Stochastic Gradient Descent Learning and the Backpropagation Algorithm

Total Page:16

File Type:pdf, Size:1020Kb

Stochastic Gradient Descent Learning and the Backpropagation Algorithm Stochastic Gradient Descent Learning and the Backpropagation Algorithm Oliver K. Ernst Department of Physics University of California, San Diego La Jolla, CA 92093-0354 [email protected] Abstract Many learning rules minimize an error or energy function, both in supervised and unsupervised learning. We review common learning rules and their relation to gra- dient and stochastic gradient descent methods. Recent work generalizes the mean square error rule for supervised learning to an Ising-like energy function. For a specific set of parameters, the energy and error landscapes are compared, and con- vergence behavior is examined in the context of single linear neuron experiments. We discuss the physical interpretation of the energy function, and the limitations of this description. The backpropgation algorithm is modified to accommodate the energy function, and numerical simulations demonstrate that the learning rule captures the distribution of the network’s inputs. 1 Gradient and Stochastic Gradient Descent A learning rule is an algorithm for updating the weights of a network in order to achieve a particular goal. One particular common goal is to minimize a error function associated with the network, also referred to as an objective or cost function. Let Q(w) denote the error function associated with a network with connection weights w. A first approach to minimize the error is the method of gradient descent, where at each iteration a step is taken in the direction corresponding to Q(w). The learning rule that follows is −∇ w := w η Q(w); (1) − r where η is a constant parameter called the learning rate. Consider being given a set of n observations xi; ti , where i = 1; 2:::n. Each observation consists of inputs x into the network and correspond- ingf outputsg t. A particular case of gradient descent may be formulated for an error function of the form n X Q(w) = Qi(w); (2) i=1 where Qi(w) is the error corresponding to the i-th observation. In this case, the learning rule becomes n X w := w η Qi(w): (3) − r i=1 For most error functions, this standard (or batch) gradient descent method is guaranteed to converge to a local minimum, provided one exists and the learning rate is small. Furthermore, it does so along the fastest route, taking steps at every iteration perpendicular to the contour lines. A key challenge is computational power - evaluating the sum in 3 may be computationally intensive, particularly for large training sets. A more economical method for minimizing Q is that of stochastic 1 (or on-line) gradient descent. At each iteration, the gradient of Q(w) is approximated by the gradient of the single observation’s associated error, Qi(w). The learning rule at each step becomes w := w η Qi(w); (4) − r where we implicitly iterate over the data set, with the possibility of numerous passes. While at each iteration, the algorithm takes a step in a direction perpendicular to the contour lines for that observations error function Qi, it does not necessarily move perpendicular to the contour lines of Q. Furthermore convergence to the minimum of Q is not guaranteed, further demonstrated in Sec- tion 2.1. 1.1 Mean Square Error (MSE) A logical choice for the error function is the mean square error, n n X 1 X 2 E(w) = Ei(w) = ti oi(w) ; (5) 2 jj − jj i=1 i=1 where ti is the expected outcome of the network for the i-th observation, and oi(w) is the actual output of the network, and z 2 denotes the 2-norm [2]. jj jj As an illustrative example, consider the case of a network consisting of a single linear neuron. Let > xi denote the vector of inputs, w the weights corresponding to each input, and hi = w xi the weighted sum of neuron’s inputs. For simplicity, assume a linear activation function g(hi) = hi > such that the actual output of the neuron is yi = g(hi) = hi = w xi. Given a set of n inputs and expected outputs xi; ti , the mean square error thus becomes f g n n X 1 X > 2 E(w) = Ei(w) = (ti w xi) : (6) 2 − i=1 i=1 Note that since ti; yi we may drop the absolute value in 5. The learning rule from the stochastic gradient descent method2 R 4 becomes > w := w + η(ti w xi)xi: (7) − 2 Energy Cost Function Begin by expanding the MSE for a single observation of a linear neuron as 1 > 2 1 2 > 1 > > Ei(w) = (ti w xi) = t tiw xi + w xix w: (8) 2 − 2 i − 2 i Define a similar error function > > i(w) = ctiw xi bw Vw; (9) E − − n×n > where c; b are constants and V . Note that for c = 1; b = 1=2; V = xixi , we 2 R 2 R 2 − recover the MSE function, up to a constant term ti =2 which does not affect the learning rule [6]. The learning rule associated with this error function is > w := w + η ctixi + b(V + V )w ; (10) derived using 4 and the identity @x>Bx=@x = (B + B>)x. This work explores a particular choice for the parameters b; c; V, and it’s relation to the MSE rule. As before for the MSE, let c = 1; b = 1=2. Note that the covariance matrix for general random vector x with mean x is − > > Σxx = xx x x : (11) h i − As we iterate over data pairs xi; ti in stochastic gradient descent, at each step we add a correction f g term to the weights according to 10. This suggests that if the covariance matrix Σxx were known, 2 > > > an intuitive choice for the learning rule is to replace V = xx by V = xx = Σxx + xx . The error function and learning rule then become h i > 1 > > i(w) = tiw xi + w Σxx + xx w; (12) E − 2 1 > > w := w + η tixi (Σxx + Σ + 2 x x )w : (13) − 2 xx This similar form has been discussed previously [6] - we briefly depart to clear up several mis- conceptions. It has been pointed out that this error for resembles the energy of the Ising model in statistical mechanics. This view is limited in several points. In 9, the analogous role of the state of the system is played by w, where generally elements wi , while in the Ising model the state is 2 R described by a vector σ where σi 1; 1 . This suggests that an analogy to a continuous spin Ising model may be more appropriate.2 The {− constantsg c; b would play the analogous roles of the magnetic moment and spin-spin coupling strength, respectively, and tixi in the first term the local magnetic field. The role of the matrix V , however, presents a refutation of this analogy. In the Ising model, the structure of the matrix designates which spins in the lattice couple to another. Several conditions are physically imposed upon the matrix, in particular that it is symmetric (spins cannot couple in only one direction) and that diagonal elements are zero (spins cannot couple with themselves). The > choice of V = xixi violates the second condition, and in general the symmetry condition need not be met. Nonetheless, the remainder of this work maintains the title of energy function for 9 solely for clarity, rather than a physical interpretation. It has been suggested [6] that Hebb’s and Oja’s rules may be recovered for particular choices of b; c; V. However, this claim is based on poor terminology, as these are unsupervised learning rules, while the energy form is clearly a supervised method. The true Hebb’s rule may indeed be understood as maximizing the variance of the output, or iden- tically minimizing E(w) = (w>x)2 [2]. On the other hand, it has been extensively shown that Oja’s rule may not be expressed−h as thei gradient of any function [7]. As a brief summary, re- call that a conservative vector field satisfies @(∆w)i=@wj = @(∆w)j=@wi. Oja’s learning rule is 2 2 ∆w = (x wy)y. Since @(yxi y wi)=@wj = xixj 2wiyxj δijy , the last condition is clearly not met.− Consequently the− field is not conservative− and equivalently− can not be interpreted as the gradient of some function [2]. 2.1 Single Neuron Comparisons of the Energy and MSE Functions As a simple comparison of the energy 12 and the MSE 6 error functions, consider the case of a 2 single linear neuron with two inputs, i.e. x; w . Given a large set of observations xi; ti , consider first the case where there exists a unique2 R solution w~ in weight space where thef MSEg is zero. In the implementation, this corresponds to generating the expected outputs from given inputs as ti = xi;0w~0 + xi;1w~1 for some fixed w~ . Figure 1 shows contour plots of the energy and MSE surfaces in w-space. The MSE surface for a single observation pair is shown in Figure 1a, and is the familiar trench shape. Summing over all observations to attain the total MSE function yields the bowl shape shown in Figure 1b. A sample stochastic gradient descent path is shown to converge to the exact solution, indicated by the green ‘X’. Given sufficient passes over the data set, any desired precision may be attained. The energy function surface for the same single observation pair is shown in 1c, and is a bowl shape similar to the total error function.
Recommended publications
  • Training Autoencoders by Alternating Minimization
    Under review as a conference paper at ICLR 2018 TRAINING AUTOENCODERS BY ALTERNATING MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We present DANTE, a novel method for training neural networks, in particular autoencoders, using the alternating minimization principle. DANTE provides a distinct perspective in lieu of traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convex optimization techniques to cast autoencoder training as a bi-quasi-convex optimiza- tion problem. We show that for autoencoder configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations very effectively. DANTE effortlessly extends to networks with multiple hidden layers and varying network configurations. In experiments on standard datasets, autoencoders trained using the proposed method were found to be very promising and competitive to traditional backpropagation techniques, both in terms of quality of solution, as well as training speed. 1 INTRODUCTION For much of the recent march of deep learning, gradient-based backpropagation methods, e.g. Stochastic Gradient Descent (SGD) and its variants, have been the mainstay of practitioners. The use of these methods, especially on vast amounts of data, has led to unprecedented progress in several areas of artificial intelligence. On one hand, the intense focus on these techniques has led to an intimate understanding of hardware requirements and code optimizations needed to execute these routines on large datasets in a scalable manner. Today, myriad off-the-shelf and highly optimized packages exist that can churn reasonably large datasets on GPU architectures with relatively mild human involvement and little bootstrap effort.
    [Show full text]
  • Learning to Learn by Gradient Descent by Gradient Descent
    Learning to learn by gradient descent by gradient descent Marcin Andrychowicz1, Misha Denil1, Sergio Gómez Colmenarejo1, Matthew W. Hoffman1, David Pfau1, Tom Schaul1, Brendan Shillingford1,2, Nando de Freitas1,2,3 1Google DeepMind 2University of Oxford 3Canadian Institute for Advanced Research [email protected] {mdenil,sergomez,mwhoffman,pfau,schaul}@google.com [email protected], [email protected] Abstract The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed competitors on the tasks for which they are trained, and also generalize well to new tasks with similar structure. We demonstrate this on a number of tasks, including simple convex problems, training neural networks, and styling images with neural art. 1 Introduction Frequently, tasks in machine learning can be expressed as the problem of optimizing an objective function f(✓) defined over some domain ✓ ⇥. The goal in this case is to find the minimizer 2 ✓⇤ = arg min✓ ⇥ f(✓). While any method capable of minimizing this objective function can be applied, the standard2 approach for differentiable functions is some form of gradient descent, resulting in a sequence of updates ✓ = ✓ ↵ f(✓ ) . t+1 t − tr t The performance of vanilla gradient descent, however, is hampered by the fact that it only makes use of gradients and ignores second-order information.
    [Show full text]
  • Training Neural Networks Without Gradients: a Scalable ADMM Approach
    Training Neural Networks Without Gradients: A Scalable ADMM Approach Gavin Taylor1 [email protected] Ryan Burmeister1 Zheng Xu2 [email protected] Bharat Singh2 [email protected] Ankit Patel3 [email protected] Tom Goldstein2 [email protected] 1United States Naval Academy, Annapolis, MD USA 2University of Maryland, College Park, MD USA 3Rice University, Houston, TX USA Abstract many parameters. Because big datasets provide results that With the growing importance of large network (often dramatically) outperform the prior state-of-the-art in models and enormous training datasets, GPUs many machine learning tasks, researchers are willing to have become increasingly necessary to train neu- purchase specialized hardware such as GPUs, and commit ral networks. This is largely because conven- large amounts of time to training models and tuning hyper- tional optimization algorithms rely on stochastic parameters. gradient methods that don’t scale well to large Gradient-based training methods have several properties numbers of cores in a cluster setting. Further- that contribute to this need for specialized hardware. First, more, the convergence of all gradient methods, while large amounts of data can be shared amongst many including batch methods, suffers from common cores, existing optimization methods suffer when paral- problems like saturation effects, poor condition- lelized. Second, training neural nets requires optimizing ing, and saddle points. This paper explores an highly non-convex objectives that exhibit saddle points, unconventional training method that uses alter- poor conditioning, and vanishing gradients, all of which nating direction methods and Bregman iteration slow down gradient-based methods such as stochastic gra- to train networks without gradient descent steps.
    [Show full text]
  • Training Deep Networks with Stochastic Gradient Normalized by Layerwise Adaptive Second Moments
    Training Deep Networks with Stochastic Gradient Normalized by Layerwise Adaptive Second Moments Boris Ginsburg 1 Patrice Castonguay 1 Oleksii Hrinchuk 1 Oleksii Kuchaiev 1 Ryan Leary 1 Vitaly Lavrukhin 1 Jason Li 1 Huyen Nguyen 1 Yang Zhang 1 Jonathan M. Cohen 1 Abstract We started with Adam, and then (1) replaced the element- wise second moment with the layer-wise moment, (2) com- We propose NovoGrad, an adaptive stochastic puted the first moment using gradients normalized by layer- gradient descent method with layer-wise gradient wise second moment, (3) decoupled weight decay (WD) normalization and decoupled weight decay. In from normalized gradients (similar to AdamW). our experiments on neural networks for image classification, speech recognition, machine trans- The resulting algorithm, NovoGrad, combines SGD’s and lation, and language modeling, it performs on par Adam’s strengths. We applied NovoGrad to a variety of or better than well-tuned SGD with momentum, large scale problems — image classification, neural machine Adam, and AdamW. Additionally, NovoGrad (1) translation, language modeling, and speech recognition — is robust to the choice of learning rate and weight and found that in all cases, it performs as well or better than initialization, (2) works well in a large batch set- Adam/AdamW and SGD with momentum. ting, and (3) has half the memory footprint of Adam. 2. Related Work NovoGrad belongs to the family of Stochastic Normalized 1. Introduction Gradient Descent (SNGD) optimizers (Nesterov, 1984; Hazan et al., 2015). SNGD uses only the direction of the The most popular algorithms for training Neural Networks stochastic gradient gt to update the weights wt: (NNs) are Stochastic Gradient Descent (SGD) with mo- gt mentum (Polyak, 1964; Sutskever et al., 2013) and Adam wt+1 = wt − λt · (Kingma & Ba, 2015).
    [Show full text]
  • Arxiv:2107.04562V1 [Stat.ML] 9 Jul 2021 ¯ ¯ Θ∗ = Arg Min `(Θ) Where `(Θ) = `(Yi, Fθ(Xi)) + R(Θ)
    The Bayesian Learning Rule Mohammad Emtiyaz Khan H˚avard Rue RIKEN Center for AI Project CEMSE Division, KAUST Tokyo, Japan Thuwal, Saudi Arabia [email protected] [email protected] Abstract We show that many machine-learning algorithms are specific instances of a single algorithm called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range of algorithms from fields such as optimization, deep learning, and graphical models. This includes classical algorithms such as ridge regression, Newton's method, and Kalman filter, as well as modern deep-learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout. The key idea in deriving such algorithms is to approximate the posterior using candidate distributions estimated by using natural gradients. Different candidate distributions result in different algorithms and further approximations to natural gradients give rise to variants of those algorithms. Our work not only unifies, generalizes, and improves existing algorithms, but also helps us design new ones. 1 Introduction 1.1 Learning-algorithms Machine Learning (ML) methods have been extremely successful in solving many challenging problems in fields such as computer vision, natural-language processing and artificial intelligence (AI). The main idea is to formulate those problems as prediction problems, and learn a model on existing data to predict the future outcomes. For example, to design an AI agent that can recognize objects in an image, we D can collect a dataset with N images xi 2 R and object labels yi 2 f1; 2;:::;Kg, and learn a model P fθ(x) with parameters θ 2 R to predict the label for a new image.
    [Show full text]
  • CSE 152: Computer Vision Manmohan Chandraker
    CSE 152: Computer Vision Manmohan Chandraker Lecture 15: Optimization in CNNs Recap Engineered against learned features Label Convolutional filters are trained in a Dense supervised manner by back-propagating classification error Dense Dense Convolution + pool Label Convolution + pool Classifier Convolution + pool Pooling Convolution + pool Feature extraction Convolution + pool Image Image Jia-Bin Huang and Derek Hoiem, UIUC Two-layer perceptron network Slide credit: Pieter Abeel and Dan Klein Neural networks Non-linearity Activation functions Multi-layer neural network From fully connected to convolutional networks next layer image Convolutional layer Slide: Lazebnik Spatial filtering is convolution Convolutional Neural Networks [Slides credit: Efstratios Gavves] 2D spatial filters Filters over the whole image Weight sharing Insight: Images have similar features at various spatial locations! Key operations in a CNN Feature maps Spatial pooling Non-linearity Convolution (Learned) . Input Image Input Feature Map Source: R. Fergus, Y. LeCun Slide: Lazebnik Convolution as a feature extractor Key operations in a CNN Feature maps Rectified Linear Unit (ReLU) Spatial pooling Non-linearity Convolution (Learned) Input Image Source: R. Fergus, Y. LeCun Slide: Lazebnik Key operations in a CNN Feature maps Spatial pooling Max Non-linearity Convolution (Learned) Input Image Source: R. Fergus, Y. LeCun Slide: Lazebnik Pooling operations • Aggregate multiple values into a single value • Invariance to small transformations • Keep only most important information for next layer • Reduces the size of the next layer • Fewer parameters, faster computations • Observe larger receptive field in next layer • Hierarchically extract more abstract features Key operations in a CNN Feature maps Spatial pooling Non-linearity Convolution (Learned) . Input Image Input Feature Map Source: R.
    [Show full text]
  • Automated Source Code Generation and Auto-Completion Using Deep Learning: Comparing and Discussing Current Language Model-Related Approaches
    Article Automated Source Code Generation and Auto-Completion Using Deep Learning: Comparing and Discussing Current Language Model-Related Approaches Juan Cruz-Benito 1,* , Sanjay Vishwakarma 2,†, Francisco Martin-Fernandez 1 and Ismael Faro 1 1 IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA; [email protected] (F.M.-F.); [email protected] (I.F.) 2 Electrical and Computer Engineering, Carnegie Mellon University, Mountain View, CA 94035, USA; [email protected] * Correspondence: [email protected] † Intern at IBM Quantum at the time of writing this paper. Abstract: In recent years, the use of deep learning in language models has gained much attention. Some research projects claim that they can generate text that can be interpreted as human writ- ing, enabling new possibilities in many application areas. Among the different areas related to language processing, one of the most notable in applying this type of modeling is programming languages. For years, the machine learning community has been researching this software engi- neering area, pursuing goals like applying different approaches to auto-complete, generate, fix, or evaluate code programmed by humans. Considering the increasing popularity of the deep learning- enabled language models approach, we found a lack of empirical papers that compare different deep learning architectures to create and use language models based on programming code. This paper compares different neural network architectures like Average Stochastic Gradient Descent (ASGD) Weight-Dropped LSTMs (AWD-LSTMs), AWD-Quasi-Recurrent Neural Networks (QRNNs), and Citation: Cruz-Benito, J.; Transformer while using transfer learning and different forms of tokenization to see how they behave Vishwakarma, S.; Martin- Fernandez, F.; Faro, I.
    [Show full text]
  • GEE: a Gradient-Based Explainable Variational Autoencoder for Network Anomaly Detection
    GEE: A Gradient-based Explainable Variational Autoencoder for Network Anomaly Detection Quoc Phong Nguyen Kar Wai Lim Dinil Mon Divakaran National University of Singapore National University of Singapore Trustwave [email protected] [email protected] [email protected] Kian Hsiang Low Mun Choon Chan National University of Singapore National University of Singapore [email protected] [email protected] Abstract—This paper looks into the problem of detecting number of factors, such as end-user behavior, customer busi- network anomalies by analyzing NetFlow records. While many nesses (e.g., banking, retail), applications, location, time of the previous works have used statistical models and machine learning day, and are expected to evolve with time. Such diversity and techniques in a supervised way, such solutions have the limitations that they require large amount of labeled data for training and dynamism limits the utility of rule-based detection systems. are unlikely to detect zero-day attacks. Existing anomaly detection Next, as capturing, storing and processing raw traffic from solutions also do not provide an easy way to explain or identify such high capacity networks is not practical, Internet routers attacks in the anomalous traffic. To address these limitations, today have the capability to extract and export meta data such we develop and present GEE, a framework for detecting and explaining anomalies in network traffic. GEE comprises of two as NetFlow records [3]. With NetFlow, the amount of infor- components: (i) Variational Autoencoder (VAE) — an unsuper- mation captured is brought down by orders of magnitude (in vised deep-learning technique for detecting anomalies, and (ii) a comparison to raw packet capture), not only because a NetFlow gradient-based fingerprinting technique for explaining anomalies.
    [Show full text]
  • Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder
    Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder September 11, 2018 Prof. Michael Paul Prediction Functions Remember: a prediction function is the function that predicts what the output should be, given the input. Prediction Functions Linear regression: f(x) = wTx + b Linear classification (perceptron): f(x) = 1, wTx + b ≥ 0 -1, wTx + b < 0 Need to learn what w should be! Learning Parameters Goal is to learn to minimize error • Ideally: true error • Instead: training error The loss function gives the training error when using parameters w, denoted L(w). • Also called cost function • More general: objective function (in general objective could be to minimize or maximize; with loss/cost functions, we want to minimize) Learning Parameters Goal is to minimize loss function. How do we minimize a function? Let’s review some math. Rate of Change The slope of a line is also called the rate of change of the line. y = ½x + 1 “rise” “run” Rate of Change For nonlinear functions, the “rise over run” formula gives you the average rate of change between two points Average slope from x=-1 to x=0 is: 2 f(x) = x -1 Rate of Change There is also a concept of rate of change at individual points (rather than two points) Slope at x=-1 is: f(x) = x2 -2 Rate of Change The slope at a point is called the derivative at that point Intuition: f(x) = x2 Measure the slope between two points that are really close together Rate of Change The slope at a point is called the derivative at that point Intuition: Measure the
    [Show full text]
  • Gradient Descent (PDF)
    18.657: Mathematics of Machine Learning Lecturer: Philippe Rigollet Lecture 11 Scribe: Kevin Li Oct. 14, 2015 2. CONVEX OPTIMIZATION FOR MACHINE LEARNING In this lecture, we will cover the basics of convex optimization as it applies to machine learning. There is much more to this topic than will be covered in this class so you may be interested in the following books. Convex Optimization by Boyd and Vandenberghe Lecture notes on Convex Optimization by Nesterov Convex Optimization: Algorithms and Complexity by Bubeck Online Convex Optimization by Hazan The last two are drafts and can be obtained online. 2.1 Convex Problems A convex problem is an optimization problem of the form min f(x) where f andC are x2C convex. First, we will debunk the idea that convex problems are easy by showing that virtually all optimization problems can be written as a convex problem. We can rewrite an optimization problem as follows. min f(x) , min t , min t X 2X t≥f(x);x2X (x;t)2epi(f) where the epigraph of a function is defined by epi(f)=f(x; t) 2X 2 ×IR : t ≥f(x)g Figure 1: An example of an epigraph. Source: https://en.wikipedia.org/wiki/Epigraph_(mathematics) 1 Now we observe that for linear functions, min c>x = min c>x x2D x2conv(D) where the convex hull is defined N N X X conv(D) = fy : 9 N 2 Z+; x1; : : : ; xN 2 D; αi ≥ 0; αi = 1; y = αixig i=1 i=1 To prove this, we know that the left side is a least as big as the right side since D ⊂ conv(D).
    [Show full text]
  • Training Plastic Neural Networks with Backpropagation
    Differentiable plasticity: training plastic neural networks with backpropagation Thomas Miconi 1 Jeff Clune 1 Kenneth O. Stanley 1 Abstract examples. By contrast, biological agents exhibit a remark- How can we build agents that keep learning from able ability to learn quickly and efficiently from ongoing experience, quickly and efficiently, after their ini- experience: animals can learn to navigate and remember the tial training? Here we take inspiration from the location of (and quickest way to) food sources, discover and main mechanism of learning in biological brains: remember rewarding or aversive properties of novel objects synaptic plasticity, carefully tuned by evolution and situations, etc. – often from a single exposure. to produce efficient lifelong learning. We show Endowing artificial agents with lifelong learning abilities that plasticity, just like connection weights, can is essential to allowing them to master environments with be optimized by gradient descent in large (mil- changing or unpredictable features, or specific features that lions of parameters) recurrent networks with Heb- are unknowable at the time of training. For example, super- bian plastic connections. First, recurrent plastic vised learning in deep neural networks can allow a neural networks with more than two million parameters network to identify letters from a specific, fixed alphabet can be trained to memorize and reconstruct sets to which it was exposed during its training; however, au- of novel, high-dimensional (1,000+ pixels) nat- tonomous learning abilities would allow an agent to acquire ural images not seen during training. Crucially, knowledge of any alphabet, including alphabets that are traditional non-plastic recurrent networks fail to unknown to the human designer at the time of training.
    [Show full text]
  • Simultaneous Unsupervised and Supervised Learning of Cognitive
    Simultaneous unsupervised and supervised learning of cognitive functions in biologically plausible spiking neural networks Trevor Bekolay ([email protected]) Carter Kolbeck ([email protected]) Chris Eliasmith ([email protected]) Center for Theoretical Neuroscience, University of Waterloo 200 University Ave., Waterloo, ON N2L 3G1 Canada Abstract overcomes these limitations. Our approach 1) remains func- tional during online learning, 2) requires only two layers con- We present a novel learning rule for learning transformations of sophisticated neural representations in a biologically plau- nected with simultaneous supervised and unsupervised learn- sible manner. We show that the rule, which uses only infor- ing, and 3) employs spiking neuron models to reproduce cen- mation available locally to a synapse in a spiking network, tral features of biological learning, such as spike-timing de- can learn to transmit and bind semantic pointers. Semantic pointers have previously been used to build Spaun, which is pendent plasticity (STDP). currently the world’s largest functional brain model (Eliasmith et al., 2012). Two operations commonly performed by Spaun Online learning with spiking neuron models faces signifi- are semantic pointer binding and transmission. It has not yet been shown how the binding and transmission operations can cant challenges due to the temporal dynamics of spiking neu- be learned. The learning rule combines a previously proposed rons. Spike rates cannot be used directly, and must be esti- supervised learning rule and a novel spiking form of the BCM mated with causal filters, producing a noisy estimate. When unsupervised learning rule. We show that spiking BCM in- creases sparsity of connection weights at the cost of increased the signal being estimated changes, there is some time lag signal transmission error.
    [Show full text]