have to study and revise between lectures. • There will be 4-5 example sheets, you should do these problems either by yourself or in groups • Material will be posted on Blackboard 9 • Exam (January): 1hr30min Finally • give me feedback • complain if too fast or too slow • tell me if something is unclear • tell me how the course can be improved Some general points: Never be afraid to ask questions: • during the lectures • immediately after the lectures • come to my office (G.12 Schuster) • email: [email protected] Recommended textbook S. H. Strogatz, “Nonlinear dynamics and chaos”, Perseus Publishing 2000 Useful references G.L. Baker and J.P. Gollub “Chaotic dynamics: an introduction” 2nd ed. (CUP 1996) D.W. Jordan and P. Smith, “Nonlinear ordinary differential equations” 3rd ed. (OUP 1999) T. Mullin “The nature of chaos” (OUP 1993) Further reading J. Gleick, “Chaos: making of a new science” (Heinemann 1988).
Recommended publications
  • Coping with the Bounds: a Neo-Clausewitzean Primer / Thomas J
    About the CCRP The Command and Control Research Program (CCRP) has the mission of improving DoD’s understanding of the national security implications of the Information Age. Focusing upon improving both the state of the art and the state of the practice of command and control, the CCRP helps DoD take full advantage of the opportunities afforded by emerging technologies. The CCRP pursues a broad program of research and analysis in information superiority, information operations, command and control theory, and associated operational concepts that enable us to leverage shared awareness to improve the effectiveness and efficiency of assigned missions. An important aspect of the CCRP program is its ability to serve as a bridge between the operational, technical, analytical, and educational communities. The CCRP provides leadership for the command and control research community by: • articulating critical research issues; • working to strengthen command and control research infrastructure; • sponsoring a series of workshops and symposia; • serving as a clearing house for command and control related research funding; and • disseminating outreach initiatives that include the CCRP Publication Series. This is a continuation in the series of publications produced by the Center for Advanced Concepts and Technology (ACT), which was created as a “skunk works” with funding provided by the CCRP under the auspices of the Assistant Secretary of Defense (NII). This program has demonstrated the importance of having a research program focused on the national security implications of the Information Age. It develops the theoretical foundations to provide DoD with information superiority and highlights the importance of active outreach and dissemination initiatives designed to acquaint senior military personnel and civilians with these emerging issues.
    [Show full text]
  • Complex Bifurcation Structures in the Hindmarsh–Rose Neuron Model
    International Journal of Bifurcation and Chaos, Vol. 17, No. 9 (2007) 3071–3083 c World Scientific Publishing Company COMPLEX BIFURCATION STRUCTURES IN THE HINDMARSH–ROSE NEURON MODEL J. M. GONZALEZ-MIRANDA´ Departamento de F´ısica Fundamental, Universidad de Barcelona, Avenida Diagonal 647, Barcelona 08028, Spain Received June 12, 2006; Revised October 25, 2006 The results of a study of the bifurcation diagram of the Hindmarsh–Rose neuron model in a two-dimensional parameter space are reported. This diagram shows the existence and extent of complex bifurcation structures that might be useful to understand the mechanisms used by the neurons to encode information and give rapid responses to stimulus. Moreover, the information contained in this phase diagram provides a background to develop our understanding of the dynamics of interacting neurons. Keywords: Neuronal dynamics; neuronal coding; deterministic chaos; bifurcation diagram. 1. Introduction 1961] has proven to give a good qualitative descrip- There are two main problems in neuroscience whose tion of the dynamics of the membrane potential of solution is linked to the research in nonlinear a single neuron, which is the most relevant experi- dynamics and chaos. One is the problem of inte- mental output of the neuron dynamics. Because of grated behavior of the nervous system [Varela et al., the enormous development that the field of dynam- 2001], which deals with the understanding of the ical systems and chaos has undergone in the last mechanisms that allow the different parts and units thirty years [Hirsch et al., 2004; Ott, 2002], the of the nervous system to work together, and appears study of meaningful mathematical systems like the related to the synchronization of nonlinear dynami- Hindmarsh–Rose model have acquired new interest cal oscillators.
    [Show full text]
  • Observation of Nonlinear Verticum-Type Systems Applied to Ecological Monitoring
    2nd Reading June 4, 2012 13:53 WSPC S1793-5245 242-IJB 1250051 International Journal of Biomathematics Vol. 5, No. 6 (November 2012) 1250051 (15 pages) c World Scientific Publishing Company DOI: 10.1142/S1793524512500519 OBSERVATION OF NONLINEAR VERTICUM-TYPE SYSTEMS APPLIED TO ECOLOGICAL MONITORING S. MOLNAR´ Institute of Mathematics and Informatics Szent Istv´an University P´ater K. u. 1., H-2103 Godollo, Hungary [email protected] M. GAMEZ´ ∗ and I. LOPEZ´ † Department of Statistics and Applied Mathematics University of Almer´ıa La Ca˜nada de San Urbano 04120 Almer´ıa, Spain ∗[email protected][email protected] Received 4 November 2011 Accepted 13 January 2012 Published 7 June 2012 In this paper the concept of a nonlinear verticum-type observation system is introduced. These systems are composed from several “subsystems” connected sequentially in a particular way: a part of the state variables of each “subsystem” also appears in the next “subsystem” as an “exogenous variable” which can also be interpreted as a con- trol generated by an “exosystem”. Therefore, these “subsystems” are not observation systems, but formally can be considered as control-observation systems. The problem of observability of such systems can be reduced to rank conditions on the “subsystems”. Indeed, under the condition of Lyapunov stability of an equilibrium of the “large”, verticum-type system, it is shown that the Kalman rank condition on the linearization of the “subsystems” implies the observability of the original, nonlinear verticum-type system. For an illustration of the above linearization result, a stage-structured fishery model with reserve area is considered.
    [Show full text]
  • Nonlinear System Stability and Behavioral Analysis for Effective
    S S symmetry Article Nonlinear System Stability and Behavioral Analysis for Effective Implementation of Artificial Lower Limb Susmita Das 1 , Dalia Nandi 2, Biswarup Neogi 3 and Biswajit Sarkar 4,* 1 Narula Institute of Technology, Kolkata 700109, India; [email protected] 2 Indian Institute of Information Technology Kalyani, Kalyani 741235, India; [email protected] 3 JIS College of Engineering., Kalyani 741235, India; [email protected] 4 Department of Industrial Engineering, Yonsei University, Seoul 03722, Korea * Correspondence: [email protected] or [email protected] Received: 8 September 2020; Accepted: 14 October 2020; Published: 19 October 2020 Abstract: System performance and efficiency depends on the stability criteria. The lower limb prosthetic model design requires some prerequisites such as hardware design functionality and compatibility of the building block materials. Effective implementation of mathematical model simulation symmetry towards the achievement of hardware design is the focus of the present work. Different postures of lower limb have been considered in this paper to be analyzed for artificial system design of lower limb movement. The generated polynomial equations of the sitting and standing positions of the normal limb are represented with overall system transfer function. The behavioral analysis of the lower limb model shows the nonlinear nature. The Euler-Lagrange method is utilized to describe the nonlinearity in the field of forward dynamics of the artificial system. The stability factor through phase portrait analysis is checked with respect to nonlinear system characteristics of the lower limb. The asymptotic stability has been achieved utilizing the most applicable Lyapunov method for nonlinear systems.
    [Show full text]
  • PHY411 Lecture Notes Part 4
    PHY411 Lecture notes Part 4 Alice Quillen February 6, 2019 Contents 0.1 Introduction . 2 1 Bifurcations of one-dimensional dynamical systems 2 1.1 Saddle-node bifurcation . 2 1.1.1 Example of a saddle-node bifurcation . 4 1.1.2 Another example . 6 1.2 Pitchfork bifurcations . 7 1.3 Trans-critical bifurcations . 10 1.4 Imperfect bifurcations . 10 1.5 Relation to the fixed points of a simple Hamiltonian system . 13 2 Iteratively applied maps 14 2.1 Cobweb plots . 14 2.2 Stability of a fixed point . 16 2.3 The Logistic map . 16 2.4 Two-cycles and period doubling . 17 2.5 Sarkovskii's Theorem and Ordering of periodic orbits . 22 2.6 A Cantor set for r > 4.............................. 24 3 Lyapunov exponents 26 3.1 The Tent Map . 28 3.2 Computing the Lyapunov exponent for a map . 28 3.3 The Maximum Lyapunov Exponent . 29 3.4 Numerical Computation of the Maximal Lyapunov Exponent . 30 3.5 Indicators related to the Lyapunov exponent . 32 1 0.1 Introduction For bifurcations and maps we are following early and late chapters in the lovely book by Steven Strogatz (1994) called `Non-linear Dynamics and Chaos' and the extremely clear book by Richard A. Holmgren (1994) called `A First Course in Discrete Dynamical Systems'. On Lyapunov exponents, we include some notes from Allesandro Morbidelli's book `Modern Celestial Mechanics, Aspects of Solar System Dynamics.' In future I would like to add more examples from the book called Bifurcations in Hamiltonian systems (Broer et al.). Renormalization in logistic map is lacking.
    [Show full text]
  • Spectral Properties of the Koopman Operator in the Analysis of Nonstationary Dynamical Systems
    UNIVERSITY of CALIFORNIA Santa Barbara Spectral Properties of the Koopman Operator in the Analysis of Nonstationary Dynamical Systems A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering by Ryan M. Mohr Committee in charge: Professor Igor Mezi´c,Chair Professor Bassam Bamieh Professor Jeffrey Moehlis Professor Mihai Putinar June 2014 The dissertation of Ryan M. Mohr is approved: Bassam Bamieh Jeffrey Moehlis Mihai Putinar Igor Mezi´c,Committee Chair May 2014 Spectral Properties of the Koopman Operator in the Analysis of Nonstationary Dynamical Systems Copyright c 2014 by Ryan M. Mohr iii To my family and dear friends iv Acknowledgements Above all, I would like to thank my family, my parents Beth and Jim, and brothers Brennan and Gralan. Without their support, encouragement, confidence and love, I would not be the person I am today. I am also grateful to my advisor, Professor Igor Mezi´c,who introduced and guided me through the field of dynamical systems and encouraged my mathematical pursuits, even when I fell down the (many) proverbial (mathematical) rabbit holes. I learned many fascinating things from these wandering forays on a wide range of topics, both contributing to my dissertation and not. Our many interesting discussions on math- ematics, research, and philosophy are among the highlights of my graduate school career. His confidence in my abilities and research has been a constant source of encouragement, especially when I felt uncertain in them myself. His enthusiasm for science and deep, meaningful work has set the tone for the rest of my career and taught me the level of research problems I should consider and the quality I should strive for.
    [Show full text]
  • The Life and Science of Richard Feynman, by James Gleick
    16. Genius: The Life and Science of Richard Feynman, by James Gleick From the author of the national bestseller Chaos comes an outstanding biography of one of the most dazzling and flamboyant scientists of the 20th century that "not only paints a highly attractive portrait of Feynman but also . makes for a stimulating adventure in the annals of science" 15. “Surely You’re Joking, Mr Feynman!” by Richard Feynman and Ralph Leighton Richard Feynman, winner of the Nobel Prize in physics, thrived on outrageous adventures. Here he recounts in his inimitable voice his experience trading ideas on atomic physics with Einstein and Bohr and ideas on gambling with Nick the Greek; cracking the uncrackable safes guarding the most deeply held nuclear secrets; accompanying a ballet on his bongo drums; painting a naked female toreador. In short, here is Feynman's life in all its eccentric―a combustible mixture of high intelligence, unlimited curiosity, and raging chutzpah. 14. D Day – Through German Eyes, The Hidden Story of June 6th 1944, by Holger Eckhertz Almost all accounts of D Day are told from the Allied perspective, with the emphasis on how German resistance was overcome on June 6th 1944. But what was it like to be a German soldier in the bunkers and gun emplacements of the Normandy coast, facing the onslaught of the mightiest seaborne invasion in history? What motivated the German defenders, what were their thought processes - and how did they fight from one strong point to another, among the dunes and fields, on that first cataclysmic day? What were their experiences on facing the tanks, the flamethrowers and the devastating air superiority of the Allies? This book sheds fascinating light on these questions, bringing together statements made by German survivors after the war, when time had allowed them to reflect on their state of mind, their actions and their choices of June 6th.
    [Show full text]
  • Rethinking the International System As a Complex Adaptive System
    Munich Personal RePEc Archive A New Taxonomy for International Relations: Rethinking the International System as a Complex Adaptive System Scartozzi, Cesare M. University of Tokyo, Graduate School of Public Policy 2018 Online at https://mpra.ub.uni-muenchen.de/95496/ MPRA Paper No. 95496, posted 12 Aug 2019 10:50 UTC 1SFQVCMJDBUJPOJournal on Policy and Complex Systems • Volume 4, Number 1 • Spring 2018 A New Taxonomy for International Relations: Rethinking the International System as a Complex Adaptive System Cesare Scartozzi Graduate School of Public Policy, University of Tokyo [email protected] 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan ORCID number: 0000-0002-4350-4386. Abstract The international system is a complex adaptive system with emer- gent properties and dynamics of self-organization and informa- tion processing. As such, it is better understood with a multidis- ciplinary approach that borrows methodologies from the field of complexity science and integrates them to the theoretical perspec- tives offered by the field of international relations (IR). This study is set to formalize a complex systems theory approach to the study of international affairs and introduce a new taxonomy for IR with the two-pronged aim of improving interoperability between differ- ent epistemological communities and outlining a formal grammar that set the basis for modeling international politics as a complex adaptive system. Keywords: international politics, international relations theory, complex systems theory, taxonomy, adaptation, fitness, self-orga- nization This is a prepublication version of: Scartozzi, Cesare M. “A New Taxonomy for International Relations: Rethinking the International System as a Complex Adaptive System.” Journal on Policy and Complex Systems 4, no.
    [Show full text]
  • Chapter 8 Nonlinear Systems
    Chapter 8 Nonlinear systems 8.1 Linearization, critical points, and equilibria Note: 1 lecture, §6.1–§6.2 in [EP], §9.2–§9.3 in [BD] Except for a few brief detours in chapter 1, we considered mostly linear equations. Linear equations suffice in many applications, but in reality most phenomena require nonlinear equations. Nonlinear equations, however, are notoriously more difficult to understand than linear ones, and many strange new phenomena appear when we allow our equations to be nonlinear. Not to worry, we did not waste all this time studying linear equations. Nonlinear equations can often be approximated by linear ones if we only need a solution “locally,” for example, only for a short period of time, or only for certain parameters. Understanding linear equations can also give us qualitative understanding about a more general nonlinear problem. The idea is similar to what you did in calculus in trying to approximate a function by a line with the right slope. In § 2.4 we looked at the pendulum of length L. The goal was to solve for the angle θ(t) as a function of the time t. The equation for the setup is the nonlinear equation L g θ�� + sinθ=0. θ L Instead of solving this equation, we solved the rather easier linear equation g θ�� + θ=0. L While the solution to the linear equation is not exactly what we were looking for, it is rather close to the original, as long as the angleθ is small and the time period involved is short. You might ask: Why don’t we just solve the nonlinear problem? Well, it might be very difficult, impractical, or impossible to solve analytically, depending on the equation in question.
    [Show full text]
  • Synchronization in Nonlinear Systems and Networks
    Synchronization in Nonlinear Systems and Networks Yuri Maistrenko E-mail: [email protected] you can find me in the room EW 632, Wednesday 13:00-14:00 Lecture 5-6 30.11, 07.12.2011 1 Attractor Attractor A is a limiting set in phase space, towards which a dynamical system evolves over time. This limiting set A can be: 1) point (equilibrium) 2) curve (periodic orbit) 3) torus (quasiperiodic orbit ) 4) fractal (strange attractor = CHAOS) Attractor is a closed set with the following properties: S. Strogatz LORENTZ ATTRACTOR (1963) butterfly effect a trajectory in the phase space The Lorenz attractor is generated by the system of 3 differential equations dx/dt= -10x +10y dy/dt= 28x -y -xz dz/dt= -8/3z +xy. ROSSLER ATTRACTOR (1976) A trajectory of the Rossler system, t=250 What can we learn from the two exemplary 3-dimensional flow? If a flow is locally unstable in each point but globally bounded, any open ball of initial points will be stretched out and then folded back. If the equilibria are hyperbolic, the trajectory will be attracted along some eigen-directions and ejected along others. Reducing to discrete dynamics. Lorenz map Lorenz attractor Continues dynamics . Variable z(t) x Lorenz one-dimensional map Poincare section and Poincare return map Rossler attractor Rossler one-dimensional map Tent map and logistic map How common is chaos in dynamical systems? To answer the question, we need discrete dynamical systems given by one-dimensional maps Simplest examples of chaotic maps xn1 f (xn ), n 0, 1, 2,..
    [Show full text]
  • A Brief History of Stephen Hawking's Blockbuster
    COMMENT BOOKS & ARTS IAN BERRY/MAGNUM PHOTOS IAN BERRY/MAGNUM Stephen Hawking and colleagues at the University of Cambridge in the 1980s, before the publication of A Brief History of Time. PUBLISHING A brief history of Stephen Hawking’s blockbuster Elizabeth Leane surveys the extraordinary influence of the physicist’s first foray into popular-science publishing. owards the end of The Theory of rarely reach the million mark, and are usu- History of Time is not, as is sometimes Everything, the 2014 film about ally much lower. So this is an astounding claimed, unprecedented. There were Stephen Hawking, scenes depict the achievement for a science book aimed at nineteenth-century science blockbusters Treception of his popular science classic, A the non-scientist, and especially for one such as mathematician Mary Somerville’s Brief History of Time (1988). The camera that grapples with the some of the biggest 1834 On the Connexion of the Physical zooms in on a large display of the book in questions in physics — the Big Bang, black Sciences (see R. Holmes Nature 514, 432– a shop window; fans crowd the physicist- holes, a ‘theory of everything’ and the nature 433; 2014). And in 1930, physicist James author, hoping that he will autograph their of time. As Hawking entertainingly related Jeans’ The Mysterious Universe achieved a copies. Future events are outlined in the in a 2013 essay in The Wall Street Journal, comparable reception to Hawking’s book film’s closing titles: the first relates not to he rewrote A Brief History repeatedly at (in Britain, at least); the jacket of the 1937 the ongoing impact of Hawking’s scientific the behest of his editor, Peter Guzzardi at Pelican edition promotes it as “the famous achievements or the challenges of living Bantam, to make it more understandable to book which upset tradition by making with motor neuron disease, but to the sales a lay readership.
    [Show full text]
  • Maps, Chaos, and Fractals
    MATH305 Summer Research Project 2006-2007 Maps, Chaos, and Fractals Phillips Williams Department of Mathematics and Statistics University of Canterbury Maps, Chaos, and Fractals Phillipa Williams* MATH305 Mathematics Project University of Canterbury 9 February 2007 Abstract The behaviour and properties of one-dimensional discrete mappings are explored by writing Matlab code to iterate mappings and draw graphs. Fixed points, periodic orbits, and bifurcations are described and chaos is introduced using the logistic map. Symbolic dynamics are used to show that the doubling map and the logistic map have the properties of chaos. The significance of a period-3 orbit is examined and the concept of universality is introduced. Finally the Cantor Set provides a brief example of the use of iterative processes to generate fractals. *supervised by Dr. Alex James, University of Canterbury. 1 Introduction Devaney [1992] describes dynamical systems as "the branch of mathematics that attempts to describe processes in motion)) . Dynamical systems are mathematical models of systems that change with time and can be used to model either discrete or continuous processes. Contin­ uous dynamical systems e.g. mechanical systems, chemical kinetics, or electric circuits can be modeled by differential equations. Discrete dynamical systems are physical systems that involve discrete time intervals, e.g. certain types of population growth, daily fluctuations in the stock market, the spread of cases of infectious diseases, and loans (or deposits) where interest is compounded at fixed intervals. Discrete dynamical systems can be modeled by iterative maps. This project considers one-dimensional discrete dynamical systems. In the first section, the behaviour and properties of one-dimensional maps are examined using both analytical and graphical methods.
    [Show full text]