Biological Processes Underlying Co-Use of Alcohol and Nicotine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synthesis and Characterization of in Vitro and in Vivo Profiles of Hydroxybupropion Analogues: Aids to Smoking Cessation
Barrow Neurological Institute at St. Joseph's Hospital and Medical Center Barrow - St. Joseph's Scholarly Commons Neurobiology 6-24-2010 Synthesis And Characterization Of In Vitro And In Vivo Profiles Of Hydroxybupropion Analogues: Aids To Smoking Cessation Ronald J. Lukas Barrow Neurological Institute, [email protected] Ana Z. Muresan M. Imad Damaj Bruce E. Blough Xiaodong Huang See next page for additional authors Follow this and additional works at: https://scholar.barrowneuro.org/neurobiology Recommended Citation Lukas, Ronald J.; Muresan, Ana Z.; Damaj, M. Imad; Blough, Bruce E.; Huang, Xiaodong; Navarro, Hernan A.; Mascarella, S. Wayne; Eaton, J. Brek; Marxer-Miller, Syndia K.; and Carroll, F. Ivy, "Synthesis And Characterization Of In Vitro And In Vivo Profiles Of Hydroxybupropion Analogues: Aids To Smoking Cessation" (2010). Neurobiology. 280. https://scholar.barrowneuro.org/neurobiology/280 This Article is brought to you for free and open access by Barrow - St. Joseph's Scholarly Commons. It has been accepted for inclusion in Neurobiology by an authorized administrator of Barrow - St. Joseph's Scholarly Commons. For more information, please contact [email protected], [email protected]. Authors Ronald J. Lukas, Ana Z. Muresan, M. Imad Damaj, Bruce E. Blough, Xiaodong Huang, Hernan A. Navarro, S. Wayne Mascarella, J. Brek Eaton, Syndia K. Marxer-Miller, and F. Ivy Carroll This article is available at Barrow - St. Joseph's Scholarly Commons: https://scholar.barrowneuro.org/neurobiology/ 280 J. Med. Chem. 2010, 53, 4731–4748 4731 DOI: 10.1021/jm1003232 Synthesis and Characterization of in Vitro and in Vivo Profiles of Hydroxybupropion Analogues: Aids to Smoking Cessation Ronald J. -
111 Physiology, Biochemistry and Pharmacology
Reviews of 111 Physiology, Biochemistry and Pharmacology Editors M. P. Blaustein, Baltimore • H. Grunicke, Innsbruck E. Habermann, Giel3en • H. Neurath, Seattle S. Numa, Kyoto • D. Pette, Konstanz B. Sakmann, G6ttingen • U. Trendelenburg, Wiirzburg K.J. Ullrich, Frankfurt/M With 32 Figures and 10 Tables Springer-Verlag Berlin Heidelberg New York London Paris Tokyo ISBN 3-540-19156-9 Springer-Verlag Berlin Heidelberg NewYork 1SBN 0-387-19156-9 Springer-Verlag NewYork Berlin Heidelberg Library of Congress-Catalog-Card Number 74-3674 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1988 Printed in Germany The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro- tective laws and regulations and therefore free for general use. Product Liability: The publisher can give no guarantee for information about drug dosage and application thereof contained in this book. In every individual case the respective user must check its accuracy by consulting other pharmaceutical literature. Typesetting:K+ V Fotosatz, Beerfelden Offsetprinting and Binding: Konrad Triltsch, D-8700 W~rzburg 2127/3130-543210- Printed on acid-free paper Contents Regulation of Blood Pressure by Central Neuro- transmitters and Neuropeptides By A. -
In Silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction
In silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction Pathima Nusrath Hameed ORCID: 0000-0002-8118-9823 Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering THE UNIVERSITY OF MELBOURNE May 2018 Copyright © 2018 Pathima Nusrath Hameed All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the author. Abstract Drug repositioning and drug-drug interaction (DDI) prediction are two fundamental ap- plications having a large impact on drug development and clinical care. Drug reposi- tioning aims to identify new uses for existing drugs. Moreover, understanding harmful DDIs is essential to enhance the effects of clinical care. Exploring both therapeutic uses and adverse effects of drugs or a pair of drugs have significant benefits in pharmacology. The use of computational methods to support drug repositioning and DDI prediction en- able improvements in the speed of drug development compared to in vivo and in vitro methods. This thesis investigates the consequences of employing a representative training sam- ple in achieving better performance for DDI classification. The Positive-Unlabeled Learn- ing method introduced in this thesis aims to employ representative positives as well as reliable negatives to train the binary classifier for inferring potential DDIs. Moreover, it explores the importance of a finer-grained similarity metric to represent the pairwise drug similarities. Drug repositioning can be approached by new indication detection. In this study, Anatomical Therapeutic Chemical (ATC) classification is used as the primary source to determine the indications/therapeutic uses of drugs for drug repositioning. -
Effects of the Nicotinic Agonist Varenicline, Nicotinic Antagonist R-Bpidi, and DAT Inhibitor R-Modafinil on Co-Use of Ethanol and Nicotine in Female P Rats
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Psychopharmacology Manuscript Author (Berl) Manuscript Author . Author manuscript; available in PMC 2019 May 01. Published in final edited form as: Psychopharmacology (Berl). 2018 May ; 235(5): 1439–1453. doi:10.1007/s00213-018-4853-4. Effects of the nicotinic agonist varenicline, nicotinic antagonist r-bPiDI, and DAT inhibitor R-modafinil on co-use of ethanol and nicotine in female P rats. Sarah E. Maggio1, Meredith A. Saunders1, Thomas A. Baxter1, Kimberly Nixon2, Mark A. Prendergast1, Guangrong Zheng3, Peter Crooks3, Linda P. Dwoskin2, Rachel D. Slack4, Amy H. Newman4, Richard L. Bell5, and Michael T. Bardo1 1Department of Psychology, University of Kentucky, Lexington, KY 40536, USA. 2Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA. 3Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas, Little Rock, AR 72205, USA. 4Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse- Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA. 5Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Abstract Rationale: Co-users of alcohol and nicotine are the largest group of polysubstance users worldwide. Commonalities in mechanisms of action for ethanol (EtOH) and nicotine proposes the possibility of developing a single pharmacotherapeutic to treat co-use. Objectives: Toward developing a preclinical model of co-use, female alcohol-preferring (P) rats were trained for voluntary EtOH drinking and i.v. nicotine self-administration in three phases: (1) EtOH alone (0 vs. 15%, 2-bottle choice); (2) nicotine alone (0.03 mg/kg/infusion, active vs. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
Nicotine and Neurotransmitters
Module 2 —Legal Doesn’t Mean Harmless Overview Overview Summary This module focuses on how two drugs, nicotine and alcohol, change the functioning of the brain and body. Both drugs are widely used in the community, and for adults, using them is legal. Nonetheless, both alcohol and nicotine can have a strong impact on the functioning of the brain. Each can cause a number of negative effects on the body and brain, ranging from mild symptoms to addiction. The goal of this module is to help students understand that, although nicotine and alcohol are legal for adults, they are not harmless substances. Students will learn about how nicotine and alcohol change or disrupt the process of neurotransmission. Students will explore information on the short- and long- term effects of these two drugs, and also learn why these drugs are illegal for children and teens. Through the media, students are exposed to a great deal of information about alcohol and tobacco, much of which is misleading or scientifically inaccurate. This module will provide information on what researchers have learned about how nicotine and alcohol change the brain, and the resulting implications for safety and health. Learning Objectives At the end of this module: • Students can explain how nicotine disrupts neurotransmission. • Students can explain how alcohol use may harm the brain and the body. • Students understand how alcohol can intensify the effect of other drugs. • Students can define addiction and understand its basis in the brain. • Students draw conclusions about why our society regulates the use of nicotine and alcohol for young people. -
Nicotine Improves Working Memory Span Capacity in Rats Following Sub-Chronic Ketamine Exposure
Neuropsychopharmacology (2011) 36, 2774–2781 & 2011 American College of Neuropsychopharmacology. All rights reserved 0893-133X/11 www.neuropsychopharmacology.org Nicotine Improves Working Memory Span Capacity in Rats Following Sub-Chronic Ketamine Exposure Samantha L Rushforth1, Thomas Steckler2 and Mohammed Shoaib*,1 1 2 Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Newcastle, UK; Janssen Research & Development, Beerse, Belgium Ketamine, an NMDA-receptor antagonist, produces cognitive deficits in humans in a battery of tasks involving attention and memory. Nicotine can enhance various indices of cognitive performance, including working memory span capacity measured using the odor span task (OST). This study examined the effects of a sub-chronic ketamine treatment to model cognitive deficits associated with schizophrenia, and to evaluate the effectiveness of nicotine, antipsychotic clozapine, and the novel mGlu2/3 agonist, LY404039, in restoring OST performance. Male hooded Lister rats were trained in the OST, a working memory task involving detection of a novel odor from an increasing number of presented odors until they exhibited asymptotic levels of stable performance. Sub-chronic ketamine exposure (10 and 30 mg/kg i.p. for 5 consecutive days) produced a dose-dependent impairment that was stable beyond 14 days following exposure. In one cohort, administration of graded doses of nicotine (0.025–0.1 mg/kg) acutely restored the performance in ketamine-treated animals, while significant improvements in odor span were observed in control subjects. In a second cohort of rats, acute tests with clozapine (1–10 mg/kg) and LY404039 (0.3–10 mg/kg) failed to reverse ketamine-induced deficits in doses that were observed to impair performance in the control groups. -
Adolescent Drug Terminology and Trends: 2017-18 Edition
Adolescent Drug Terminology and Trends: 2017-18 Edition Matthew Quinn, LCPC, CADC Community Relations Coordinator Vaping Term used to describe when a substance is heated to the point of releasing vapor but not combusted (lit on fire). • Increasing in popularity as a way to ingest nicotine and cannabis, often in an electronic device that looks like a pen • Usually relatively odorless and difficult to distinguish between nicotine and cannabis vape device Juul (pronounced jewel) Specific vaping product from Pax Labs similar to an e- cigarette used to ingest nicotine • Liquid contains nicotine salts extracted from the tobacco leaf (2x nicotine of previous e-cigs) • Variety of flavors • Cool mint • Mango • Crème brule Dabs Dabs is a highly concentrated butane hash oil (BHO) created in a process where high quality cannabis is blasted with butane and extracted. • Heated and inhaled • Contains 70-90% THC compared to 5-15% THC in regular cannabis • Wax, oil, shatter, crumble • Sauce, distillate Rig A rig is a device used to vaporize and inhale dabs. • Looks similar to a water pipe or bong • Usually a nail is heated with a hand- held torch to a high temperature and a small piece of the concentrate is ‘dabbed’ onto a nail • Vapor released is then inhaled through the pipe Edibles • Increasingly popular alternative to smoking marijuana • Produced to infuse marijuana into various ingestible forms • Problem is that effects are hard to predict and difficult to know dose Other Terms for Cannabis • Bud • Dank • Nug • Loud • Fire • Gas Bars (Ladders) Another name for the rectangular shaped Xanax (anti- anxiety medication) with three lines in them (typically 2mg per ‘bar’). -
Cognitive, Behavioral, and Physiologic Responses John T
Combined Nicotinic and Muscarinic Blockade in Elderly Normal Volunteers: Cognitive, Behavioral, and Physiologic Responses John T. Little, M.D., Douglas N. Johnson, Ph.D., Marcia Minichiello, M.A., Herb Weingartner, Ph.D., and Trey Sunderland, M.D. Establishing a pharmacologic model of the memory deficits scopolamine alone. Increased impairment was also seen for of Alzheimer’s disease could be an important tool in the mecamylamine 1 scopolamine condition as compared to understanding how memory fails. We examined the scopolamine alone in selected behavioral ratings. Pupil size combined effects of the muscarinic antagonist scopolamine increased when mecamylamine was added to scopolamine, and the nicotinic antagonist mecamylamine in eight normal while systolic blood pressure and pulse changed in elderly volunteers (age 61.9 6 8.3 yrs, SD). Each received concordance with ganglionic blockade. These data together four separate drug challenges (scopolamine (0.4 mg IV), with previous brain-imaging results suggest that this mecamylamine (0.2 mg/kg up to 15 mg PO), muscarinic–nicotinic drug combination may better model mecamylamine 1 scopolamine, and placebo). There was a Alzheimer’s disease than either drug alone. trend toward increased impairment in explicit memory for [Neuropsychopharmacology 19:60–69, 1998] the mecamylamine 1 scopolamine condition as compared to Published by Elsevier Science Inc. KEY WORDS: Scopolamine; Mecamylamine; Cognitive; al. 1985; Shimohama et al. 1986; Whitehouse and Au Geriatrics; Muscarinic antagonist; Nicotinic antagonist 1986; D’Amato et al. 1987; Zubenko et al. 1988), many cognitive dysfunction modeling studies have focused Given the limited animal models of Alzheimer’s disease on this system (Beatty et al. -
Problematic Use of Nitrous Oxide by Young Moroccan–Dutch Adults
International Journal of Environmental Research and Public Health Article Problematic Use of Nitrous Oxide by Young Moroccan–Dutch Adults Ton Nabben 1, Jelmer Weijs 2 and Jan van Amsterdam 3,* 1 Urban Governance & Social Innovation, Amsterdam University of Applied Sciences, P.O. Box 2171, 1000 CD Amsterdam, The Netherlands; [email protected] 2 Jellinek, Department High Care Detox, Vlaardingenlaan 5, 1059 GL Amsterdam, The Netherlands; [email protected] 3 Amsterdam University Medical Center, Department of Psychiatry, University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands * Correspondence: [email protected] Abstract: The recreational use of nitrous oxide (N2O; laughing gas) has largely expanded in recent years. Although incidental use of nitrous oxide hardly causes any health damage, problematic or heavy use of nitrous oxide can lead to serious adverse effects. Amsterdam care centres noticed that Moroccan–Dutch young adults reported neurological symptoms, including severe paralysis, as a result of problematic nitrous oxide use. In this qualitative exploratory study, thirteen young adult Moroccan–Dutch excessive nitrous oxide users were interviewed. The determinants of problematic nitrous oxide use in this ethnic group are discussed, including their low treatment demand with respect to nitrous oxide abuse related medical–psychological problems. Motives for using nitrous oxide are to relieve boredom, to seek out relaxation with friends and to suppress psychosocial stress and negative thoughts. Other motives are depression, discrimination and conflict with friends Citation: Nabben, T.; Weijs, J.; van or parents. The taboo culture surrounding substance use—mistrust, shame and macho culture— Amsterdam, J. Problematic Use of frustrates timely medical/psychological treatment of Moroccan–Dutch problematic nitrous oxide Nitrous Oxide by Young users. -
Lubeluzole/Mecamylamine Hydrochloride 1331 Precautions Ing Treated
Lubeluzole/Mecamylamine Hydrochloride 1331 Precautions ing treated. Mannitol infusion has also been used to de Manzanas; Pol.: Purisole SM; Port.: Purisole; Xarope de Macas Reinetas; Rus.: Rheogluman (Реоглюман); Spain: Salcemetic†; Salmagne; Switz.: Mannitol is contra-indicated in patients with pulmo- prevent acute renal failure during cardiovascular and Cital†. nary congestion or pulmonary oedema, intracranial other types of surgery, or after trauma. bleeding (except during craniotomy), heart failure (in To reduce raised intracranial or intra-ocular pres- patients with diminished cardiac reserve, expansion of sure mannitol may be given by intravenous infusion as Mebutamate (BAN, USAN, rINN) the extracellular fluid may lead to fulminating heart a 15 to 25% solution in a dose of 0.25 to 2 g/kg over 30 Mébutamate; Mebutamato; Mebutamatum; W-583. 2-sec-Butyl- failure), and in patients with renal failure unless a test to 60 minutes. Rebound increases in intracranial or 2-methyltrimethylene dicarbamate. dose has produced a diuretic response (if urine flow is intra-ocular pressure may occur but are less frequent Мебутамат inadequate, expansion of the extracellular fluid may than with urea. C10H20N2O4 = 232.3. lead to acute water intoxication). During transurethral prostatic resection a 2.5 to 5% CAS — 64-55-1. Mannitol should not be given with whole blood. ATC — N05BC04. solution of mannitol has been used for irrigating the ATC Vet — QN05BC04. All patients given mannitol should be carefully ob- bladder. served for signs of fluid and electrolyte imbalance and Ciguatera poisoning. Ciguatera poisoning occurs throughout O O renal function should be monitored. the Caribbean and Indopacific as a result of the consumption of certain fish contaminated with ciguatoxin; it is increasingly seen Pharmacokinetics in Europe, in travellers returning from these areas, or as a result H2NO O NH2 Only small amounts of mannitol are absorbed from the of eating imported fish. -
III IIHIIII US005574052A United States Patent (19) 11 Patent Number: 5,574,052 Rose Et Al
III IIHIIII US005574052A United States Patent (19) 11 Patent Number: 5,574,052 Rose et al. 45) Date of Patent: *Nov. 12, 1996 54) AGONIST-ANTAGONIST COMBINATION TO Nicotine Self-Administration..., H. M. Hanson, et al., Ch. REDUCE THE USE OF NICOTINE AND 7 Norman A. Krasnegor, NIDA Research Monograph 23, OTHER DRUGS Jan. 1979. Influencing Cigarette Smoking ..., I. P. Stolerman, et. al., (75 Inventors: Jed E. Rose, Venice; Edward D. Psychopharmacologia (Berl.) 28–247-249 (1973). Levin, Los Angeles, both of Calif. Effects of Mecamylamine On Human Cigarette Smoking . , Nemeth-Coslett, et al., Pharmacology (1986) (73) Assignee: Robert J. Schaap, Los Angeles, Calif.; 88:420-425. a part interest Rapid Phsiologic Effects of Nicotine ..., J. Henningfield, et al., U.S. Dept. of Health and Human Services, 259-265. * Notice: The term of this patent shall not extend Could Nicotine Antagonists Be Used..., by I. P. Stolerman, beyond the expiration date of Pat. No. Br, Jr. of Addiction (1986) 81, 47-53. 5,316,759. Mecamylamine Pretreatment . , C. S. Pomerleau, et. al., Pharmacology (1987) 91:391-393. (21) Appl. No.: 235,454 Clinical Evaluation of Mecamylamine..., F. S. Tennant, Jr., et al., NIDA Research Monograph, Feb. 9 (1984). 239–246. (22 Filed: Apr. 29, 1994 Withdrawl From Nicotine Dependence ..., F. S. Tennant, Jr., et al., NIDA Research Monograph, 55 (1985). Related U.S. Application Data Double-Blind Comparison . , F. S. Tennant, Jr., UCLA, Los Angeles, California. 63) Continuation of Ser. No. 54,144, Apr. 30, 1993, which is a Involvement of Cholinergic Nicotine-like Receptors . continuation of Ser. No. 855,868, Mar.