Patterns and Rates of Plastid Rps12 Gene Evolution Inferred In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
The Fern Family Blechnaceae: Old and New
ANDRÉ LUÍS DE GASPER THE FERN FAMILY BLECHNACEAE: OLD AND NEW GENERA RE-EVALUATED, USING MOLECULAR DATA Tese apresentada ao Programa de Pós-Graduação em Biologia Vegetal do Departamento de Botânica do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutor em Biologia Vegetal. Área de Concentração Taxonomia vegetal BELO HORIZONTE – MG 2016 ANDRÉ LUÍS DE GASPER THE FERN FAMILY BLECHNACEAE: OLD AND NEW GENERA RE-EVALUATED, USING MOLECULAR DATA Tese apresentada ao Programa de Pós-Graduação em Biologia Vegetal do Departamento de Botânica do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutor em Biologia Vegetal. Área de Concentração Taxonomia Vegetal Orientador: Prof. Dr. Alexandre Salino Universidade Federal de Minas Gerais Coorientador: Prof. Dr. Vinícius Antonio de Oliveira Dittrich Universidade Federal de Juiz de Fora BELO HORIZONTE – MG 2016 Gasper, André Luís. 043 Thefern family blechnaceae : old and new genera re- evaluated, using molecular data [manuscrito] / André Luís Gasper. – 2016. 160 f. : il. ; 29,5 cm. Orientador: Alexandre Salino. Co-orientador: Vinícius Antonio de Oliveira Dittrich. Tese (doutorado) – Universidade Federal de Minas Gerais, Departamento de Botânica. 1. Filogenia - Teses. 2. Samambaia – Teses. 3. RbcL. 4. Rps4. 5. Trnl. 5. TrnF. 6. Biologia vegetal - Teses. I. Salino, Alexandre. II. Dittrich, Vinícius Antônio de Oliveira. III. Universidade Federal de Minas Gerais. Departamento de Botânica. IV. Título. À Sabrina, meus pais e a vida, que não se contém! À Lucia Sevegnani, que não pode ver esta obra concluída, mas que sempre foi motivo de inspiração. -
Spore Reproduction of Japanese Climbing Fern in Florida As a Function of Management Timing
Spore Reproduction of Japanese Climbing Fern in Florida as a Function of Management Timing Candice M. Prince1, Dr. Gregory E. MacDonald1, Dr. Kimberly Bohn2, Ashlynn Smith1, and Dr. Mack Thetford1 1University of Florida, 2Pennsylvania State University Photo Credit: Chris Evans, University of Illinois, Bugwood.org Exotic climbing ferns in Florida Old world climbing fern Japanese climbing fern (Lygodium microphyllum) (Lygodium japonicum) Keith Bradley, Atlas of Florida Vascular Plants Chris Evans, University of Illinois, Bugwood.org Japanese climbing fern (Lygodium japonicum) • Native to temperate and tropical Asia • Climbing habit • Early 1900s: introduced as an ornamental1 • Long-distance dispersal via wind, pine straw bales2,3 Chris Evans, University of Illinois, Bugwood.org Dennis Teague, U.S. Air Force, Bugwood.org Distribution • Established in 9 southeastern states • In FL: present throughout the state, USDA NRCS National Plant Data Team, 2016 but most invasive in northern areas • Winter dieback, re-sprouts from rhizomes1 • Occurs in mesic and temporally hydric areas1 Atlas of Florida Vascular Plants, Institute of Systemic Botany, 2016 Impacts Chris Evans, University of Illinois, Bugwood.org • Smothers and displaces vegetation, fire ladders • Florida Exotic Pest Plant Council: Category I species Chuck Bargeron, University of Georgia, Bugwood.org • Florida Noxious Weed List • Alabama Noxious Weed List (Class B) Japanese climbing fern: life cycle John Tiftickjian, Sigel Lab, University of Delta State University Louisiana at Lafayette -
Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus
International Journal of Molecular Sciences Review Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus Bahare Salehi 1,2 ID , Nanjangud V. Anil Kumar 3 ID , Bilge ¸Sener 4, Mehdi Sharifi-Rad 5,*, Mehtap Kılıç 4, Gail B. Mahady 6, Sanja Vlaisavljevic 7, Marcello Iriti 8,* ID , Farzad Kobarfard 9,10, William N. Setzer 11,*, Seyed Abdulmajid Ayatollahi 9,12,13, Athar Ata 13 and Javad Sharifi-Rad 9,13,* ID 1 Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, 88777539 Tehran, Iran; [email protected] 2 Student Research Committee, Shahid Beheshti University of Medical Sciences, 22439789 Tehran, Iran 3 Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India; [email protected] 4 Department of Pharmacognosy, Gazi University, Faculty of Pharmacy, 06330 Ankara, Turkey; [email protected] (B.¸S.);[email protected] (M.K.) 5 Department of Medical Parasitology, Zabol University of Medical Sciences, 61663-335 Zabol, Iran 6 PAHO/WHO Collaborating Centre for Traditional Medicine, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612, USA; [email protected] 7 Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia; [email protected] 8 Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy 9 Phytochemistry Research Center, Shahid Beheshti University of -
Summer 2003 - 61 President’S Message
THE HARDY FERN FOUNDATION P.O. Box 166 Medina, WA 98039-0166 Web site: www.hardvferns.org The Hardy Fern Foundation was founded in 1989 to establish a comprehen¬ sive collection of the world’s hardy ferns for display, testing, evaluation, public education and introduction to the gardening and horticultural community. Many rare and unusual species, hybrids and varieties are being propagated from spores and tested in selected environments for their different degrees of hardiness and ornamental garden value. The primary fern display and test garden is located at, and in conjunction with, The Rhododendron Species Botanical Garden at the Weyerhaeuser Corpo¬ rate Headquarters, in Federal Way, Washington. Satellite fern gardens are at the Stephen Austin Arboretum, Nacogdoches, Texas, Birmingham Botanical Gardens, Birmingham, Alabama, California State University at Sacramento, Sacramento, California, Coastal Maine Botanical Garden, Boothbay, Maine, Dallas Arboretum, Dallas, Texas, Denver Botanic Gardens. Denver, Colorado, Georgeson Botanical Garden, University of Alaska, Fairbanks, Alaska, Harry P. Leu Garden, Orlando, Florida, Inniswood Metro Gardens, Columbus, Ohio, Lewis Ginter Botanical Garden, Richmond, Virginia, New York Botanical Garden, Bronx, New York, and Strybing Arboretum, San Francisco, California. The fern display gardens are at Bainbridge Island Library, Bainbridge Island, WA, Lakewold, Tacoma, Washington, Les Jardins de Metis, Quebec, Canada, University of Northern Colorado, Greeley, Colorado, and Whitehall Historic Home and Garden, Louisville, KY. Hardy Fern Foundation members participate in a spore exchange, receive a quarterly newsletter and have first access to ferns as they are ready for distribution. Cover Design by Willanna Bradner HARDY FERN FOUNDATION QUARTERLY THE HARDY FERN FOUNDATION QUARTERLY Volume 13 No. -
Pteridophytic Diversity in Human-Inhabited Buffer Zone of Murlen National Park, Mizoram, India
13 2 2081 the journal of biodiversity data 3 April 2017 Check List LISTS OF SPECIES Check List 13(2): 2081, 3 April 2017 doi: https://doi.org/10.15560/13.2.2081 ISSN 1809-127X © 2017 Check List and Authors Pteridophytic diversity in human-inhabited buffer zone of Murlen National Park, Mizoram, India Sachin Sharma1, Bhupendra S. Kholia1, 4, Ramesh Kumar2 & Amit Kumar3 1 Botanical Survey of India, Northern Regional Centre, Dehradun 248 195, Uttarakhand, India 2 Botanical Survey of India, Arid Zone Regional Centre, Jodhpur 342 008, Rajasthan, India 3 Wildlife Institute of India, P.O. Box #18, Chandrabani, Dehradun 248 001, Uttarakhand, India 4 Corresponding author. E-mail: [email protected] Abstract: A taxonomic inventorization of pteridophytes (Kholia 2014). Generally, it is believed that modern ferns occurring in a human inhabited buffer zone of Murlen and their allies are much older than flowering plants, and National Park, India, was conducted in 2012 and 2013. often considered as living fossils, but except for a few This survey revealed 35 species belonging to 27 genera families, most of the modern ferns evolved and flourished and 15 families. Polypodiaceae was recorded as dominant under the shadow of angiosperms (Smith et al. 2006). family, represented by six genera and eight species, In India, pteridophytes are mainly distributed in Hima- followed by Pteridaceae (three genera and six species) layan region, as well as North-Eastern and Southern India, and Lycopodiaceae (three genera and four species). Of the where climates are humid and more conducive for growth. recorded species, 23 species were terrestrial, 11 (epiphytic) Approximately 1,267 species of pteridophytes (ca. -
Fern Classification
16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed. -
The Vascular Flora of the Red Hills Forever Wild Tract, Monroe County, Alabama
The Vascular Flora of the Red Hills Forever Wild Tract, Monroe County, Alabama T. Wayne Barger1* and Brian D. Holt1 1Alabama State Lands Division, Natural Heritage Section, Department of Conservation and Natural Resources, Montgomery, AL 36130 *Correspondence: wayne [email protected] Abstract provides public lands for recreational use along with con- servation of vital habitat. Since its inception, the Forever The Red Hills Forever Wild Tract (RHFWT) is a 1785 ha Wild Program, managed by the Alabama Department of property that was acquired in two purchases by the State of Conservation and Natural Resources (AL-DCNR), has pur- Alabama Forever Wild Program in February and Septem- chased approximately 97 500 ha (241 000 acres) of land for ber 2010. The RHFWT is characterized by undulating general recreation, nature preserves, additions to wildlife terrain with steep slopes, loblolly pine plantations, and management areas and state parks. For each Forever Wild mixed hardwood floodplain forests. The property lies tract purchased, a management plan providing guidelines 125 km southwest of Montgomery, AL and is managed by and recommendations for the tract must be in place within the Alabama Department of Conservation and Natural a year of acquisition. The 1785 ha (4412 acre) Red Hills Resources with an emphasis on recreational use and habi- Forever Wild Tract (RHFWT) was acquired in two sepa- tat management. An intensive floristic study of this area rate purchases in February and September 2010, in part was conducted from January 2011 through June 2015. A to provide protected habitat for the federally listed Red total of 533 taxa (527 species) from 323 genera and 120 Hills Salamander (Phaeognathus hubrichti Highton). -
A Revised Family-Level Classification for Eupolypod II Ferns (Polypodiidae: Polypodiales)
TAXON 61 (3) • June 2012: 515–533 Rothfels & al. • Eupolypod II classification A revised family-level classification for eupolypod II ferns (Polypodiidae: Polypodiales) Carl J. Rothfels,1 Michael A. Sundue,2 Li-Yaung Kuo,3 Anders Larsson,4 Masahiro Kato,5 Eric Schuettpelz6 & Kathleen M. Pryer1 1 Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, U.S.A. 2 The Pringle Herbarium, Department of Plant Biology, University of Vermont, 27 Colchester Ave., Burlington, Vermont 05405, U.S.A. 3 Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan 4 Systematic Biology, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, 752 36, Uppsala, Sweden 5 Department of Botany, National Museum of Nature and Science, Tsukuba 305-0005, Japan 6 Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, North Carolina 28403, U.S.A. Carl J. Rothfels and Michael A. Sundue contributed equally to this work. Author for correspondence: Carl J. Rothfels, [email protected] Abstract We present a family-level classification for the eupolypod II clade of leptosporangiate ferns, one of the two major lineages within the Eupolypods, and one of the few parts of the fern tree of life where family-level relationships were not well understood at the time of publication of the 2006 fern classification by Smith & al. Comprising over 2500 species, the composition and particularly the relationships among the major clades of this group have historically been contentious and defied phylogenetic resolution until very recently. Our classification reflects the most current available data, largely derived from published molecular phylogenetic studies. -
Old World Climbing Fern (Lygodium Microphyllum)
Old World Climbing Fern (Lygodium microphyllum) Old World climbing fern is a non-native vine that is rapidly invading flatwoods, and hardwood and cypress swamps of southern and central Florida, and it is moving north. Since 1993, the area infested in Florida has grown to nearly 210,000 acres. (A related species, Japanese climbing fern - Lygodium japonicum- is spreading south into central Florida, from the north.) Old World climbing fern smothers plants, including understory and canopy trees, and it creates thick mats of plant material on the ground. It is flammable and carries fire into the canopy and across wetlands. Land managers and property owners should be vigilant for these weeds. Early detection and elimination can significantly reduce control costs and efforts. Find it . How to Identify Old World Climbing Fern: Ferns never have flowers; they reproduce by spores. Fern spores are nearly invisible and easily spread by wind. When the plant is fertile, the spores are on some of the leaflets, which means that at different times a plant can have two leaflet forms: “sterile” and fertile. When fertile (at left on the picture below), the edges of the leaflets are fringed with tiny lobes of in-rolled leaf tissue that cover the spore- Lygodium microphyllum plant growing up the containing structures. When sterile, the leaflets are oblong base of a small tree (the portion shown is about 2’ or lance-shaped, and slightly heart-shaped at the base where the stalk connects. Many leaflets make up a leaf, which is 2-5 inches long, and many leaves make up the “frond.” A frond can grow and twine to 120 feet long. -
HARDY FERN FOUNDATION QUARTERLY the HARDY FERN FOUNDATION Quarterly Volume 8 • No
THE HARDY FERN FOUNDATION P.O. Box 166 Medina, WA 98039-0166 [email protected] Web site darkwing, uoregon .edu/~sueman/ The Hardy Fern Foundation was founded in 1989 to establish a comprehensive collection of the world’s hardy ferns for display, testing, evaluation, public educa¬ tion and introduction to the gardening and horticultural community. Many rare and unusual species, hybrids and varieties are being propagated from spores and tested in selected environments for their different degrees of hardiness and orna¬ mental garden value. The primary fern display and test garden is located at, and in conjunction with, The Rhododendron Species Botanical Garden at the Weyerhaeuser Corporate Headquarters, in Federal Way, Washington. Satellite fern gardens are at the Stephen Austin Arboretum, Nacogdoches, Texas, Birmingham Botanical Gardens, Birmingham, Alabama, California State Univer¬ sity at Sacramento, Sacramento, California, Dallas Arboretum, Dallas, Texas, Denver Botanic Gardens. Denver, Colorado, Georgeson Botanical Garden, Uni¬ versity of Alaska, Fairbanks, Alaska, Harry P. Leu Garden, Orlando, Florida, Coastal Maine Botanical Garden, Wiscasset, Maine, Inniswood Metro Gardens, Colum¬ bus, Ohio, New York Botanical Garden, Bronx, New York, and Strybing Arbore¬ tum, San Francisco, California. The fern display gardens are at Lakewold, Tacoma, Washington, Les Jardins de Metis, Quebec, Canada, University of Northern Colorado, Greeley, Colorado, and Whitehall Historic Home and Garden, Louisville, KY. Hardy Fern Foundation members participate in a spore exchange, receive a quar¬ terly newsletter and have first access to ferns as they are ready for distribution. Cover Design by Willanna Bradner. HARDY FERN FOUNDATION QUARTERLY THE HARDY FERN FOUNDATION Quarterly Volume 8 • No. 3 • Editor Sue Olsen \ T *2 W4 g WS11 U President’s Message.47 Anne C. -
A Biosystematic Study of the Fern Genus LYGODIUM in Eastern North America
University of Central Florida STARS Retrospective Theses and Dissertations 1984 A Biosystematic Study of the Fern Genus LYGODIUM in Eastern North America Violet M. Brown University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/rtd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Brown, Violet M., "A Biosystematic Study of the Fern Genus LYGODIUM in Eastern North America" (1984). Retrospective Theses and Dissertations. 4726. https://stars.library.ucf.edu/rtd/4726 A BIOSYSTEMATIC STUDY OF THE FERN GENUS LYGODIUM IN EASTERN NORTH AMERICA BY VIOLET M. BROWN B.S., University of Central Florida, 1980 THESIS Submitted in partial fulfillment of the requirements for the Master of Science degree in Biological Sciences in the Graduate Studies Program of Arts and Sciences University of Central Florida Orlando, Florida Spring Term 1984 ABSTRACT The mainly tropical genus Lyqodium differs from other ferns in that the fronds are indeterminate and are vine-like. A single species, L. palmatum is native in temperate North America. The temperate Asian L. japoni cum is naturalized throughout much of the southeastern United States. About twenty years ago, L. microphyllum was introduced into South Florida and is now naturalized in several counties. The present study documents differences among spores and their generation, development of sporo phytes from the fertilized egg, and in flavonoid chemistry.