Scalable Asynchronous Gradient Descent Optimization for Out-Of-Core Models

Total Page:16

File Type:pdf, Size:1020Kb

Scalable Asynchronous Gradient Descent Optimization for Out-Of-Core Models Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models Chengjie Qinz∗ Martin Torresy Florin Rusuy yUniversity of California Merced, zGraphSQL, Inc. fcqin3, mtorres58, [email protected] ABSTRACT Due to the explosive growth in data acquisition, the current trend Existing data analytics systems have approached predictive model is to devise prediction models with an ever-increasing number of training exclusively from a data-parallel perspective. Data exam- features, i.e., big models. For example, Google has reported models ples are partitioned to multiple workers and training is executed with billions of features for predicting ad click-through rates [27] concurrently over different partitions, under various synchroniza- as early as 2013. Feature vectors with 25 billion unigrams and tion policies that emphasize speedup or convergence. Since mod- 218 billion bigrams are constructed for text analysis of the English els with millions and even billions of features become increasingly Wikipedia corpus in [20]. Big models also appear in recommender systems. Spotify applies Low-rank Matrix Factorization (LMF) for common nowadays, model management becomes an equally im- 2 portant task for effective training. In this paper, we present a gen- 24 million users and 20 million songs , which leads to 4.4 billion eral framework for parallelizing stochastic optimization algorithms features at a relatively small rank of 100. over massive models that cannot fit in memory. We extend the lock- Since HOGWILD! is an in-memory algorithm, it cannot handle free HOGWILD!-family of algorithms to disk-resident models by these big models – models that go beyond the available memory vertically partitioning the model offline and asynchronously updat- of the system – directly. In truth, none of the analytics systems ing the resulting partitions online. Unlike HOGWILD!, concur- mentioned above support out-of-memory models because they rep- rent requests to the common model are minimized by a preemptive resent the model as a single shared variable—not as a partitioned push-based sharing mechanism that reduces the number of disk ac- dataset, which is the case for the training data. The only exception cesses. Experimental results on real and synthetic datasets show is the sequential dot-product join operator introduced in [32] which that the proposed framework achieves improved convergence over represents the model as a relational table. Parameter Server [22] is HOGWILD! and is the only solution scalable to massive models. an indirect approach that resorts to distributed shared memory. The big model is partitioned across several servers, with each server storing a sufficiently small model partition that fits in its local mem- 1. INTRODUCTION ory. In addition to the complexity incurred by model partitioning Data analytics is a major topic in contemporary data manage- and replication across servers, Parameter Server also has a high ment and machine learning. Many platforms, e.g., OptiML [38], cost in hardware and network traffic. While one can argue that GraphLab [26], SystemML [12], Vowpal Wabbit [1], SimSQL [2], memory will never be a problem in the cloud, this is not the case GLADE [4], Tupleware [7] and libraries, e.g., MADlib [15], Bis- in IoT settings. The edge and fog computing paradigms3 push pro- 1 marck [11], MLlib [37], Mahout , have been proposed to provide cessing to the devices acquiring the data which have rather scarce support for parallel statistical analytics. Stochastic gradient de- resources and do not consider data transfer a viable alternative—for scent is the most popular optimization method used to train ana- bandwidth and privacy reasons. Machine learning training in such lytics models across all these systems. It is implemented – in a an environment has to consider secondary storage, e.g., disk, SSD, form or another – by all of them. The seminal HOGWILD!-family and flash cards, for storing big models. of algorithms [28] for stochastic gradient descent has received – Problem. In this work, we investigate parallel stochastic opti- in particular – significant attention due to its near-linear speedups mization methods for big models that cannot fit in memory. Specif- across a variety of machine learning tasks, but, mostly, because of ically, we focus on designing a scalable HOGWILD! algorithm. its simplicity. Several studies have applied HOGWILD! to paral- Our setting is a single multi-core server with attached storage, i.e., lelize classical learning methods [33, 11, 25, 9, 8, 5] by performing disk(s). There is a worker thread associated with each core in model updates concurrently and asynchronously without locks. the system. The training data as well as the model are stored on ∗Work mostly done while a Ph.D. student at UC Merced. disk and moved into memory only when accessed. Training data 1https://mahout.apache.org are partitioned into chunks that are accessed and processed as a unit. Several chunks are processed concurrently by multiple worker threads—data-parallel processing. While access to the training data follows a well-behaved sequential pattern, the access to the model is unpredictable. Moreover, there are many model accesses for each This work is licensed under the Creative Commons Attribution- training example—the number of non-zero entries in the example. NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For 2 any use beyond those covered by this license, obtain permission by emailing http://slideshare.net/MrChrisJohnson/algorithmic-music- recommendations-at-spotify [email protected]. 3 Proceedings of the VLDB Endowment, Vol. 10, No. 10 https://techcrunch.com/2016/08/02/how-fog-computing-pushes-iot- Copyright 2017 VLDB Endowment 2150-8097/17/06. intelligence-to-the-edge/ 986 Thus, the challenge in handling big models is how to efficiently • Implement the entire framework using User-Defined Aggregates schedule access to the model. In the worst case, each model access (UDA) which provides generality across databases. requires a disk access. This condition is worsened in data-parallel • Evaluate the framework for three analytics tasks over synthetic processing by the fact that multiple model accesses are made con- and real datasets. The results prove the scalability, reduced over- currently by the worker threads—model-parallel processing. head incurred by model partitioning, and the consistent superior Approach. While extending HOGWILD! to disk-resident mod- performance of the framework over an optimized HOGWILD! els is straightforward, designing a truly scalable algorithm that sup- extension to big models. ports model and data-parallel processing is a considerably more challenging task. At a high-level, our approach targets the main Outline. Preliminaries on stochastic optimization and vertical source that impacts performance – the massive number of con- partitioning are presented in Section 2, while HOGWILD! is in- current model accesses – with two classical database processing troduced in Section 3. The high-level approach of the proposed techniques—vertical partitioning and model access sharing. framework is presented in Section 4, while the details are given in The model is vertically partitioned offline based on the concept Section 5 (offline stage) and Section 6 (online stage). Experimental of “feature occurrence” – we say a feature “occurs” when it has a results are included in Section 7, related work in Section 8, while non-zero value in a training example – such that features that co- concluding remarks and plans for future work are in Section 9. occur together require a single model access. Feature co-occurrence is a common characteristic of big models in many analytics tasks. 2. PRELIMINARIES 4 For example, textual features such as n-grams which extract a In this section, we give an overview of several topics relevant contiguous sequence of n words from text generate co-occurring to the management and processing of big models. Specifically, we features for commonly used sentences. Gene sequence patterns discuss gradient descent optimization as the state-of-the-art in big represent an even more widespread example in this category. It is model training, key-value stores as the standard big model storage important to notice that feature co-occurrence is fundamentally dif- manager, and vertical partitioning. ferent from the feature correlation that standard feature engineering Big model training. Consider the following optimization prob- processes [24, 41, 6, 17] try to eliminate. In feature engineering, lem with a linearly separable objective function: correlation between features is measured by coefficients such as N Pearson’s coefficient [13] instead of co-occurrence. In this work, X Λ( ~w) = min d f ( ~w; ~x ; y ) (1) we are interested exclusively in what features co-appear together. w2R i i Thus, we refer to “feature co-occurrence” as “correlation”. i=1 During online training, access sharing is maximized at several in which a d-dimensional model ~w has to be found such that the stages in the processing hierarchy in order to reduce the number objective function is minimized. The constants ~xi and yi, 1 ≤ i ≤ of disk-level model accesses. The data examples inside a chunk N, correspond to the feature vector of the ith data example and its are logically partitioned vertically according to the model parti- scalar label, respectively. tions generated offline. The goal of this stage is to cluster together Gradient descent represents the most popular method to solve accesses to model features even across examples—vertical parti- the class of optimization problems given in Eq. (1). Gradient de- tioning achieves this only for the features that co-occur in the same scent is an iterative optimization algorithm that starts from an ar- example. In order to guarantee that access sharing occurs across bitrary model ~w(0) and computes new models ~w(k+1), such that partitions, we introduce a novel push-based mechanism to enforce the objective function, a.k.a., the loss, decreases at every step, i.e., sharing by vertical traversals of the example data and partial dot- Λ(w(k+1)) < Λ(w(k)).
Recommended publications
  • Training Autoencoders by Alternating Minimization
    Under review as a conference paper at ICLR 2018 TRAINING AUTOENCODERS BY ALTERNATING MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We present DANTE, a novel method for training neural networks, in particular autoencoders, using the alternating minimization principle. DANTE provides a distinct perspective in lieu of traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convex optimization techniques to cast autoencoder training as a bi-quasi-convex optimiza- tion problem. We show that for autoencoder configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations very effectively. DANTE effortlessly extends to networks with multiple hidden layers and varying network configurations. In experiments on standard datasets, autoencoders trained using the proposed method were found to be very promising and competitive to traditional backpropagation techniques, both in terms of quality of solution, as well as training speed. 1 INTRODUCTION For much of the recent march of deep learning, gradient-based backpropagation methods, e.g. Stochastic Gradient Descent (SGD) and its variants, have been the mainstay of practitioners. The use of these methods, especially on vast amounts of data, has led to unprecedented progress in several areas of artificial intelligence. On one hand, the intense focus on these techniques has led to an intimate understanding of hardware requirements and code optimizations needed to execute these routines on large datasets in a scalable manner. Today, myriad off-the-shelf and highly optimized packages exist that can churn reasonably large datasets on GPU architectures with relatively mild human involvement and little bootstrap effort.
    [Show full text]
  • Learning to Learn by Gradient Descent by Gradient Descent
    Learning to learn by gradient descent by gradient descent Marcin Andrychowicz1, Misha Denil1, Sergio Gómez Colmenarejo1, Matthew W. Hoffman1, David Pfau1, Tom Schaul1, Brendan Shillingford1,2, Nando de Freitas1,2,3 1Google DeepMind 2University of Oxford 3Canadian Institute for Advanced Research [email protected] {mdenil,sergomez,mwhoffman,pfau,schaul}@google.com [email protected], [email protected] Abstract The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed competitors on the tasks for which they are trained, and also generalize well to new tasks with similar structure. We demonstrate this on a number of tasks, including simple convex problems, training neural networks, and styling images with neural art. 1 Introduction Frequently, tasks in machine learning can be expressed as the problem of optimizing an objective function f(✓) defined over some domain ✓ ⇥. The goal in this case is to find the minimizer 2 ✓⇤ = arg min✓ ⇥ f(✓). While any method capable of minimizing this objective function can be applied, the standard2 approach for differentiable functions is some form of gradient descent, resulting in a sequence of updates ✓ = ✓ ↵ f(✓ ) . t+1 t − tr t The performance of vanilla gradient descent, however, is hampered by the fact that it only makes use of gradients and ignores second-order information.
    [Show full text]
  • Training Neural Networks Without Gradients: a Scalable ADMM Approach
    Training Neural Networks Without Gradients: A Scalable ADMM Approach Gavin Taylor1 [email protected] Ryan Burmeister1 Zheng Xu2 [email protected] Bharat Singh2 [email protected] Ankit Patel3 [email protected] Tom Goldstein2 [email protected] 1United States Naval Academy, Annapolis, MD USA 2University of Maryland, College Park, MD USA 3Rice University, Houston, TX USA Abstract many parameters. Because big datasets provide results that With the growing importance of large network (often dramatically) outperform the prior state-of-the-art in models and enormous training datasets, GPUs many machine learning tasks, researchers are willing to have become increasingly necessary to train neu- purchase specialized hardware such as GPUs, and commit ral networks. This is largely because conven- large amounts of time to training models and tuning hyper- tional optimization algorithms rely on stochastic parameters. gradient methods that don’t scale well to large Gradient-based training methods have several properties numbers of cores in a cluster setting. Further- that contribute to this need for specialized hardware. First, more, the convergence of all gradient methods, while large amounts of data can be shared amongst many including batch methods, suffers from common cores, existing optimization methods suffer when paral- problems like saturation effects, poor condition- lelized. Second, training neural nets requires optimizing ing, and saddle points. This paper explores an highly non-convex objectives that exhibit saddle points, unconventional training method that uses alter- poor conditioning, and vanishing gradients, all of which nating direction methods and Bregman iteration slow down gradient-based methods such as stochastic gra- to train networks without gradient descent steps.
    [Show full text]
  • Training Deep Networks with Stochastic Gradient Normalized by Layerwise Adaptive Second Moments
    Training Deep Networks with Stochastic Gradient Normalized by Layerwise Adaptive Second Moments Boris Ginsburg 1 Patrice Castonguay 1 Oleksii Hrinchuk 1 Oleksii Kuchaiev 1 Ryan Leary 1 Vitaly Lavrukhin 1 Jason Li 1 Huyen Nguyen 1 Yang Zhang 1 Jonathan M. Cohen 1 Abstract We started with Adam, and then (1) replaced the element- wise second moment with the layer-wise moment, (2) com- We propose NovoGrad, an adaptive stochastic puted the first moment using gradients normalized by layer- gradient descent method with layer-wise gradient wise second moment, (3) decoupled weight decay (WD) normalization and decoupled weight decay. In from normalized gradients (similar to AdamW). our experiments on neural networks for image classification, speech recognition, machine trans- The resulting algorithm, NovoGrad, combines SGD’s and lation, and language modeling, it performs on par Adam’s strengths. We applied NovoGrad to a variety of or better than well-tuned SGD with momentum, large scale problems — image classification, neural machine Adam, and AdamW. Additionally, NovoGrad (1) translation, language modeling, and speech recognition — is robust to the choice of learning rate and weight and found that in all cases, it performs as well or better than initialization, (2) works well in a large batch set- Adam/AdamW and SGD with momentum. ting, and (3) has half the memory footprint of Adam. 2. Related Work NovoGrad belongs to the family of Stochastic Normalized 1. Introduction Gradient Descent (SNGD) optimizers (Nesterov, 1984; Hazan et al., 2015). SNGD uses only the direction of the The most popular algorithms for training Neural Networks stochastic gradient gt to update the weights wt: (NNs) are Stochastic Gradient Descent (SGD) with mo- gt mentum (Polyak, 1964; Sutskever et al., 2013) and Adam wt+1 = wt − λt · (Kingma & Ba, 2015).
    [Show full text]
  • CSE 152: Computer Vision Manmohan Chandraker
    CSE 152: Computer Vision Manmohan Chandraker Lecture 15: Optimization in CNNs Recap Engineered against learned features Label Convolutional filters are trained in a Dense supervised manner by back-propagating classification error Dense Dense Convolution + pool Label Convolution + pool Classifier Convolution + pool Pooling Convolution + pool Feature extraction Convolution + pool Image Image Jia-Bin Huang and Derek Hoiem, UIUC Two-layer perceptron network Slide credit: Pieter Abeel and Dan Klein Neural networks Non-linearity Activation functions Multi-layer neural network From fully connected to convolutional networks next layer image Convolutional layer Slide: Lazebnik Spatial filtering is convolution Convolutional Neural Networks [Slides credit: Efstratios Gavves] 2D spatial filters Filters over the whole image Weight sharing Insight: Images have similar features at various spatial locations! Key operations in a CNN Feature maps Spatial pooling Non-linearity Convolution (Learned) . Input Image Input Feature Map Source: R. Fergus, Y. LeCun Slide: Lazebnik Convolution as a feature extractor Key operations in a CNN Feature maps Rectified Linear Unit (ReLU) Spatial pooling Non-linearity Convolution (Learned) Input Image Source: R. Fergus, Y. LeCun Slide: Lazebnik Key operations in a CNN Feature maps Spatial pooling Max Non-linearity Convolution (Learned) Input Image Source: R. Fergus, Y. LeCun Slide: Lazebnik Pooling operations • Aggregate multiple values into a single value • Invariance to small transformations • Keep only most important information for next layer • Reduces the size of the next layer • Fewer parameters, faster computations • Observe larger receptive field in next layer • Hierarchically extract more abstract features Key operations in a CNN Feature maps Spatial pooling Non-linearity Convolution (Learned) . Input Image Input Feature Map Source: R.
    [Show full text]
  • Automated Source Code Generation and Auto-Completion Using Deep Learning: Comparing and Discussing Current Language Model-Related Approaches
    Article Automated Source Code Generation and Auto-Completion Using Deep Learning: Comparing and Discussing Current Language Model-Related Approaches Juan Cruz-Benito 1,* , Sanjay Vishwakarma 2,†, Francisco Martin-Fernandez 1 and Ismael Faro 1 1 IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA; [email protected] (F.M.-F.); [email protected] (I.F.) 2 Electrical and Computer Engineering, Carnegie Mellon University, Mountain View, CA 94035, USA; [email protected] * Correspondence: [email protected] † Intern at IBM Quantum at the time of writing this paper. Abstract: In recent years, the use of deep learning in language models has gained much attention. Some research projects claim that they can generate text that can be interpreted as human writ- ing, enabling new possibilities in many application areas. Among the different areas related to language processing, one of the most notable in applying this type of modeling is programming languages. For years, the machine learning community has been researching this software engi- neering area, pursuing goals like applying different approaches to auto-complete, generate, fix, or evaluate code programmed by humans. Considering the increasing popularity of the deep learning- enabled language models approach, we found a lack of empirical papers that compare different deep learning architectures to create and use language models based on programming code. This paper compares different neural network architectures like Average Stochastic Gradient Descent (ASGD) Weight-Dropped LSTMs (AWD-LSTMs), AWD-Quasi-Recurrent Neural Networks (QRNNs), and Citation: Cruz-Benito, J.; Transformer while using transfer learning and different forms of tokenization to see how they behave Vishwakarma, S.; Martin- Fernandez, F.; Faro, I.
    [Show full text]
  • GEE: a Gradient-Based Explainable Variational Autoencoder for Network Anomaly Detection
    GEE: A Gradient-based Explainable Variational Autoencoder for Network Anomaly Detection Quoc Phong Nguyen Kar Wai Lim Dinil Mon Divakaran National University of Singapore National University of Singapore Trustwave [email protected] [email protected] [email protected] Kian Hsiang Low Mun Choon Chan National University of Singapore National University of Singapore [email protected] [email protected] Abstract—This paper looks into the problem of detecting number of factors, such as end-user behavior, customer busi- network anomalies by analyzing NetFlow records. While many nesses (e.g., banking, retail), applications, location, time of the previous works have used statistical models and machine learning day, and are expected to evolve with time. Such diversity and techniques in a supervised way, such solutions have the limitations that they require large amount of labeled data for training and dynamism limits the utility of rule-based detection systems. are unlikely to detect zero-day attacks. Existing anomaly detection Next, as capturing, storing and processing raw traffic from solutions also do not provide an easy way to explain or identify such high capacity networks is not practical, Internet routers attacks in the anomalous traffic. To address these limitations, today have the capability to extract and export meta data such we develop and present GEE, a framework for detecting and explaining anomalies in network traffic. GEE comprises of two as NetFlow records [3]. With NetFlow, the amount of infor- components: (i) Variational Autoencoder (VAE) — an unsuper- mation captured is brought down by orders of magnitude (in vised deep-learning technique for detecting anomalies, and (ii) a comparison to raw packet capture), not only because a NetFlow gradient-based fingerprinting technique for explaining anomalies.
    [Show full text]
  • Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder
    Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder September 11, 2018 Prof. Michael Paul Prediction Functions Remember: a prediction function is the function that predicts what the output should be, given the input. Prediction Functions Linear regression: f(x) = wTx + b Linear classification (perceptron): f(x) = 1, wTx + b ≥ 0 -1, wTx + b < 0 Need to learn what w should be! Learning Parameters Goal is to learn to minimize error • Ideally: true error • Instead: training error The loss function gives the training error when using parameters w, denoted L(w). • Also called cost function • More general: objective function (in general objective could be to minimize or maximize; with loss/cost functions, we want to minimize) Learning Parameters Goal is to minimize loss function. How do we minimize a function? Let’s review some math. Rate of Change The slope of a line is also called the rate of change of the line. y = ½x + 1 “rise” “run” Rate of Change For nonlinear functions, the “rise over run” formula gives you the average rate of change between two points Average slope from x=-1 to x=0 is: 2 f(x) = x -1 Rate of Change There is also a concept of rate of change at individual points (rather than two points) Slope at x=-1 is: f(x) = x2 -2 Rate of Change The slope at a point is called the derivative at that point Intuition: f(x) = x2 Measure the slope between two points that are really close together Rate of Change The slope at a point is called the derivative at that point Intuition: Measure the
    [Show full text]
  • Gradient Descent (PDF)
    18.657: Mathematics of Machine Learning Lecturer: Philippe Rigollet Lecture 11 Scribe: Kevin Li Oct. 14, 2015 2. CONVEX OPTIMIZATION FOR MACHINE LEARNING In this lecture, we will cover the basics of convex optimization as it applies to machine learning. There is much more to this topic than will be covered in this class so you may be interested in the following books. Convex Optimization by Boyd and Vandenberghe Lecture notes on Convex Optimization by Nesterov Convex Optimization: Algorithms and Complexity by Bubeck Online Convex Optimization by Hazan The last two are drafts and can be obtained online. 2.1 Convex Problems A convex problem is an optimization problem of the form min f(x) where f andC are x2C convex. First, we will debunk the idea that convex problems are easy by showing that virtually all optimization problems can be written as a convex problem. We can rewrite an optimization problem as follows. min f(x) , min t , min t X 2X t≥f(x);x2X (x;t)2epi(f) where the epigraph of a function is defined by epi(f)=f(x; t) 2X 2 ×IR : t ≥f(x)g Figure 1: An example of an epigraph. Source: https://en.wikipedia.org/wiki/Epigraph_(mathematics) 1 Now we observe that for linear functions, min c>x = min c>x x2D x2conv(D) where the convex hull is defined N N X X conv(D) = fy : 9 N 2 Z+; x1; : : : ; xN 2 D; αi ≥ 0; αi = 1; y = αixig i=1 i=1 To prove this, we know that the left side is a least as big as the right side since D ⊂ conv(D).
    [Show full text]
  • Lecture 10: Recurrent Neural Networks
    Lecture 10: Recurrent Neural Networks Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 10 - 1 May 7, 2020 Administrative: Midterm - Midterm next Tue 5/12 take home - 1H 20 Mins (+20m buffer) within a 24 hour time period. - Will be released on Gradescope. - See Piazza for detailed information - Midterm review session: Fri 5/8 discussion section - Midterm covers material up to this lecture (Lecture 10) Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 10 - 2 May 7, 2020 Administrative - Project proposal feedback has been released - Project milestone due Mon 5/18, see Piazza for requirements ** Need to have some baseline / initial results by then, so start implementing soon if you haven’t yet! - A3 will be released Wed 5/13, due Wed 5/27 Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 10 - 3 May 7, 2020 Last Time: CNN Architectures GoogLeNet AlexNet Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 10 - 4 May 7, 2020 Last Time: CNN Architectures ResNet SENet Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 10 - 5 May 7, 2020 Comparing complexity... An Analysis of Deep Neural Network Models for Practical Applications, 2017. Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission. Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 10 - 6 May 7, 2020 Efficient networks... MobileNets: Efficient Convolutional Neural Networks for Mobile Applications [Howard et al. 2017] - Depthwise separable convolutions replace BatchNorm standard convolutions by Pool BatchNorm factorizing them into a C2HW Pointwise Conv (1x1, C->C) convolutions depthwise convolution and a Pool 1x1 convolution BatchNorm 9C2HW Conv (3x3, C->C) - Much more efficient, with Pool little loss in accuracy Stanford network Conv (3x3, C->C, Depthwise 2 9CHW - Follow-up MobileNetV2 work Total compute:9C HW groups=C) convolutions in 2018 (Sandler et al.) MobileNets - ShuffleNet: Zhang et al, Total compute:9CHW + C2HW CVPR 2018 Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 10 - May 7, 2020 Meta-learning: Learning to learn network architectures..
    [Show full text]
  • Stochastic Gradient Descent in Machine Learning
    DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2019 Stochastic Gradient Descent in Machine Learning CHRISTIAN L. THUNBERG NIKLAS MANNERSKOG KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Abstract Some tasks, like recognizing digits and spoken words, are simple for humans to complete yet hard to solve for computer programs. For instance the human intuition behind recognizing the number eight, "8 ", is to identify two loops on top of each other and it turns out this is not easy to represent as an algorithm. With machine learning one can tackle the problem in a new, easier, way where the computer program learns to recognize patterns and make conclusions from them. In this bachelor thesis a digit recognizing program is implemented and the parameters of the stochastic gradient descent optimizing algorithm are analyzed based on how their effect on the computation speed and accuracy. These parameters being the learning rate ∆t and batch size N. The implemented digit recognizing program yielded an accuracy of around 95 % when tested and the time per iteration stayed constant during the training session and increased linearly with batch size. Low learning rates yielded a slower rate of convergence while larger ones yielded faster but more unstable con- vergence. Larger batch sizes also improved the convergence but at the cost of more computational power. Keywords: Stochastic Gradient Descent, Machinelearning, Neural Networks, Learning Rate, Batch Size, MNIST i DEGREE PROJECT IN TEKNIK, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2019 Stochastic Gradient Descent inom Maskininlärning CHRISTIAN L. THUNBERG NIKLAS MANNERSKOG KTH ROYAL INSTITUTE OF TECHNOLOGY SKOLAN FÖR TEKNIKVETENSKAP Sammanfattning Vissa problem som f¨orm¨anniskor ¨arenkla att l¨osa,till exempel: att k¨annaigen siffror och sagda ord, ¨arsv˚artatt implementera i datorprogram.
    [Show full text]
  • Lecture 6: Stochastic Gradient Descent Sanjeev Arora Elad Hazan
    COS 402 – Machine Learning and Artificial Intelligence Fall 2016 Lecture 6: stochastic gradient descent Sanjeev Arora Elad Hazan Admin • Exercise 2 (implementation) this Thu, in class • Exercise 3 (written), this Thu, in class • Movie – “Ex Machina” + discussion panel w. Prof. Hasson (PNI) Wed Oct. 5th 19:30 tickets from Bella; room 204 COS • Today: special guest - Dr. Yoram Singer @ Google Recap • Definition + fundamental theorem of statistical learning, motivated efficient algorithms/optimization • Convexity and it’s computational importance • Local greedy optimization – gradient descent Agenda • Stochastic gradient descent • Dr. Singer on opt @ google & beyond Mathematical optimization Input: function �: � ↦ �, for � ⊆ �' Output: point � ∈ �, such that � � ≤ � � ∀ � ∈ � What is Optimization But generally speaking... We’re screwed. ! Local (non global) minima of f0 Prefer Convex Problems! All kinds of constraints (even restricting to continuous functions): h(x)=sin(2πx)=0 250 200 150 100 50 0 −50 3 2 3 1 2 0 1 −1 0 −1 −2 −2 −3 −3 Duchi (UC Berkeley) Convex Optimization for Machine Learning Fall 2009 7 / 53 6 Convex functions: local à global Sum of convex functions à also convex Convex Functions and Sets n A function f : R R is convex if for x, y domfand any a [0, 1], ! 2 2 f(ax +(1 a)y) af(x)+(1 a)f(y) − − Convex Sets Definition AsetC Rn is convex if for x, y C and any α [0, 1], ⊆ ∈ ∈ αx +(1 α)y C. − ∈ n AsetC R is convex if for x, y C and any a [0, 1], ✓ 2 2 y ax +(1 a)y C x − 2 8 Duchi (UC Berkeley) Convex Optimization for Machine Learning Fall 2009 9 / 53 Special case: optimization for linear classification Given a sample � = �0, �0 ,… , �3,�3 , find hyperplane (through the origin w.l.o.g) such that: � min # of mistakes 7 = min ℓ(� �>,�>) for a convex loss function 7 90 Convex relaxation for 0-1 loss 1.
    [Show full text]