Contemporary Taxonomic Perspectives of Fossil Coralline Red Algae: Their

Total Page:16

File Type:pdf, Size:1020Kb

Contemporary Taxonomic Perspectives of Fossil Coralline Red Algae: Their The Pa/aeobotanisr 59/20}0) .' }07-JJ9 003/-0/74/20/0 $100 Contemporary taxonomic perspectives offossil Coralline Red Algae: their possible origin and evolution AMIT K. GHOSH AND SUMANSARKAR Birbal Sahni Insti(ute ofPalaeobotany, 53 University Road, Lucknow 226007, India. (Received 0I July, 20 I0; revised version accepted 26 August, 20 I0) ABSTRACf Ghosh AK & Sarkar S 20 IO. Contemporary taxonomic perspectives offossil Coralline Red Algae: their possible origin and evolution. The Palaeobotanist 59(1-3) : 107-119. Studies done by various phycologists have brought about remarkable changes in the present-day coralline algal taxonomy. The taxonomy offossil coralline red algae also has been under the process of continuous revision and modification since 1993. Prior to 1993 it was believed that several diagnostic characters used in recent coralline red algae were unpreservable in fossil forms. Palaeoalgologists have now understood the value ofunification oftaxonomy, for extant and fossil corallines to accurately interpret the phylogeny, palaeoecology and palaeobiogeography. Phylogenetically, the corallines are very important as they represent a major evolutionary line within the red algae as evidenced by anatomical studies on recent forms as well as various studies on gene sequence analysis. The present contribution deals with the remarkable changes that have taken place since 1993 in the taxonomic aspects offossil coralline algae and the modern trends ofresearch in this context. Presently, an attempt has been made to establish the possible origin and evolution ofcoralline red algae. Key-words-Coralline Red Algae, Classification, Taxonomy, Possible Origin, Evolution. ~ ~ ~ ~ ~ if ti'iCflI{ift'1 cllffCfl{OI: \RCflT B'-qq ~ ~ fctcf;m ~ cf;. mrsr ~ ~ meIR mu~ ~ ~ ~ J1~ ~ ~ ~ ~ ~ &m Fcm "l1Q; B q#fit it -mnqf{UT Wrr ~ ~ ~ ;;ftm~11 ~ ~ ~ Trtt~ ~ tl~i't'-R ~ 'T<IT ~ I <5T q#fit 1993 B <5T mr <f; Wrr ~ fcl~qm ~~ ~ ~ ~ ~ ~ ~ ;;frcrr~11 'T<IT ~ I 1993 <f; "lTIi Wrr 'T<IT m F<li it m f.RR ~ ~ ~ TT~<'1fil$1I~41 ~, ~ ~~ <r~~ ~ ~ it I ;r om <5T B ams<lT 'liB ~ ;;ftm~11 ~ ~ ~ V1IRi<i~lq ~ ~ fcml1R r:;cT <f; q#fit cfi cfi 11R 'h1 J1q wrn fW1r 'T<IT I B wum ~ ~ ~ ~ ~ ~ ~TTf\ft<P J1~ m~-m~;;fA ~ fcl~WroT ~ ~ ~ F<li 1R cfi cfi IRMt <f; it ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ;;ftm~11 it tl5lT m I -mnqf{UT it q;rf 'Iirill <5T ~ ~ ~ ~ ~ ~QR "1f~ ~ ~ ~ ~I ~ ~i't~ ~ it <5T it 1993 B fW1r it ~ ~ ~ ~ 'limT~T ~ ~ cfi r:;cT fcrcm:r 'h1 'liB it c% <5T 7J{ I . ~-~~ ~ ~, ~, q#fit, tl'l1cl' ~, fcrcm:r I © Birbal Sahni Institute of Palaeobotany, India 108 THE PALAEOBOTANIST INTRODUCTION relationships between fossil taxa and groups of extant taxa. He emphasized on the significance of reassessment RAY (1977), Poignant (1984) and several other and revision of well known fossil taxa along with detailed Wpalaeoalgologists opined that fossil and recent measurements and statistical analysis because many of coralline algae have to be classified in different manners the fossil coralline taxa were suffering from excessive and consequently different diagnostic characters were splitting only on the basis of very few characters. used for the identification of fossil and extant coralline According to Bosence (1991) in case of fossil algae. Various diagnostic suprageneric criteria were corallines, palaeoalgologists should increase the use of proposed for extant as well as fossil material which potential taxonomic characters which can be revealed included type and location of conceptacles, character by excessive analysis of thin sections and SEM of hypothallium and perithallium (core/primigenous and observations. Later on, Rasser and Piller (1999) applied peripheral/postigenous filaments respectively as per the the neontological taxonomic concepts to coralline algae. recent literature) and also the presence or absence and Presently, all these potential taxonomic characters are arrangement of heterocysts (trichocytes). Discovery of commonly used by the palaeoalgologists (Fig. 1). interfilamental cell-connections (Johansen, 1969) and Various taxonomic measures proposed for living application of some other diagnostic features like shape and fossil algae facilitate their use as effective of epithallial cells (Adey, 1970), number of epithallial palaeoenvironmental indicators and at the same time cells (Johansen, 1976) and pattern of cell elongation in favour the understanding of the evolutionary biology of recognizing suprageneric taxa (Woelkerling & Irvine, the group. In most cases, diagnostic features used for 1986) were employed for the taxonomy of extant separating genera in present-day corallines can be coralline algae by the phycologists. However, the post- identified in fossil plants except the uncalcified 1993 phase saw prominent work by various workers reproductive structures or developmental features that leading to the view that some key features, e.g. cell- are not preserved in relic material and hence cannot be connections, cell-fusions, epithallial cell and meristem used for generic identification. Recently, there has been characteristics can also be recognized in fossil corallines a trend to propose reproductive and developmental using light microscopy as well as appropriate SEM features as prevalent diagnostic criteria for modern techniques (as specified by Braga et al., 1993). In this coralline taxonomy. However, their consistency and context the present review summarizes the contributions systematic significance is still a point of discussion. In on morphological/anatomical studies of fossil corallines, cases when diagnostic criteria are not preserved then present day corallines, their ultrastructural studies as the ancillary characters recognizable in fossil material well as gene sequence analysis. Based on these or the application of informal generic names with a attributes, characteristics of families and subfamilies of broader circumscription as compared to the living the order Corallinales have been discussed in detail. In representatives can be used as the best options for addition, possible evolutionary lineages of this algal group palaeontological taxonomy. have been drawn hovering on recent discoveries. Various diagnostic characters used for the separation of taxa at different taxonomic levels have POTENTIAL TAXONOMIC CHARACTERS changed throughout the history of biological and IN PRESENT DAY AND FOSSIL palaeobiological research, with coralline red algae not CORALLINE ALGAE being an exception. Secondly, till date no general agreement on classification scheme for modern and Bosence (1991) raised some important questions fossil coralline algae has been formulated and regarding the preservation of taxonomic characters and Fig. 1—Potential taxonomic characters in Recent and Fossil coralline algae (modified after Bosence, 1991; Rasser & Piller, 1999). GHOSH & SARKAR—CONTEMPORARY TAXONOMIC PERSPECTIVES OF FOSSIL CORALLINE RED ALGAE 109 GENERAL CHARACTERS OCCURRENCE OF CHARACTERS* RECENT FOSSIL Commonly used Potentially usable Growth Form Encrusting ◙ ◙ ◙ Warty ◙ ◙ ◙ Lumpy ◙ ◙ ◙ Fruticose ◙ ◙ ◙ Layered ◙ ◙ ◙ Foliose ◙ ◙ ◙ Arborescent ◙ ◙ ◙ Articulated ◙ ◙ ◙ Articulated branching ◙ □ □ Epithallium Thickness ◙ □ ◙ Cell shape ◙ □ ◙ Meristematic cells ◙ □ ◙ Trichocytes ◙ □ ◙ Thallus organization Monomerous ◙ ◙ ◙ Coaxial ◙ ◙ ◙ Non-coaxial ◙ ◙ ◙ Peripheral filaments ◙ ◙ ◙ Core filaments ◙ ◙ ◙ Palisade cells ◙ ◙ ◙ Dimerous ◙ ◙ ◙ Postigenous filaments ◙ ◙ ◙ Primigenous filaments ◙ ◙ ◙ Primary pit connections ◙ ◙ ◙ Secondary pit connections ◙ ◙ ◙ Cell fusions ◙ ◙ ◙ Genicula ◙ ◙ ◙ Asexual conceptacles Location ◙ ◙ ◙ Perforations ◙ ◙ ◙ Shape ◙ ◙ ◙ Primordia ◙ □ ◙ Tetraspores ◙ □ ◙ Sexual conceptacles Location ◙ ◙ ◙ Shape ◙ ◙ ◙ Spermatangium ◙ □ ◙ Carpogonium ◙ □ ◙ Carpospore ◙ □ ◙ Biochemical Staining of sporangial caps ◙ □ □ Developmental Spore cell division ◙ □ □ Conceptacle developments ◙ □ ◙ * ◙ = Yes, □ = No. 110 THE PALAEOBOTANIST Character Corallinaceae Sporolithaceae Hapalidiaceae Arrangement of spores within Zonate Cruciate Zonate tetrasporangia Tetra/bisporangia producing No Yes Yes apical plugs Tetra/bisporangia produced No No Yes beneath multiporate plates Tetra/bisporangia borne Conceptacles Calcified Conceptacles within conceptacles or compartments calcified compartments Fig. 2—Diagnostic characteristics of the three families of Corallinales based on the reproductive organs (after Harvey et al., 2003). Subfamily Genicula No. of pores in Predominant Sporangial sporangial interfilamental plugs conceptacles cell connections Amphiroideae present uniporate Secondary pits absent Corallinoideae present uniporate Cell fusions absent Metagoniolithoideae present uniporate Cell fusions absent Choreonematoideae absent uniporate Absent present Lithophylloideae absent uniporate Secondary pits absent Mastophoroideae absent uniporate Cell fusions absent Melobesioideae absent multiporate Cell fusions present Fig. 3—Key characters of subfamilies of the Corallinaceae according to Woelkerling (1988). modifications are being continuously made by the spermatangia, have been categorized as diagnostic workers pertaining to unification of taxonomic analysis. (Penrose, 1992; Chamberlain & Keats, 1994; The monographic work of Woelkerling (1988) was Woelkerling, 1996a, b, c), making the identification for a long time considered as the most complete and process very difficult or rather nearly impossible for comprehensive study of generic and suprageneric the fossil specimens. taxonomy of the Corallinales. Key features for delimiting subfamilies, and most of the characteristic features used DIFFERENT
Recommended publications
  • Articulated Coralline Algae of the Gulf of California, Mexico, I: Amphiroa Lamouroux
    SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES • NUMBER 9 Articulated Coralline Algae of the Gulf of California, Mexico, I: Amphiroa Lamouroux James N. Norris and H. William Johansen SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Norris, James N., and H. William Johansen. Articulated Coralline Algae of the Gulf of California, Mexico, I: Amphiroa Lamouroux. Smithsonian Contributions to the Marine Sciences, number 9, 29 pages, 18 figures, 1981.—Amphiroa (Coral- linaceae, Rhodophyta) is a tropical and subtropical genus of articulated coralline algae and is prominent in shallow waters of the Gulf of California, Mexico. Taxonomic and distributional investigations of Amphiroa from the Gulf have revealed the presence of seven species: A. beauvoisn Lamouroux, A. brevianceps Dawson, A. magdalensis Dawson, A. misakiensis Yendo, A. ngida Lamouroux, A. valomoides Yendo, and A. van-bosseae Lemoine. Only two of these species names are among the 16 taxa of Amphiroa previously reported from this body of water; all other names are now considered synonyms. Of the seven species in the Gulf of California, A. beauvoisii, A. misakiensis, A. valomoides and A. van-bosseae are common, while A. brevianceps, A. magdalensis, and A. ngida are rare and poorly known. None of these species is endemic to the Gulf, and four of them, A. beauvoisii, A. misakiensis, A. valomoides, and A. ngida, also occur in Japan. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. SERIES COVER DESIGN: Seascape along the Atlantic coast of eastern North America. Library of Congress Cataloging in Publication Data Norris, James N.
    [Show full text]
  • Amphiroa Fragilissima (Linnaeus) Lamouroux (Corallinales, Rhodophyta) from Myanmar
    Journal of Aquaculture & Marine Biology Research Article Open Access Morphotaxonomy, culture studies and phytogeographical distribution of Amphiroa fragilissima (Linnaeus) Lamouroux (Corallinales, Rhodophyta) from Myanmar Abstract Volume 7 Issue 3 - 2018 Articulated coralline algae belonging to the genus Amphiroa collected from the coastal zones of Myanmar were identified as A. fragilissima based on the characters such as shape Mya Kyawt Wai of intergenicula, branching type, type of genicula (number of tiers formed at the genicula), Department of Marine Science, Mawlamyine University, shape (composition and arrangement of short and long tiers of medullary cells), presence Myanmar or absence of secondary pit-connections and lateral fusions at medullary filaments of the intergenicula and position of conceptacles. A comparison on the taxonomic characters of A. Correspondence: Mya Kyawt Wai, Lecturer, Department of fragilissima growing in Myanmar and in different countries was discussed. A. fragilissima Marine Science, Mawlamyine University, Myanmar, showed Amphiroa-type which was characterized by transversely divided cells in the first Email [email protected] division of the early stages of spore germination in laboratory culture. Moreover, the Received: May 31, 2018 | Published: June 12, 2018 distribution ranges of A. fragilissima along both the coastal zones of Myanmar and the world oceans were presented. In addition, ecological records of this species were briefly reported. Keywords: A. fragilissima, articulated coralline algae, corallinaceae, corallinales, germination patterns, laboratory culture, morphotaxonomy, Myanmar, phytogeographical distribution, Rhodophyta Introduction Lamouroux and A. anceps (Lamarck) Decaisne, along the 3 coastal zones of Myanmar. Mya Kyawt Wai12 also described five species of The coralline algae are assigned to the family Corallinaceae Amphiroa from Myanmar namely, A.
    [Show full text]
  • Taxonomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1997 Taxonomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta) Bethany Ann Griffin College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Systems Biology Commons Recommended Citation Griffin, Bethany Ann, ax"T onomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta)" (1997). Dissertations, Theses, and Masters Projects. Paper 1539626098. https://dx.doi.org/doi:10.21220/s2-pnjz-de41 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. TAXONOMIC IMPLICATIONS OF SPORANGIAL ULTRASTRUCTURE WITHIN THE SUBFAMILY MELOBESIOIDEAE (CORALLINALES, RHODOPHYTA) A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts By Bethany Ann Griffin 1997 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Bethany Ann Griffin Approved, April 1997 Sharon T. Broadwater A ^ Scott I\$artha A. Case DEDICATION To Jon, for giving new meaning to
    [Show full text]
  • First Record of Sporolithon Ptychoides Heydrich (Sporolithales, Corallinophycidae, Rhodophyta) from Thailand
    Cryptogamie, Algologie, 2012, 33 (3): 265-276 ©2012 Adac. Tous droits réservés First record of Sporolithon ptychoides Heydrich (Sporolithales, Corallinophycidae, Rhodophyta) from Thailand Chatcharee KAEWSURALIKHIT a, b*,Sinchai MANEEKAT a, Thidarat NOIRAKSA c,Sunan PATARAJINDA d &Masasuke BABA e a Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatujak, Bangkok 10900, Thailand b Center for Advanced Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand c Institute of Marine Science, Burapha University, Chonburi 20131, Thailand d Department of Marine Science, Faculty of Fisheries, Kasetsart University, Chatujak, Bangkok 10900, Thailand e Demonstration Laboratory, Marine Ecology Research Institute, 945-0017, Niigata Pref. Japan Abstract – Sporolithon ptychoides Heydrich (Sporolithaceae, Sporolithales), the type species of the genus Sporolithon, is newly reported for Thai waters based on specimens collected from the Gulf of Thailand and the Andaman Sea. Adetailed morphological and anatomical account is provided, including comparisons with published data of S. ptychoides and its related species. Epithallial cells are flared. Cells of adjacent filaments connect laterally mostly by secondary pit connections. Tetrasporangia are grouped in sori that occur in patches over the thallus surface. Sori are buried in distinct rows in the thallus. Details of male, female and carposporangial conceptacles of S. ptychoides are described for the first time. Gametangial thalli are monoecious with spermatangia and carposporangia born in uniporate conceptacles. Dendroid spermatangial branches occur on the floor, walls and roof of the male conceptacle chamber. Carpogonial branch consists of ahypogenous cell and a carpogonium. Central fusion cell is absent on the floor of the carposporangial conceptacle chamber.
    [Show full text]
  • Rhodolith Forming Coralline Algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a Critical Evaluation
    Phytotaxa 190 (1): 370–382 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.190.1.22 Rhodolith forming coralline algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a critical evaluation ANA CRISTINA REBELO1,2,3,4*, MICHAEL W. RASSER4, RAFAEL RIOSMENA-RODRÍGUEZ5, ANA ISABEL NETO1,6,7 & SÉRGIO P. ÁVILA1,2,3,8 1 Departamento de Biologia, Universidade dos Açores, Campus de Ponta Delgada, Apartado 1422-801 Ponta Delgada, Açores, Portugal 2 CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores - Departamento de Biologia da Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal 3 MPB - Marine Palaeobiogeography Working group, University of Azores, Portugal 4 SMNS - Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany 5 Programa de Investigación en Botánica Marina, Departamento de Biologia Marina, Universidad Autónoma de Baja California Sur, Km 5.5 Carretera al Sur, Col. Mezquitito, La Paz BCS 23080 México 6 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal 7 CIRN - University of the Azores, Portugal 8 Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal * Corresponding author, email: [email protected] ABSTRACT The Late Miocene Malbusca outcrop is located in the southeastern coast of Santa Maria Island (Azores, NE Atlantic), interspersed in volcanic formations. At ~20 meters above present sea level, a prominent discontinuous layer of rhodoliths seizes with an extension of ~250 meters.
    [Show full text]
  • Morphology-Anatomy of Mesophyllum Macroblastum (Hapalidiaceae, Corallinales, Rhodophyta) in the Northern Adriatic Sea and a Key to Mediterranean Species of the Genus
    Cryptogamie, Algologie, 2011, 32 (3): 223-242 © 2011 Adac. Tous droits réservés Morphology-anatomy of Mesophyllum macroblastum (Hapalidiaceae, Corallinales, Rhodophyta) in the Northern Adriatic Sea and a key to Mediterranean species of the genus Sara KALEB a, Annalisa FALACE a*, Gianfranco SARTONI b & William WOELKERLING c a Department of Life Science, University of Trieste, Italy b Department of Vegetal Biology, University of Florence, Italy c Department of Botany, La Trobe University, Bundoora, Victoria, Australia (Received 13 May 2010, accepted 15 October 2010) Abstract – The coralline red alga Mesophyllum (Hapalidiaceae) is recorded for the first time from the Gulf of Trieste (Northern Adriatic Sea) and gametangial plants of M. macro- blastum are recorded for the first time from the Mediterranean Sea. A morphological- anatomical account is provided, including comparisons with specimens from the western coast of Italy and with published data. Distribution and habitat information, comparison with Mediterranean species of Mesophyllum, and a dichotomous key to Mediterranean spe- cies are included along with brief comments on other species in the genus known to produce volcano-like tetrasporangial conceptacles. Corallinales / Hapalidiaceae / Mediterranean Sea / Mesophyllum macroblastum / Northern Adriatic / taxonomy Résumé – Le genre Mesophyllum (Hapalidiaceae), est signalé pour la première signali- sation pour le Gulf de Trieste (Nord Adriatique) et un pied gamétangial de Mesophyllum macroblastum (Foslie) Adey est observé pour la première fois en Méditerranée. M. macro- blastum est décrit et comparé avec des spécimens récoltés sur le littoral occidental de l’Italie. La distribution et des informations sur l’habitat, autant que la comparaison avec les espèces Méditerranéen de Mesophyllum sont reportées.
    [Show full text]
  • Marina Nasri Sissini HAPALIDIACEAE (Corallinophycidae
    Marina Nasri Sissini HAPALIDIACEAE (Corallinophycidae, Rhodophyta) no litoral brasileiro - diversidade e biogeografia Dissertação de Mestrado apresentada ao Programa de Pós Graduação em Biologia de Fungos, Algas e Plantas do Centro de Ciências Biológicas da Universidade Federal de Santa Catarina, como parte dos requisitos necessários à obtenção do título de Mestre em Biologia de Fungos, Algas e Plantas. Orientador: Prof. Dr. Paulo Antunes Horta Junior Co-Orientadora: Profa. Dra. Mariana Cabral de Oliveira Florianópolis 2013 “HAPALIDIACEAE (Corallinophycidae, Rhodophyta) no litoral brasileiro - diversidade e biogeografia” por Marina Nasri Sissini Dissertação julgada e aprovada em sua forma final pelos membros titulares da Banca Examinadora (Port. 24/PPGFAP/2013) do Programa de Pós-Graduação em Biologia de Fungos, Algas e Plantas - UFSC, composta pelos Professores Doutores: Banca Examinadora: _____________________________ Prof. Dr. Paulo Antunes Horta Junior (presidente/orientador - CCB/UFSC) _____________________________ Dr. Rafael Riosmena Rodríguez (membreo externo - UABCS) _____________________________ Dr. Sérgio Ricardo Floeter (membro interno - CCB/UFSC) _____________________________ José Bonomi Barufi (membro interno - CCB/UFSC) Rodolito com Halimeda epífita Ilha da Trindade|2012 AGRADECIMENTOS E-mail enviado no dia 18.X.2013: “Oi.. compartilho algo curioso, diria que muito inusitado, ocorrido agora há pouco... Saí para imprimir umas coisinhas e tomar um café (leia-se enrolar um pouco antes de fazer o que eu precisava fazer). Na saída do prédio, vi os moços (senhores na verdade) que limpam o Departamento sentados no banquinho e os cumprimentei como de costume "Bom dia, tudo bem?". Eles me responderam com o sorriso de sempre "Bom dia!" e algo mais... Um deles, o mais carismático, ao meu ver, completou: "Moça, quando que é sua defesa?".
    [Show full text]
  • Sequencing Type Material Resolves the Identity and Distribution of the Generitype Lithophyllum Incrustans, and Related European Species L
    J. Phycol. 51, 791–807 (2015) © 2015 Phycological Society of America DOI: 10.1111/jpy.12319 SEQUENCING TYPE MATERIAL RESOLVES THE IDENTITY AND DISTRIBUTION OF THE GENERITYPE LITHOPHYLLUM INCRUSTANS, AND RELATED EUROPEAN SPECIES L. HIBERNICUM AND L. BATHYPORUM (CORALLINALES, RHODOPHYTA)1 Jazmin J. Hernandez-Kantun2 Botany Department, National Museum of Natural History, Smithsonian Institution, MRC 166 PO Box 37012, Washington District of Columbia, USA Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway Ireland Fabio Rindi Dipartimento di Scienze della Vita e dell’Ambiente, Universita Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy Walter H. Adey Botany Department, National Museum of Natural History, Smithsonian Institution, MRC 166 PO Box 37012, Washington District of Columbia, USA Svenja Heesch Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway Ireland Viviana Pena~ BIOCOST Research Group, Departamento de Bioloxıa Animal, Bioloxıa Vexetal e Ecoloxıa, Facultade de Ciencias, Universidade da Coruna,~ Campus de A Coruna,~ A Coruna~ 15071, Spain Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris 75005, France Phycology Research Group, Ghent University, Krijgslaan 281, Building S8, Ghent 9000, Belgium Line Le Gall Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris 75005, France and Paul W. Gabrielson Department of Biology and Herbarium, University of North Carolina, Chapel Hill, Coker Hall CB 3280, Chapel Hill, North Carolina 27599-3280, USA DNA sequences from type material in the belonging in Lithophyllum.
    [Show full text]
  • Integrating Phylogeny, Molecular Clocks, and the Fossil Record in the Evolution of Coralline Algae (Corallinales and Sporolithales, Rhodophyta)
    Paleobiology, 36(4), 2010, pp. 519–533 Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta) Julio Aguirre, Francisco Perfectti, and Juan C. Braga Abstract.—When assessing the timing of branching events in a phylogeny, the most important tools currently recognized are a reliable molecular phylogeny and a continuous, relatively complete fossil record. Coralline algae (Rhodophyta, Corallinales, and Sporolithales) constitute an ideal group for this endeavor because of their excellent fossil record and their consistent phylogenetic reconstructions. We present the evolutionary history of the corallines following a novel, combined approach using their fossil record, molecular phylogeny (based on the 18S rDNA gene sequences of 39 coralline species), and molecular clocks. The order of appearance of the major monophyletic taxa of corallines in the fossil record perfectly matches the sequence of branching events in the phylogeny. We were able to demonstrate the robustness of the node ages in the phylogeny based on molecular clocks by performing an analysis of confidence intervals and maximum temporal ranges of three monophyletic groups of corallines (the families Sporolithaceae and Hapalidiaceae, as well as the subfamily Lithophylloideae). The results demonstrate that their first occurrences are close to their observed appearances, a clear indicator of a very complete stratigraphic record. These chronological data are used to confidently constrain the ages of the remaining branching events in the phylogeny using molecular clocks. Julio Aguirre and Juan C. Braga. Department of Stratigraphy and Paleontology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain. E-mail: [email protected], [email protected] Francisco Perfectti.
    [Show full text]
  • Boron-Containing Organic Pigments from a Jurassic Red Alga
    Boron-containing organic pigments from a Jurassic red alga Klaus Wolkensteina,1, Jürgen H. Grossb, and Heinz Falkc aInstitute of Analytical Chemistry, Johannes Kepler University Linz, 4040 Linz, Austria; bInstitute of Organic Chemistry, University of Heidelberg, 69120 Heidelberg, Germany; and cInstitute of Organic Chemistry, Johannes Kepler University Linz, 4040 Linz, Austria Edited by Victoria J. Orphan, California Institute of Technology, Pasadena, CA, and accepted by the Editorial Board September 23, 2010 (received for review June 10, 2010) Organic biomolecules that have retained their basic chemical oxide (DMSO). The reddish-colored extracts were purified by structures over geological periods (molecular fossils) occur in a wide solid-phase extraction and characterized by HPLC–diode array range of geological samples and provide valuable paleobiological, detection–electrospray ionization–mass spectrometry (HPLC- paleoenvironmental, and geochemical information not attainable DAD-ESI-MS). From a large Solenopora sample (102.5 g) from from other sources. In rare cases, such compounds are even France, 1.1 mg of crude pigment isolate was obtained as an in- preserved with their specific functional groups and still occur within tensely crimson-colored organic residue (Fig. S1). HPLC analysis the organisms that produced them, providing direct information on of the pigments revealed numerous compounds with similar UV- the biochemical inventory of extinct organisms and their possible visible spectra, with the prominent group at retention time of evolutionary relationships. Here we report the discovery of an 8.0–10.0 min showing a major broad absorption band at 520 nm exceptional group of boron-containing compounds, the borolitho- and a minor one at 420 nm (Fig.
    [Show full text]
  • An Account of Common Crustose Coralline Algae
    D.I. Walker and F.E. Wells (Eds) 1999. The Seagrass Flora and Fauna of Rottnest Island, Western Australia. Western Australian Museum, Perth. CORE An account of common crustose coralline algae Metadata, citation and similar papers at core.ac.uk Provided(Corallinales, by Research Repository Rhodophyta) from macrophyte communities at Rottnest Island, Western Australia. by C.B. Sim Department of Botany, University of Western Australia, Nedlands, 6907, Western Australia and "' R.A. Townsend School of Biological Sciences and Biotechnology, Division of Science and Engineering, Murdoch University, Murdoch 6150, Western Australia ABSTRACT Meaningful interpretation of ecological experimentation can only be made after knowledge of the floral composition of an area is known. Crustose coralline algae have a reputation among phycologists as being a difficult group of organisms to identify to species level. Crustose coralline algae (Corallinales, Rhodophyta) cover the substratum in most macrophyte communities; their ecology is poorly understood. The aim of this work was to develop a species list and generic key for crustose coralline algae found in macrophyte communities around Rottnest Island, Western Australia. Eleven species belonging to seven genera were identified from limestone substrata in kelp and mixed macroalgal communities. A key to the common genera of crustose coralline algae found in these communities is also provided. The key, aimed at ecologists with limited knowledge of coralline taxonomy and anatomy, uses gross external and easily recognisable internal characters. The crustose coralline algal flora of Rottnest Island is a mixture of Indo-West Pacific and southern temperate species. Species such as Hydrolithon onkodes which has an extensive tropical and subtropical range were found at most sites sampled.
    [Show full text]
  • Sporolithon Amadoi Sp. Nov. (Sporolithales, Rhodophyta)
    Phytotaxa 423 (2): 049–067 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.423.2.1 Sporolithon amadoi sp. nov. (Sporolithales, Rhodophyta), a new rhodolith-forming non-geniculate coralline alga from offshore the northwestern Gulf of Mexico and Brazil JOSEPH L. RICHARDS1,*, RICARDO G. BAHIA2, MICHEL B. JESIONEK2 & SUZANNE FREDERICQ1 1University of Louisiana at Lafayette, Biology Department, Lafayette, LA 70504-3602, U.S.A. 2Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Diretoria de Pesquisa Científica, Rua Pacheco Leão 915, Rio de Janeiro, RJ 22460-030, Brazil *Corresponding author ([email protected]) This article is dedicated in loving memory to Dr. Gilberto M. Amado-Filho (October 6, 1959–March 15, 2019). Abstract DNA sequence analysis of plastid-encoded psbA and rbcL loci, and nuclear-encoded LSU rDNA of rhodolith-forming specimens of Sporolithales from Brazil and the northwestern Gulf of Mexico reveal that they belong to an unnamed species of Sporolithon (Sporolithaceae). Sporolithon amadoi sp. nov. is morpho-anatomically characterized by a vegetative thallus reaching more than 20 cell layers, a tetrasporophyte with tetrasporangial sori slightly raised above the thallus surface that become overgrown and buried after spore release, and by cruciately divided tetrasporangia with pores surrounded by 9–13 rosette cells. Since these morpho-anatomical features are shared with some other Sporolithon
    [Show full text]