Mecamylamine (Inversine ): an Old Antihypertensive with New Research Directions

Total Page:16

File Type:pdf, Size:1020Kb

Mecamylamine (Inversine ): an Old Antihypertensive with New Research Directions Journal of Human Hypertension (2002) 16, 453–457 2002 Nature Publishing Group All rights reserved 0950-9240/02 $25.00 www.nature.com/jhh REVIEW ARTICLE Mecamylamine (Inversine): an old antihypertensive with new research directions RD Shytle1,2,4,5, E Penny6, AA Silver4, J Goldman4 and PR Sanberg1–5 Center for Aging and Brain Repair, 1Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL, USA; 2Department of Pharmacology, University of South Florida College of Medicine, Tampa, FL, USA; 3Department of Neurology, University of South Florida College of Medicine, Tampa, FL, USA; 4Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, FL, USA; 5Neuroscience Program, University of South Florida College of Medicine, Tampa, FL, USA; 6Layton Bioscience, Tampa Division, FL, USA Mecamylamine (Inversine), the first orally available treatment of hypertension. Tobacco smoking is a strong antihypertensive agent, is now rarely used. Although risk factor for cardiovascular morbidity, including accel- celebrated in the 1950s, mecamylamine fell out of favour erated atherosclerosis and increased risk of heart because of its widespread ganglionic side effects at attacks. Though currently untested, the available evi- antihypertensive doses (30–90 mg/day). However, dence suggests that low-dose mecamylamine therapy recent studies suggest that mecamylamine is very effec- might reduce blood pressure variability and athero- tive at relatively low doses (2.5–5 mg b.i.d.) for blocking genetic lipid profile in smokers. With this in mind, meca- the physiological effects of nicotine and improving mylamine should be an important research tool in the abstinence rates in smoking cessation studies, parti- field of hypertension research, particularly in recalci- cularly for women. When these lower doses of mecamyl- trant smokers with mild to moderate hypertension. amine are given, patients do not experience the severity Journal of Human Hypertension (2002) 16, 453–457. doi: of side effects that made the drug unpopular for the 10.1038/sj.jhh.1001416 Keywords: mecamylamine; nicotine; smoking; Inversine; cardiovascular disease; nicotinic receptor Introduction agents, such as trimethaphan, hexamethonium and pentolinium, which are not well absorbed from the Aceytlcholinergic nicotinic receptors (nAChR) have gastrointestinal track and do not cross the blood– been implicated in adverse pulmonary and cardio- 1–3 brain barrier, mecamylamine is almost completely vascular changes associated with tobacco smoking. absorbed and readily crosses the blood–brain barrier The adverse effects of nicotine on the cardiovascular 6,7 4 where it acts as an nAChR antagonist. system are numerous. As nAChRs are ubiquitous in There is a substantial history of wide clinical use both the peripheral and central nervous system, a of mecamylamine.8 Between 1954 and 1984, Merck broadly affecting anticholinergic that can cross the distributed both 10-mg and 2.5-mg tablets. The 10- blood–brain barrier and act specifically as an nAChR mg tablet was discontinued in March 1984. Unfortu- antagonist may reduce the adverse cardiovascular nately, mecamylamine distribution statistics are not changes associated with smoking and may also aid available for the period of greatest drug usage as an in smoking cessation. One such drug is mecamylam- antihypertensive agent (1954 to 1960). However, ine (Inversine ). Introduced as a therapeutic agent from 1961 until 1996, Merck distributed 41 572 046 for the treatment of hypertension in the 1950s, and 7 029 400 of the 2.5-mg and 10 mg tablets, mecamylamine was the first useful ganglionic block- ing agent that was not a quarternary ammonium respectively. In 1996, Merck sold the Inversine compound.5 Unlike other ganglionic blocking NDA to Layton Bioscience. The FDA has since approved a new manufacturing site and Layton Bioscience redistributed mecamylamine on the US market in May 2000.8 Correspondence: D Shytle, PhD, Center for Aging and Brain Repair, Department of Neurosurgery, MDC-78, 12901 Bruce B. Mecamylamine is currently approved for ‘the Downs Blvd., University of South Florida College of Medicine, management of moderately severe hypertension and Tampa, FL 33613, USA. E-mail: dshytleȰhsc.usf.edu uncomplicated cases of malignant hypertension’. Mecamylamine (Inversine) RD Shytle et al 454 The antihypertensive effects of mecamylamine duration of continuous smoking abstinence. At 1- reflect its blockade of impulse transmission at sym- year follow-up, smoking abstinence was achieved in pathetic ganglia due to competition for nAChRs and 37.5% of subjects. Furthermore, this combination stabilization of postsynaptic membranes against reduced ad-lib smoking, smoking satisfaction and excitation by ACh. This sympathetic ganglionic smoking craving. The most common side effect in blockade causes blood vessels to dilate and periph- these studies was mild constipation, which eral blood flow to increase, resulting in a reduction responded well to dosage reduction and/or over the in blood pressure. At therapeutic antihypertensive counter laxatives. doses (30–90 mg/day), mecamylamine also has para- Rose et al14 also found that daily administration sympathetic-blocking activity, causing nuisance of mecamylamine alone for 4 weeks prior to the quit side effects such as constipation, urinary retention, date was also more effective than nicotine patches dryness of the mouth and skin, dilation of the in reducing smoking satisfaction, cigarette craving pupils, and loss of visual accommodation in some and measures of continuous abstinence over several patients. weeks. In a recent study investigating gender effects Recently, there is considerable interest in evaluat- in the treatment of smoking cessation, Rose et al15 ing mecamylamine for the treatment of other clinical found that administration of mecamylamine prior to indications.8 The principal focus of research on quitting smoking may be necessary to extinguish the other clinical indications largely involves mecamyl- influence of environmental cues previously amine’s potent blockade of brain nicotinic receptors reinforced by smoking. Moreover, they found that at doses that do not have a significant effect on para- abstinence rates were much higher for women sympathetic function (2.5–10 mg/day).9 Potential receiving mecamylamine than for men. Because indications currently under investigation include results from other forms of smoking cessation ther- treatment of cocaine10 and ethanol abuse,11 to facili- apy including nicotine replacement therapy29 and tate smoking cessation,12–15 and to treat various neu- oral bupropion administration,30 indicate that ropsychiatric disorders including anxiety,16 epi- women have a more difficult time remaining absti- lepsy,17,18 Tourette’s disorder,19 bipolar disorder20 nent from smoking than men, these new findings and major depression.21,22 Mecamylamine also suggest that pre-cessation mecamylamine treatment appears to be well suited for the prophylactic treat- may be uniquely beneficial for women.15 Ongoing ment of autonomic dysreflexia.23,24 clinical studies at Duke University are investigating The purpose of this paper is to critically review this unique property of mecamylamine. the research available regarding the possible use of Although there is some evidence that bupropion mecamylamine as an aid to smoking cessation and (Zyban) may function to selectively block certain to propose testable hypotheses that could be studied nicotinic receptors in the brain,31 mecamylamine in recalcitrant smokers with mild to moderate (Inversine) is the only orally active well established hypertension. nicotinic receptor blocker currently available on the US market. Mecamylamine as an aid to smoking cessation New research directions for mecamylamine: smoking and While mecamylamine is still in phase III clinical trials and not yet indicated by the FDA for smoking cardiovascular disease cessation, there are several published studies that It is well known that cigarette smoking contributes conclude that mecamylamine, particularly in combi- to human diseases including coronary and periph- nation with transdermal nicotine, increases the rates eral vascular disease and stroke.32 Also long known of smoking abstinence14,25 especially in women.15 is that blood pressure and heart rate increase during Mecamylamine was one of the first medications smoking. These effects are specifically associated studied for smoking cessation treatment at the with nicotine, while the other components of ciga- National Institutes of Drug Abuse. Unfortunately, rette smoking seem to be of minor importance.33 intolerable side effects including constipation, Nicotine activates both parasympathetic and sym- drowsiness, and dry month caused by the high doses pathetic ganglia by mimicking the actions of acetyl- employed (mean of 26.7 mg/day) outweighed the choline at nicotinic receptors. Nicotine primarily drug’s beneficial effects on smoking cessation.26,27 acts through the sympathetic nervous system to However, Rose et al28 found that a very low dose of raise blood pressure and increase cardiac output and mecamylamine (2.5 mg/day), which was well toler- total peripheral vascular resistance. Heart rate can ated, reduced the subjective desire to smoke. increase by 20–30% shortly after smoking while Rose et al14,25 have also demonstrated the thera- blood pressure increases by about 10%.33 peutic utility of combining mecamylamine with While most studies have found that smokers
Recommended publications
  • Synthesis and Characterization of in Vitro and in Vivo Profiles of Hydroxybupropion Analogues: Aids to Smoking Cessation
    Barrow Neurological Institute at St. Joseph's Hospital and Medical Center Barrow - St. Joseph's Scholarly Commons Neurobiology 6-24-2010 Synthesis And Characterization Of In Vitro And In Vivo Profiles Of Hydroxybupropion Analogues: Aids To Smoking Cessation Ronald J. Lukas Barrow Neurological Institute, [email protected] Ana Z. Muresan M. Imad Damaj Bruce E. Blough Xiaodong Huang See next page for additional authors Follow this and additional works at: https://scholar.barrowneuro.org/neurobiology Recommended Citation Lukas, Ronald J.; Muresan, Ana Z.; Damaj, M. Imad; Blough, Bruce E.; Huang, Xiaodong; Navarro, Hernan A.; Mascarella, S. Wayne; Eaton, J. Brek; Marxer-Miller, Syndia K.; and Carroll, F. Ivy, "Synthesis And Characterization Of In Vitro And In Vivo Profiles Of Hydroxybupropion Analogues: Aids To Smoking Cessation" (2010). Neurobiology. 280. https://scholar.barrowneuro.org/neurobiology/280 This Article is brought to you for free and open access by Barrow - St. Joseph's Scholarly Commons. It has been accepted for inclusion in Neurobiology by an authorized administrator of Barrow - St. Joseph's Scholarly Commons. For more information, please contact [email protected], [email protected]. Authors Ronald J. Lukas, Ana Z. Muresan, M. Imad Damaj, Bruce E. Blough, Xiaodong Huang, Hernan A. Navarro, S. Wayne Mascarella, J. Brek Eaton, Syndia K. Marxer-Miller, and F. Ivy Carroll This article is available at Barrow - St. Joseph's Scholarly Commons: https://scholar.barrowneuro.org/neurobiology/ 280 J. Med. Chem. 2010, 53, 4731–4748 4731 DOI: 10.1021/jm1003232 Synthesis and Characterization of in Vitro and in Vivo Profiles of Hydroxybupropion Analogues: Aids to Smoking Cessation Ronald J.
    [Show full text]
  • In Silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction
    In silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction Pathima Nusrath Hameed ORCID: 0000-0002-8118-9823 Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering THE UNIVERSITY OF MELBOURNE May 2018 Copyright © 2018 Pathima Nusrath Hameed All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the author. Abstract Drug repositioning and drug-drug interaction (DDI) prediction are two fundamental ap- plications having a large impact on drug development and clinical care. Drug reposi- tioning aims to identify new uses for existing drugs. Moreover, understanding harmful DDIs is essential to enhance the effects of clinical care. Exploring both therapeutic uses and adverse effects of drugs or a pair of drugs have significant benefits in pharmacology. The use of computational methods to support drug repositioning and DDI prediction en- able improvements in the speed of drug development compared to in vivo and in vitro methods. This thesis investigates the consequences of employing a representative training sam- ple in achieving better performance for DDI classification. The Positive-Unlabeled Learn- ing method introduced in this thesis aims to employ representative positives as well as reliable negatives to train the binary classifier for inferring potential DDIs. Moreover, it explores the importance of a finer-grained similarity metric to represent the pairwise drug similarities. Drug repositioning can be approached by new indication detection. In this study, Anatomical Therapeutic Chemical (ATC) classification is used as the primary source to determine the indications/therapeutic uses of drugs for drug repositioning.
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Cognitive, Behavioral, and Physiologic Responses John T
    Combined Nicotinic and Muscarinic Blockade in Elderly Normal Volunteers: Cognitive, Behavioral, and Physiologic Responses John T. Little, M.D., Douglas N. Johnson, Ph.D., Marcia Minichiello, M.A., Herb Weingartner, Ph.D., and Trey Sunderland, M.D. Establishing a pharmacologic model of the memory deficits scopolamine alone. Increased impairment was also seen for of Alzheimer’s disease could be an important tool in the mecamylamine 1 scopolamine condition as compared to understanding how memory fails. We examined the scopolamine alone in selected behavioral ratings. Pupil size combined effects of the muscarinic antagonist scopolamine increased when mecamylamine was added to scopolamine, and the nicotinic antagonist mecamylamine in eight normal while systolic blood pressure and pulse changed in elderly volunteers (age 61.9 6 8.3 yrs, SD). Each received concordance with ganglionic blockade. These data together four separate drug challenges (scopolamine (0.4 mg IV), with previous brain-imaging results suggest that this mecamylamine (0.2 mg/kg up to 15 mg PO), muscarinic–nicotinic drug combination may better model mecamylamine 1 scopolamine, and placebo). There was a Alzheimer’s disease than either drug alone. trend toward increased impairment in explicit memory for [Neuropsychopharmacology 19:60–69, 1998] the mecamylamine 1 scopolamine condition as compared to Published by Elsevier Science Inc. KEY WORDS: Scopolamine; Mecamylamine; Cognitive; al. 1985; Shimohama et al. 1986; Whitehouse and Au Geriatrics; Muscarinic antagonist; Nicotinic antagonist 1986; D’Amato et al. 1987; Zubenko et al. 1988), many cognitive dysfunction modeling studies have focused Given the limited animal models of Alzheimer’s disease on this system (Beatty et al.
    [Show full text]
  • Lubeluzole/Mecamylamine Hydrochloride 1331 Precautions Ing Treated
    Lubeluzole/Mecamylamine Hydrochloride 1331 Precautions ing treated. Mannitol infusion has also been used to de Manzanas; Pol.: Purisole SM; Port.: Purisole; Xarope de Macas Reinetas; Rus.: Rheogluman (Реоглюман); Spain: Salcemetic†; Salmagne; Switz.: Mannitol is contra-indicated in patients with pulmo- prevent acute renal failure during cardiovascular and Cital†. nary congestion or pulmonary oedema, intracranial other types of surgery, or after trauma. bleeding (except during craniotomy), heart failure (in To reduce raised intracranial or intra-ocular pres- patients with diminished cardiac reserve, expansion of sure mannitol may be given by intravenous infusion as Mebutamate (BAN, USAN, rINN) the extracellular fluid may lead to fulminating heart a 15 to 25% solution in a dose of 0.25 to 2 g/kg over 30 Mébutamate; Mebutamato; Mebutamatum; W-583. 2-sec-Butyl- failure), and in patients with renal failure unless a test to 60 minutes. Rebound increases in intracranial or 2-methyltrimethylene dicarbamate. dose has produced a diuretic response (if urine flow is intra-ocular pressure may occur but are less frequent Мебутамат inadequate, expansion of the extracellular fluid may than with urea. C10H20N2O4 = 232.3. lead to acute water intoxication). During transurethral prostatic resection a 2.5 to 5% CAS — 64-55-1. Mannitol should not be given with whole blood. ATC — N05BC04. solution of mannitol has been used for irrigating the ATC Vet — QN05BC04. All patients given mannitol should be carefully ob- bladder. served for signs of fluid and electrolyte imbalance and Ciguatera poisoning. Ciguatera poisoning occurs throughout O O renal function should be monitored. the Caribbean and Indopacific as a result of the consumption of certain fish contaminated with ciguatoxin; it is increasingly seen Pharmacokinetics in Europe, in travellers returning from these areas, or as a result H2NO O NH2 Only small amounts of mannitol are absorbed from the of eating imported fish.
    [Show full text]
  • III IIHIIII US005574052A United States Patent (19) 11 Patent Number: 5,574,052 Rose Et Al
    III IIHIIII US005574052A United States Patent (19) 11 Patent Number: 5,574,052 Rose et al. 45) Date of Patent: *Nov. 12, 1996 54) AGONIST-ANTAGONIST COMBINATION TO Nicotine Self-Administration..., H. M. Hanson, et al., Ch. REDUCE THE USE OF NICOTINE AND 7 Norman A. Krasnegor, NIDA Research Monograph 23, OTHER DRUGS Jan. 1979. Influencing Cigarette Smoking ..., I. P. Stolerman, et. al., (75 Inventors: Jed E. Rose, Venice; Edward D. Psychopharmacologia (Berl.) 28–247-249 (1973). Levin, Los Angeles, both of Calif. Effects of Mecamylamine On Human Cigarette Smoking . , Nemeth-Coslett, et al., Pharmacology (1986) (73) Assignee: Robert J. Schaap, Los Angeles, Calif.; 88:420-425. a part interest Rapid Phsiologic Effects of Nicotine ..., J. Henningfield, et al., U.S. Dept. of Health and Human Services, 259-265. * Notice: The term of this patent shall not extend Could Nicotine Antagonists Be Used..., by I. P. Stolerman, beyond the expiration date of Pat. No. Br, Jr. of Addiction (1986) 81, 47-53. 5,316,759. Mecamylamine Pretreatment . , C. S. Pomerleau, et. al., Pharmacology (1987) 91:391-393. (21) Appl. No.: 235,454 Clinical Evaluation of Mecamylamine..., F. S. Tennant, Jr., et al., NIDA Research Monograph, Feb. 9 (1984). 239–246. (22 Filed: Apr. 29, 1994 Withdrawl From Nicotine Dependence ..., F. S. Tennant, Jr., et al., NIDA Research Monograph, 55 (1985). Related U.S. Application Data Double-Blind Comparison . , F. S. Tennant, Jr., UCLA, Los Angeles, California. 63) Continuation of Ser. No. 54,144, Apr. 30, 1993, which is a Involvement of Cholinergic Nicotine-like Receptors . continuation of Ser. No. 855,868, Mar.
    [Show full text]
  • Distinct Pharmacologic Properties of Neuromuscular Blocking Agents On
    Anesthesiology 2006; 105:521–33 Copyright © 2006, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Distinct Pharmacologic Properties of Neuromuscular Blocking Agents on Human Neuronal Nicotinic Acetylcholine Receptors A Possible Explanation for the Train-of-four Fade Malin Jonsson, M.D., Ph.D.,* David Gurley, M.S.,† Michael Dabrowski, Ph.D.,‡ Olof Larsson, Ph.D.,§ Edwin C. Johnson, Ph.D.,# Lars I. Eriksson, M.D., Ph.D.࿣ Background: Nondepolarizing neuromuscular blocking agents intubation and mechanical ventilation and to improve Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/105/3/521/362271/0000542-200609000-00016.pdf by guest on 23 September 2021 (NMBAs) are extensively used in the practice of anesthesia and surgical conditions. intensive care medicine. Their primary site of action is at the Although it is well established that nondepolarizing postsynaptic nicotinic acetylcholine receptor (nAChR) in the ␣ ␤ ␧␦ neuromuscular junction, but their action on neuronal nAChRs NMBAs block the postsynaptic 1 1 nicotinic acetyl- have not been fully evaluated. Furthermore, observed adverse choline receptor (nAChR) subtype at the muscle end- effects of nondepolarizing NMBAs might originate from an in- plate, the effect on the presynaptic motor nerve ending teraction with neuronal nAChRs. The aim of this study was to has not been clarified (for a review, see Vizi and Lend- examine the effect of clinically used nondepolarizing NMBAs on 1,2 2 muscle and neuronal nAChR subtypes. vai and Bowman et al. ). It is believed that the mech- Methods: Xenopus laevis oocytes were injected with messen- anism behind tetanic and train-of-four (TOF) fade during ger RNA encoding for the subunits included in the human neuromuscular block by a nondepolarizing NMBA arise ␣ ␤ ␧␦ ␣ ␤ ␣ ␤ ␣ ␤ ␣ 1 1 , 3 2, 3 4, 4 2, and 7 nAChR subtypes.
    [Show full text]
  • MECAMYLAMINE Hydrochloride Tablets, USP, 2.5 Mg
    MECAMYLAMINE HYDROCHLORIDE- mecamylamine hydrochloride tablet Nexgen Pharma, Inc. ---------- MECAMYLAMINE Hydrochloride Tablets, USP, 2.5 mg DESCRIPTION Mecamylamine HCl is a potent, oral antihypertension agent and ganglion blocker, and is a secondary amine. It is N,2,3,3-tetramethyl-bicyclo [2.2.1] heptan- 2 -amine hydrochloride. Its empirical formula is C11H21N • HCl and its structural formula is: It is a white, odorless, or practically odorless, crystalline powder, is highly stable, soluble in water and has a molecular weight of 203.75. Mecamylamine HCl is supplied as tablets for oral use, each containing 2.5 mg mecamylamine HCl. Inactive ingredients are calcium phosphate, D&C Yellow 10, FD&C Yellow 6, lactose, magnesium stearate, cornstarch, and talc. CLINICAL PHARMACOLOGY Mecamylamine HCl reduces blood pressure in both normotensive and hypertensive individuals. It has a gradual onset of action (1/2 to 2 hours) and a long-lasting effect (usually 6 to 12 hours or more). A small oral dosage often produces a smooth and predictable reduction of blood pressure. Although this antihypertensive effect is predominantly orthostatic, the supine blood pressure is also significantly reduced. Pharmacokinetics and Metabolism Mecamylamine HCl is almost completely absorbed from the gastrointestinal tract, resulting in consistent lowering of blood pressure in most patients with hypertensive cardiovascular disease. Mecamylamine HCl is excreted slowly in the urine in the unchanged form. The rate of its renal elimination is influenced markedly by urinary pH. Alkalinization of the urine reduces, and acidification promotes, renal excretion of mecamylamine. Mecamylamine HCl crosses the blood-brain and placental barriers. INDICATIONS AND USAGE For the management of moderately severe to severe essential hypertension and in uncomplicated cases of malignant hypertension.
    [Show full text]
  • Nicotinic Mechanisms Modulate Ethanol Withdrawal and Modify Time Course and Symptoms Severity of Simultaneous Withdrawal from Alcohol and Nicotine
    Neuropsychopharmacology (2015) 40, 2327–2336 © 2015 American College of Neuropsychopharmacology. All rights reserved 0893-133X/15 www.neuropsychopharmacology.org Nicotinic Mechanisms Modulate Ethanol Withdrawal and Modify Time Course and Symptoms Severity of Simultaneous Withdrawal from Alcohol and Nicotine 1,2 3 ,1,2,4 Erika Perez , Natalia Quijano-Cardé and Mariella De Biasi* 1 2 Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of 3 4 Neuroscience, Baylor College of Medicine, Houston, TX, USA; University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico; Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA Alcohol and nicotine are among the top causes of preventable death in the United States. Unfortunately, people who are dependent on alcohol are more likely to smoke than individuals in the general population. Similarly, smokers are more likely to abuse alcohol. Alcohol and nicotine codependence affects health in many ways and leads to poorer treatment outcomes in subjects who want to quit. This study examined the interaction of alcohol and nicotine during withdrawal and compared abstinence symptoms during withdrawal from one of the two drugs only vs both. Our results indicate that simultaneous withdrawal from alcohol and nicotine produces physical symptoms that are more severe and last longer than those experienced during withdrawal from one of the two drugs alone. In animals experiencing withdrawal after chronic ethanol treatment, acute nicotine exposure was sufficient to prevent abstinence symptoms. Similarly, symptoms were prevented when alcohol was injected acutely in mice undergoing nicotine withdrawal. These experiments provide evidence for the involvement of the nicotinic cholinergic system in alcohol withdrawal.
    [Show full text]
  • Standards, Limits and Conditions for Prescribing Dispensing And
    College of Naturopathic Physicians of British Columbia CNPBC Scope of Practice for Naturopathic Physicians: Standards, Limits and Conditions for Prescribing, Dispensing and Compounding Drugs May 27, 2010 (Edited 2021-04-30) Standards, Limits and Conditions Draft Framework ACKNOWLEDGEMENTS: The College of Naturopathic Physicians of British Columbia gratefully acknowledges the College of Registered Nurses of British Columbia (CRNBC) for permission to use material from “Scope of Practice for Nurse Practitioners (Family), Standards, Limits and Conditions”, CRNBC, April 2007; for their pioneering efforts in this area of health regulation and for their generous assistance. The College also wishes to acknowledge the extensive support and collaboration received from the College of Pharmacists of BC (CPBC). Their support and assistance has been invaluable. The CNPBC looks forward to ongoing collaboration with these and other health regulatory Colleges in the implementation of prescriptive authority for naturopathic physicians. 2 CNPBC Standards of Practice CNPBC is responsible under the Health Professions Act for setting standards of practice for its registrants. Scope of Practice Standards Scope of Practice Standards set out standards, limits and conditions related to the scope of practice for naturopathic physicians. (See Appendix A.) 3 Contents Introduction .............................................................................................................. 5 Section A – Prescribing and Dispensing PART l – Standards ................................................................................................
    [Show full text]