Cardiac Manifestations of Inherited Metabolic Disease Linked to Cellular

Total Page:16

File Type:pdf, Size:1020Kb

Cardiac Manifestations of Inherited Metabolic Disease Linked to Cellular Cardiac manifestations of inherited metabolic disease linked to cellular metabolism of vitamin B12 : study in two murine models of invalidation of Mtr and MMACHC genes Viola Jepchumba Kosgei To cite this version: Viola Jepchumba Kosgei. Cardiac manifestations of inherited metabolic disease linked to cellular metabolism of vitamin B12 : study in two murine models of invalidation of Mtr and MMACHC genes. Biochemistry, Molecular Biology. Université de Lorraine, 2019. English. NNT : 2019LORR0319. tel-02874823 HAL Id: tel-02874823 https://hal.univ-lorraine.fr/tel-02874823 Submitted on 19 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Ecole Doctorale BioSE (Biologie-Santé Environnement) Thèse Présentée et soutenue publiquement pour l’obtention du titre de DOCTEUR DE l’UNIVERSITE DE LORRAINE Mention : « Sciences de la Vie et de la Sante » Par Viola Jepchumba KOSGEI Manifestations cardiaques des maladies héréditaires du métabolisme cellulaire de la vitamine B12 : étude sur deux modéles murins d’invalidation des génes Mtr et MMACHC Cardiac manifestations of inherited metabolic disease linked to cellular metabolism of vitamin B12: study in two murine models of invalidation of Mtr and MMACHC genes Le 10 Décembre 2019 Membres du jury : Rapporteurs : M. Edward Valerian QUADROS : PU, Département de Médicine et Anatomie/Biologie Cellulaire Brooklyn, NY, USA M. Sébastien BLAISE : MCU, CNRS UMR/URCA 7369, Reims France Examinateurs : M. Jean-Louis GUÉANT : PU-PH, UMR 1256 INSERM, Nancy France Mme. Ebba NEXO : PU-PH, Département de Biochimie Clinique, Aarhus N, Denmark M. Yves JUILLIERE : PU-PH, CHRU Nancy Département de Cardiologie, France Mme. Rosa-Maria GUEANT-RODRIGUEZ : PU-PH, UMR 1256 INSERM, Nancy France, Directeur de thèse Invité : M. Ambrose K. KIPROP : PU, Département de Chimie et Biochimie, Moi University, Kenya UMR 1256 INSERM, Laboratoire de Nutrition, Génétique et Exposition aux Risques Environnementaux (NGERE), 9 avenue de la Forêt de Haye-Faculté́ de Médecine 54500 Vandœuvre-Lès-Nancy. DEDICATION I dedicate this Ph.D. Thesis to my beloved mother Francisca Kimoi Chepkong’a, my dear husband Jackson Yator and my dear children Alexis Jerotich and Emmanuel Kiptum. 3 ACKNOWLEDGEMENT I wish to express my sincere gratitude to Professor Jean-Louis Guéant, the director of the UMR 1256 laboratory for welcoming me to his laboratory, for financial assistance and facilitating my research work during the three years of my Ph.D. studies. His availability, expertise and scientific prowess, valuable advice, enthusiasm for research enabled me to progress and have pleasure in research. Thanks for having confidence in me and building my career as a researcher. Many thanks for your patience during the correction of the article manuscript and this thesis. I extend my heartfelt gratitude to my Ph.D. supervisor Professor Rosa-Maria Guéant-Rodriguez of University of Lorraine, for given me the opportunity to pursue my Ph.D. studies and accepting to supervise my work. Many thanks for everything Prof, I will never be able to thank you enough. Her scientific guidance and ideas, valuable advice, availability, encouragement and time that she devoted to me during the three years made me to achieve a lot during my studies. Thanks for facilitating my Ph.D. work, her energy and time she devoted in reading and correcting this thesis. Thanks for inviting me to share the precious Christmas holiday with her family and all the precious moments I spent with her outside the lab. Prof, I was lucky to be your student. I wish to express my appreciation to the members of the Jury for my Ph.D. thesis defense. My sincere gratitude goes to Professor Edward Valerian QUADROS and Dr. Sébastien BLAISE accepting to be the rapporteurs of my thesis and Professor Ebba NEXO and Professor Yves JUILLIERE for accepting to examine my work. I am deeply indebted to Professor Ambrose Kiprop the Dean of school of physical and biological sciences of Moi University for being my mentor. His advice, encouragement and facilitating my stay here in France is highly appreciated. I don’t have enough words to describe my gratitude. His hard work and enthusiasm for research always inspires me, thanks for being my mentor. I wish to deeply acknowledge the French government through the French Embassy in Kenya for having awarded me the scholarship to pursue my Ph.D. studies. The facilitation of my studies and my stay in France by Campus France is highly acknowledged. Sincere appreciation to Moi University for the facilitation and having given me the study leave. Thanks for making 4 it possible to realize my dream of obtaining a Ph.D. This will not only be important for my career development, benefit to Moi University but also to contribute to the knowledge in cardiovascular research for betterment of humanity. I would like to acknowledge our collaborators for their contribution in my Ph.D. work. Sincere acknowledgement goes to the L’institute Clinique de la Souris (ICS), Strasbourg for generating the transgenic mice. Many thanks go to Prof. L. Monassier. Sincere acknowledgement goes to the team of Nancyclotep-GIE Ingénieur d'études imagerie préclinique, Vandoeuvre Les Nancy, France, especially to Dr. Fatiha Maskali their help, patience and collaboration in this work. Sincere appreciation goes to the Inserm U1116 Défaillance cardiovasculaire aiguë et chronique lab, Vandoeuvre Les Nancy led by Professor Patrick Lacolley for his collaboration in this work and Veronique Laplace for her help. Many thanks go to all the staff of UMR 1256 laboratory for their expertise, discussion and sympathy during my thesis. I would like to pass my sincere appreciations to Sébastien Hergalent, the bioinformatic engineer in the UMR 1256 laboratory for analysis of proteomic and transcriptomic data. Thanks to his bioinformatic expertise I acquired a wealth of knowledge in omics studies My gratitude and appreciation go to Dr. J.M Alberto the chief engineer his great participation in my thesis work. His advice, availability, scientific prowess in biochemistry research and his unwavering support enable me to achieve a lot during my study. I would like to also pass my sincere appreciations to Fatiha Elkhafifi former Master II student for her contribution to towards this work. Many thanks to Remy and Veronique for training me and taking care of the mice, Dr. Céline and Dr. Carol for their contribution to this work. I would like to pass my gratitude to Dr. Natasha and Dr. Shu Fung for their availability and advice. I wish to sincerely thank Dr. Brittany Balint, her expertise in immunohistochemistry, academic advice and correction of the article manuscript, her contribution to my thesis is highly appreciated. For the administrative personnel, Aline, Dominique and Catherine your assistance is highly appreciated. To Aline, thanks to her jovial character and her motherly love I enjoyed sharing the same office with her, she even went out of her way to teach me French. I would like to pass my sincere appreciation to my friends and colleague Aline, Racha and Ziad whom I shared the same office together. I appreciate the great moments we spent together. I 5 wish to also pass my gratitude and friendship to my dear colleagues and friends in the lab Amélia, Aurélie, Céline, Attah, Justine, Jeremy, Linda, Rashka, Pauline, Djseia, Tunay, Philip and Thierry. It was a pleasure to work with you. I would like to sincerely thank the family of Monique for receiving and hosting me in her house when I first arrived in France and many invitations to their family. My appreciation goes to the family of Natalie for the holidays and invitations to your family. Thanks for being my sister here in France. I would like to pass my sincere appreciation to my friend and colleague Darlene Antoine. I highly appreciated the great moments we spent together in and outside the laboratory. Darlene many thanks for reading my thesis Manuscript. I would like to appreciate Father Daniel Muhame for his encouragement and Prayers. Thanks for being there for me big brother. I thank my entire family for the encouragement, support and the confidence they bestowed on me during my studies in France. I am indebted to my Mum for encouraging me to work hard in my studies and for everything. Many thanks to my beloved husband Jackson, and my dear children Alexis and Emmanuel for their love, patience, support, encouragement and their understanding despite my long absence from home. Thanks to my dear sisters Anita, Caro and brother Ambrose for their support, Koech and Memoi thanks so much for your love, understanding and sacrifice to take care of the kids while I was in France. 6 TABLE OF CONTENTS DEDICATION .......................................................................................................................... 3 ACKNOWLEDGEMENT ......................................................................................................
Recommended publications
  • Recruitment of Ubiquitin-Activating Enzyme UBA1 to DNA by Poly(ADP-Ribose) Promotes ATR Signalling
    Published Online: 21 June, 2018 | Supp Info: http://doi.org/10.26508/lsa.201800096 Downloaded from life-science-alliance.org on 1 October, 2021 Research Article Recruitment of ubiquitin-activating enzyme UBA1 to DNA by poly(ADP-ribose) promotes ATR signalling Ramhari Kumbhar1, Sophie Vidal-Eychenie´ 1, Dimitrios-Georgios Kontopoulos2 , Marion Larroque3, Christian Larroque4, Jihane Basbous1,Sofia Kossida1,5, Cyril Ribeyre1 , Angelos Constantinou1 The DNA damage response (DDR) ensures cellular adaptation to Saldivar et al, 2017). Induction of the DDR triggers a cascade of genotoxic insults. In the crowded environment of the nucleus, the protein modifications by ADP-ribosylation, phosphorylation, SUMOylation, assembly of productive DDR complexes requires multiple protein ubiquitylation, acetylation, and methylation, which collectively modifications. How the apical E1 ubiquitin activation enzyme promote the assembly of DNA damage signalling and DNA repair UBA1 integrates spatially and temporally in the DDR remains proteins into discrete chromatin foci (Ciccia & Elledge, 2010; elusive. Using a human cell-free system, we show that poly(ADP- Dantuma & van Attikum, 2016). ribose) polymerase 1 promotes the recruitment of UBA1 to DNA. One of the earliest responses to DNA damage is the conjugation We find that the association of UBA1 with poly(ADP-ribosyl)ated by PARP1 of pADPr to substrate proteins, including itself, at DNA protein–DNA complexes is necessary for the phosphorylation rep- breaks and stalled replication forks (Caldecott et al, 1996; Bryant lication protein A and checkpoint kinase 1 by the serine/threonine et al, 2009; Langelier et al, 2011). PARP1 activity is induced by dis- protein kinase ataxia-telangiectasia and RAD3-related, a prototypal continuous DNA structures such as nicks, DSBs, and DNA cruciform response to DNA damage.
    [Show full text]
  • PDF Document Created by Pdffiller
    Patient: 1234567843314948-COtGx0053 CLIA ID#: 11D2066426 Larry Hung, MD, Laboratory Director GxTM Carrier Screen Testing Report Patient Information Provider Information Specimen Patient Name Haley Papevies Provider Harbin Clinic Women's Accession ID 1234567843314948 Center Cartersville Date of Birth Apr 16, 1998 Sample ID COtGx0053XX Provider ID 1124488556 Age 19 Specimen Type Saliva Physician Vicki Yates Sex female Collection Date Jul 20, 2017 Ethnicity Report Date Aug 5, 2017 Test Ordered CF Patient Results: Negative - No Pathogenic or Likely-Pathogenic Variant(s) Detected Additional Comments This report is based on the analysis of CFTR gene included in the Carrier Screen. No known pathogenic or likely pathogenic variant(s) detected in the coding sequences of CFTR gene. Followup Recommendations Follow up with physicians for updated carrier screen information. The sequencing for CFTR gene was carried out with the other genes included in the Carrier Screen Testing (listed below). The analysis of the other genes in the Carrier Screen could be ordered through your physicians. Genes Tested Targeted regions for “Carrier Screen Testing” includes the exonic regions of the following genes: ABCC8, ABCD1, ABCD4, ACAD8, ACADM, ACADS, ACADSB, ACADVL, ACAT1, ACSF3, ACTA2, ACTC1, ADA, ADAMTS2, AGXT, AHCY, APC, APOB, ARG1, ASL, ASPA, ASS1, ATP7B, AUH, BCKDHA, BBS2, BCKDHB, BLM, BTD, CBS, COL3A1, COL4A3, CD320, CFTR, CLRN1, CPT1A, CPT2, CYP1B1, CYP21A2, DBT, DHCR7, DHDDS, DLD, DMD, DNAJC19, DSC2, DSG2, DSP, DUOX2, ETFA, ETFB, ETFDH, FAH, FANCC, FBN1,
    [Show full text]
  • Supplement 1 Overview of Dystonia Genes
    Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase
    [Show full text]
  • HSF-1 Activates the Ubiquitin Proteasome System to Promote Non-Apoptotic
    HSF-1 Activates the Ubiquitin Proteasome System to Promote Non-Apoptotic Developmental Cell Death in C. elegans Maxime J. Kinet#, Jennifer A. Malin#, Mary C. Abraham, Elyse S. Blum, Melanie Silverman, Yun Lu, and Shai Shaham* Laboratory of Developmental Genetics The Rockefeller University 1230 York Avenue New York, NY 10065 USA #These authors contributed equally to this work *To whom correspondence should be addressed: Tel (212) 327-7126, Fax (212) 327- 7129, email [email protected] Kinet, Malin et al. Abstract Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in C. elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and MAPKK signaling control HSF-1, a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET- 70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates. 2 Kinet, Malin et al. Introduction Animal development and homeostasis are carefully tuned to balance cell proliferation and death.
    [Show full text]
  • Abstracts from the 9Th Biennial Scientific Meeting of The
    International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):15 DOI 10.1186/s13633-017-0054-x MEETING ABSTRACTS Open Access Abstracts from the 9th Biennial Scientific Meeting of the Asia Pacific Paediatric Endocrine Society (APPES) and the 50th Annual Meeting of the Japanese Society for Pediatric Endocrinology (JSPE) Tokyo, Japan. 17-20 November 2016 Published: 28 Dec 2017 PS1 Heritable forms of primary bone fragility in children typically lead to Fat fate and disease - from science to global policy a clinical diagnosis of either osteogenesis imperfecta (OI) or juvenile Peter Gluckman osteoporosis (JO). OI is usually caused by dominant mutations affect- Office of Chief Science Advsor to the Prime Minister ing one of the two genes that code for two collagen type I, but a re- International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):PS1 cessive form of OI is present in 5-10% of individuals with a clinical diagnosis of OI. Most of the involved genes code for proteins that Attempts to deal with the obesity epidemic based solely on adult be- play a role in the processing of collagen type I protein (BMP1, havioural change have been rather disappointing. Indeed the evidence CREB3L1, CRTAP, LEPRE1, P4HB, PPIB, FKBP10, PLOD2, SERPINF1, that biological, developmental and contextual factors are operating SERPINH1, SEC24D, SPARC, from the earliest stages in development and indeed across generations TMEM38B), or interfere with osteoblast function (SP7, WNT1). Specific is compelling. The marked individual differences in the sensitivity to the phenotypes are caused by mutations in SERPINF1 (recessive OI type obesogenic environment need to be understood at both the individual VI), P4HB (Cole-Carpenter syndrome) and SEC24D (‘Cole-Carpenter and population level.
    [Show full text]
  • Roles of Ubiquitination and Sumoylation in the Regulation of Angiogenesis
    Curr. Issues Mol. Biol. (2020) 35: 109-126. Roles of Ubiquitination and SUMOylation in the Regulation of Angiogenesis Andrea Rabellino1*, Cristina Andreani2 and Pier Paolo Scaglioni2 1QIMR Berghofer Medical Research Institute, Brisbane City, Queensland, Australia. 2Department of Internal Medicine, Hematology and Oncology; University of Cincinnati, Cincinnati, OH, USA. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.035.109 Abstract is tumorigenesis-induced angiogenesis, during Te generation of new blood vessels from the which hypoxic and starved cancer cells activate existing vasculature is a dynamic and complex the molecular pathways involved in the formation mechanism known as angiogenesis. Angiogenesis of novel blood vessels, in order to supply nutri- occurs during the entire lifespan of vertebrates and ents and oxygen required for the tumour growth. participates in many physiological processes. Fur- Additionally, more than 70 diferent disorders have thermore, angiogenesis is also actively involved been associated to de novo angiogenesis including in many human diseases and disorders, including obesity, bacterial infections and AIDS (Carmeliet, cancer, obesity and infections. Several inter-con- 2003). nected molecular pathways regulate angiogenesis, At the molecular level, angiogenesis relays on and post-translational modifcations, such as phos- several pathways that cooperate in order to regulate phorylation, ubiquitination and SUMOylation, in a precise spatial and temporal order the process. tightly regulate these mechanisms and play a key In this context, post-translational modifcations role in the control of the process. Here, we describe (PTMs) play a central role in the regulation of these in detail the roles of ubiquitination and SUMOyla- events, infuencing the activation and stability of tion in the regulation of angiogenesis.
    [Show full text]
  • Oral Presentations
    Journal of Inherited Metabolic Disease (2018) 41 (Suppl 1):S37–S219 https://doi.org/10.1007/s10545-018-0233-9 ABSTRACTS Oral Presentations PARALLEL SESSION 1A: Clycosylation and cardohydrate disorders O-002 Link between glycemia and hyperlipidemia in Glycogen Storage O-001 Disease type Ia Hoogerland J A1, Hijmans B S1, Peeks F1, Kooijman S3, 4, Bos T2, Fertility in classical galactosaemia, N-glycan, hormonal and inflam- Bleeker A1, Van Dijk T H2, Wolters H1, Havinga R1,PronkACM3, 4, matory gene expression interactions Rensen P C N3, 4,MithieuxG5, 6, Rajas F5, 6, Kuipers F1, 2,DerksTGJ1, Reijngoud D1,OosterveerMH1 Colhoun H O1,Rubio-GozalboME2,BoschAM3, Knerr I4,DawsonC5, Brady J J6,GalliganM8,StepienKM9, O'Flaherty R O7,MossC10, 1Dep Pediatrics, CLDM, Univ of Groningen, Groningen, Barker P11, Fitzgibbon M C6, Doran P8,TreacyEP1, 4, 9 Netherlands, 2Lab Med, CLDM, Univ of Groningen, Groningen, Netherlands, 3Dep of Med, Div of Endocrinology, LUMC, Leiden, 1Dept Paediatrics, Trinity College Dublin, Dublin, Ireland, 2Dept Paeds and Netherlands, 4Einthoven Lab Exp Vasc Med, LUMC, Leiden, Clin Genetics, UMC, Maastricht, Netherlands, 3Dept Paediatrics, AMC, Netherlands, 5Institut Nat Sante et Recherche Med, Lyon, Amsterdam, Netherlands, 4NCIMD, TSCUH, Dublin, Ireland, 5Dept France, 6Univ Lyon 1, Villeurbanne, France Endocrinology, NHS Foundation Trust, Birmingham, United Kingdom, 6Dept Clin Biochem, MMUH, Dublin, Ireland, 7NIBRT Glycoscience, Background: Glycogen Storage Disease type Ia (GSD Ia) is an NIBRT, Dublin, Ireland, 8UCDCRC,UCD,Dublin,Ireland,9NCIMD, inborn error of glucose metabolism characterized by fasting hypo- MMUH, Dublin, Ireland, 10Conway Institute, UCD, Dublin, Ireland, glycemia, hyperlipidemia and fatty liver disease. We have previ- 11CBAL, NHS Foundation, Cambridge, United Kingdom ously reported considerable heterogeneity in circulating triglycer- ide levels between individual GSD Ia patients, a phenomenon that Background: Classical Galactosaemia (CG) is caused by deficiency of is poorly understood.
    [Show full text]
  • UBA1 (UBE1), Active Recombinant Full-Length Human Proteins Expressed in Sf9 Cells
    Catalog # Aliquot Size U201-380G-20 20 µg U201-380G-50 50 µg UBA1 (UBE1), Active Recombinant full-length human proteins expressed in Sf9 cells Catalog # U201-380G Lot # V2408-6 Product Description Specific Activity Full-length recombinant human UBA1 was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. 2,800,000 The UBA1 gene accession number is NM_003334. 2,100,000 Gene Aliases 1,400,000 UBE1, CTD-2522E6.1, A1S9, A1S9T, A1ST, AMCX1, GXP1, 700,000 POC20, SMAX2, UBA1A, UBE1X Activity (RLU) 0 Formulation 0 20 40 60 80 Protein (ng) Recombinant proteins stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM The specific activity of UBA1 was determined to be 110 nmol DTT, 0.1mM PMSF, 25% glycerol. /min/mg as per activity assay protocol. Storage and Stability Purity Store product at –70oC. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple The purity of UBA1 was determined freeze/thaw cycles. to be >95% by densitometry, approx. MW 145 kDa. Scientific Background Ubiquitin-activating enzyme 1 (UBA1) catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system. UBA1 activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this UBA1 (UBE1), Active residue to the side chain of a cysteine residue in E1, Recombinant full-length human protein expressed in Sf9 cells yielding a ubiquitin-E1 thioester and free AMP.
    [Show full text]
  • A Systematic Analysis of Nuclear Heat Shock Protein 90 (Hsp90) Reveals A
    Max Planck Institute of Immunobiology und Epigenetics Freiburg im Breisgau A systematic analysis of nuclear Heat Shock Protein 90 (Hsp90) reveals a novel transcriptional regulatory role mediated by its interaction with Host Cell Factor-1 (HCF-1) Inaugural-Dissertation to obtain the Doctoral Degree Faculty of Biology, Albert-Ludwigs-Universität Freiburg im Breisgau presented by Aneliya Antonova born in Bulgaria Freiburg im Breisgau, Germany March 2019 Dekanin: Prof. Dr. Wolfgang Driever Promotionsvorsitzender: Prof. Dr. Andreas Hiltbrunner Betreuer der Arbeit: Referent: Dr. Ritwick Sawarkar Koreferent: Prof. Dr. Rudolf Grosschedl Drittprüfer: Prof. Dr. Andreas Hecht Datum der mündlichen Prüfung: 27.05.2019 ii AFFIDAVIT I herewith declare that I have prepared the present work without any unallowed help from third parties and without the use of any aids beyond those given. All data and concepts taken either directly or indirectly from other sources are so indicated along with a notation of the source. In particular I have not made use of any paid assistance from exchange or consulting services (doctoral degree advisors or other persons). No one has received remuneration from me either directly or indirectly for work which is related to the content of the present dissertation. The work has not been submitted in this country or abroad to any other examination board in this or similar form. The provisions of the doctoral degree examination procedure of the faculty of Biology of the University of Freiburg are known to me. In particular I am aware that before the awarding of the final doctoral degree I am not entitled to use the title of Dr.
    [Show full text]
  • The Role of Ubiquitination in NF-Κb Signaling During Virus Infection
    viruses Review The Role of Ubiquitination in NF-κB Signaling during Virus Infection Kun Song and Shitao Li * Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA; [email protected] * Correspondence: [email protected] Abstract: The nuclear factor κB (NF-κB) family are the master transcription factors that control cell proliferation, apoptosis, the expression of interferons and proinflammatory factors, and viral infection. During viral infection, host innate immune system senses viral products, such as viral nucleic acids, to activate innate defense pathways, including the NF-κB signaling axis, thereby inhibiting viral infection. In these NF-κB signaling pathways, diverse types of ubiquitination have been shown to participate in different steps of the signal cascades. Recent advances find that viruses also modulate the ubiquitination in NF-κB signaling pathways to activate viral gene expression or inhibit host NF-κB activation and inflammation, thereby facilitating viral infection. Understanding the role of ubiquitination in NF-κB signaling during viral infection will advance our knowledge of regulatory mechanisms of NF-κB signaling and pave the avenue for potential antiviral therapeutics. Thus, here we systematically review the ubiquitination in NF-κB signaling, delineate how viruses modulate the NF-κB signaling via ubiquitination and discuss the potential future directions. Keywords: NF-κB; polyubiquitination; linear ubiquitination; inflammation; host defense; viral infection Citation: Song, K.; Li, S. The Role of 1. Introduction Ubiquitination in NF-κB Signaling The nuclear factor κB (NF-κB) is a small family of five transcription factors, including during Virus Infection. Viruses 2021, RelA (also known as p65), RelB, c-Rel, p50 and p52 [1].
    [Show full text]
  • Investigations Into the Early Steps of Cobalamin
    Investigations into the Early Steps of Cobalamin Metabolism Isabelle Racine Miousse Doctorate of Philosophy Department of Human Genetics McGill University Montreal, Quebec, Canada June 6, 2011 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctorate of Philosophy Copyright 2011 All rights reserved. DEDICATION This work is dedicated to the persons living with cobalamin disorders and their families. ACKNOWLEDGMENTS I would like to thank my supervisors David Rosenblatt and James Coulton for their support and inspiration during the years I have spent in their company. I am grateful for all the opportunities they have opened for me, for their time and their patience. Thank you to my committee members, Dr. Eric Shoubridge and Dr. Rima Slim, for their advice and guidance. Special thanks also to Drs. David Watkins and Maria Plesa for their technical guidance and their great depth of knowledge. I would also like to thank them for proofreading work. Thank you to the students, particularly Woranontee Werarpachai for teaching me microcell-mediated chromosome transfer, Abigail Gradinger and Amanda Duval-Loewy for getting me started with PCR and cell culture, and all the other students I had the chance to work with. iii TABLE OF CONTENTS DEDICATION .......................................................................................................................ii ACKNOWLEDGMENTS...................................................................................................... iii TABLE OF
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]