Understanding Cannabinoid Receptors: Structure and Function

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Cannabinoid Receptors: Structure and Function Folia Biologica et Oecologica 14: 1–13 (2018) Acta Universitatis Lodziensis Understanding cannabinoid receptors: structure and function ANGELIKA ANDRZEJEWSKA1, KLAUDIA STASZAK1, MARTA KACZMAREK-RYŚ1, RYSZARD SŁOMSKI1,2, SZYMON HRYHOROWICZ*1 1Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland 2Department of Biochemistry and Biotechnology, University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland E-mail: [email protected] ABSTRACT The endocannabinoid system (ECS) consists of the endocannabinoids, cannabinoid receptors and the enzymes that synthesize and degrade endocannabinoids. The whole EC system plays an important role in the proper functioning of the central and autonomic nervous system. ECS is involved in the regulation of the body energy and in the functioning of the endocrine system. It can affect on the regulation of emotional states, motoric movement, operations of the endocrine, immune and digestive system. Many of the effects of cannabinoids are mediated by G coupled –protein receptors: CB1, CB2 and GPR55 but also of transient receptor potential channels (TRPs) which not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In this review work we briefly summarize the role and action of cannabinoid receptors CB1 and CB2, protein-coupled receptor 55 (GPR55) and transient receptor potential vanilloid 1 (TRPV1). K EY WORDS: cannabinoid receptors, CB1, CB2, TRPV1, GPR55 Introduction Cannabinoid receptors are one of the consisting of lipophilic substances most abundant neuronal receptors that are stimulating their function – linked through G proteins (the guanine- endocannabinoids and exogenous nucleotide-binding proteins) to the agonists, as well as enzymes governing effectors system (called G-protein the synthesis and degradation (Pawlak et coupled receptors, GPCRs). This group al., 2011). In recent years, researches have includes two well characterized types of provided evidence that the system is more receptors – CB1 and CB2. They are part complicated and additional receptor types of the endocannabinoid system (ECS), should exist to explain ligand activity in DOI: 10.1515/fobio-2017-0004 FOLIA BIOLOGICA ET OECOLOGICA many physiological processes. To date ECS is involved in the regulation of the other types of cannabinoid receptors, non- body energy and in the functioning of the CB1 and non- CB2, have been reported endocrine system. It can affects on the such as orphan GPR55 and TRPV1 regulation of emotional states, motoric receptors, which could explain not movement, operations of the endocrine, completely understood pathway system immune and digestive system (Bisogno et al., 2001; Ryberg et al., 2007; (Komorowski and Stępień, 2007). This Befort, 2015). system plays a major role in the control of It is known that mammalian tissues pain, in reward processing and in the may produce endogenous ligands of development of addiction (Befort, 2015). cannabinoid receptors. First discovered Although the relationship between the substance of this type was the amide activity of cannabinoid receptors and cell derivative of arachidonic acid - proliferation is not fully understood. It is arachidonoyl ethanolamide - AEA, which known that certain agonists of these was called anandamide. Later was receptors, including anandamide, inhibit discovered another endocannabinoid of proliferation of cultured human breast lipid structure - 2-arachidonyl glycerol (2- cancer cells. It is worth noting, that the AG). These substances can activate tests on the effectiveness of cannabinoids receptors and are synthesized on demand in the treatment of neurodegenerative in response to elevations of intracellular diseases (such as Parkinson disease) are calcium. Studies show that repeated carried out, because of their administration of cannabinoid receptor neuroprotective properties (Konarska and agonists may cause the development of Ellert, 2004). tolerance to some of their effects (Pertwee, 2006; Pertwee, 2009). Methods Exogenous cannabinoids has been Publication search was performed in termed substances that are extracted from Medline and PubMed database. The key the marijuana plant Cannabis sativa or are words used were cannabinoids receptors, synthesized artificially. The most popular cannabinoids, CB1, CB2, GPR55, examples of these substances are TRPV1. We decided to use both, the older cannabinol (CBN), cannabidiol (CBD) papers describing the discovery of and delta-9-tetrahydrocannabinol (Δ9- cannabinoid receptors and more recent THC). The last of them is the major publications, describing possible new immunomodulatory and psychoactive interactions between potential novel component of the marijuana (Cabral and receptors and cannabinoids. Griffin-Thomas, 2009). The discovery of CB1 and CB2 Cannabinoid receptor type 1 - CB1 receptors was followed by the receptor development of CB1- and CB2-selective CB1 and CB2 receptors belong to G- cannabinoid receptor antagonists. These protein coupled receptor (GPCR) family. substances block the normal operation of The cannabinoid receptor type 1 is the receptor and may weaken or suppress primarily located in central and peripheral agonist (Pertwee, 2006). nervous system. The CB1 receptors The whole endocannabinoid system expressed predominantly in the brain. The plays an important role in the proper highest density of cannabinoids binding functioning of the central and autonomic sites are in first and fourth layer of the nervous system. The reason for such cerebral cortex, hypothalamus, pyramidal action of cannabinoids is their easy cell layer of the hippocampus, passage through the blood-brain barrier. pariaqueductal gray dorsal horn and in the 2 ANDRZEJEWSKA A. ET AL. FOLIA BIOLOGICA ET OECOLOGICA limbic system. These areas associated the et al., 2011). For the first time the endocannabinoid system with memory complementary DNA of this receptor was processes, modulation of emotional states isolated from a cDNA library of rat and mobility, as well as anticonvulsant cerebral cortex in 1990 (Konarska and properties of cannabinoids. CB1 receptors Ellert, 2004; GeneCards). In 1995, Shire are also observed in basal ganglia and and his team have isolated a shorter cerebellum but in lower density than for isoform of the receptor - composed of 411 example in rodents. Lower density of CB1 amino acids, as a result of deletion of 167 is also observed in the structure of the base pairs in the nucleotide sequence. This vental tegmental area and nucleus change resulting protein product, a variant accumbens, which is responsible for the CB1A, has a molecular weight of 46 kDa development of happiness and reward (Shire et al., 1995). In 2004, Ryberg et al. feelings, also known as reward system identified a second isoform of the receptor (Komorowski and Stępień, 2007). CB1 - a variant CB1B - with a molecular Initially it was believed that these weight of 49 kDa, constructed of 439 receptors are present only in the brain, but amino acids. Both variants have altered their presence in peripheral locations was the ability of the ligand binding and also demonstrated. CB1 receptors were activation as compared to the original observed in inter alia in the pituitary length transcript (Ryberg et al., 2005). gland, immune cells, tissues, digestive The construction of CB1 receptors is tract, reproductive system, heart, lung, well characterized, comprising a single, intestine, tonsil, thymus, spleen and highly fold to polypeptide chain. Chain placenta (Rutkowska and Jamontt, 2005; completes its structure through the cell Ryberg et al., 2007; Busquets-Garcia et membrane seven times to form seven al., 2016). hydrophobic transmembrane domains The cannabinoid receptor type 1 is the (TM I - TM VII) (Kazula, 2009). Figure 1 product of CNR1 gene expression. shows a general scheme for the Medium sized protein is 52 858 Da and it construction of CB1 receptor in human. is composed of 472 amino acids (Pawlak Figure 1. Construction of cannabinoid receptor type 1 (CB1). The numbers at the beginning (1) and end (472) of the chain indicate the direction of numbers of amino acids. Terminal residues, amino (N-) and carboxy (C- ), transmembrane domains (TM I-VII), intracellular (ic) and extracellular (ec) loops are also marked. Polypeptide chain ends of the receptor, membrane. The N-terminus is located are located on different side of the cell outside the cell and the C-terminus have UNDERSTANDING CANNABINOID RECEPTORS: ACTION AND FUNCTION 3 FOLIA BIOLOGICA ET OECOLOGICA an intracellular localization – in the and rat, the similarity is equal respectively cytoplasm. In addition, the receptor has in to 93% and 97% (Konarska and Ellert, its structure a three extracellular and three 2004; Kazula, 2009). intracellular loops. The second The primary activity of cannabinoid extracellular loop and the third receptors is the regulation of the transmembrane domain may bind CB1 permeability of adjacent ion channels. agonists, while the third loop, which is This is done through interaction with the located inside the cell, binds the inhibitory trimeric protein Gi/Go, which act as protein G. Construction of receptor shows adapter proteins. General scheme of a significant interspecies preservation. functioning CB1 receptor is shown in Comparing the nucleotide and amino acid Figure 2. structures of the CB1 receptor in human Figure 2. Diagram of the mechanism of signal transduction by the CB1 receptor in presynaptic bulb (based on Ameri, 1999
Recommended publications
  • Role of the Endocannabinoid System and Medical Cannabis
    Brigham Young University BYU ScholarsArchive Student Works 2016-12-19 Role of the Endocannabinoid System and Medical Cannabis Sabrina Jarvis Brigham Young University, [email protected] Sean Rasmussen Brigham Young University, [email protected] Blaine Winters Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/studentpub Part of the Nursing Commons The College of Nursing showcases some of our best evidence based scholarly papers from graduate students in the Family Nurse Practitioner Program. The papers address relevant clinical problems for advance practice nurses and are based on the best evidence available. Using a systematic approach students critically analyze and synthesize the research studies to determine the strength of the evidence regarding the clinical problem. Based on the findings, recommendations are made for clinical practice. The papers are published in professional journals and presented at professional meetings. BYU ScholarsArchive Citation Jarvis, Sabrina; Rasmussen, Sean; and Winters, Blaine, "Role of the Endocannabinoid System and Medical Cannabis" (2016). Student Works. 192. https://scholarsarchive.byu.edu/studentpub/192 This Master's Project is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Student Works by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Role of the Endocannabinoid System and Medical Cannabis Sean I. Rasmussen An evidence based scholarly paper submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Masters of Science Sabrina Jarvis, Chair Blaine Winters College of Nursing Brigham Young University Copyright © 2016 Sean I.
    [Show full text]
  • Cannabis, the Endocannabinoid System and Immunity—The Journey from the Bedside to the Bench and Back
    International Journal of Molecular Sciences Review Cannabis, the Endocannabinoid System and Immunity—The Journey from the Bedside to the Bench and Back Osnat Almogi-Hazan * and Reuven Or Laboratory of Immunotherapy and Bone Marrow Transplantation, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; [email protected] * Correspondence: [email protected] Received: 21 May 2020; Accepted: 19 June 2020; Published: 23 June 2020 Abstract: The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system. While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited. A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage. Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders. In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.
    [Show full text]
  • Endocannabinoid System Dysregulation from Acetaminophen Use May Lead to Autism Spectrum Disorder: Could Cannabinoid Treatment Be Efficacious?
    molecules Review Endocannabinoid System Dysregulation from Acetaminophen Use May Lead to Autism Spectrum Disorder: Could Cannabinoid Treatment Be Efficacious? Stephen Schultz 1, Georgianna G. Gould 1, Nicola Antonucci 2, Anna Lisa Brigida 3 and Dario Siniscalco 4,* 1 Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas (UT) Health Science Center San Antonio, San Antonio, TX 78229, USA; [email protected] (S.S.); [email protected] (G.G.G.) 2 Biomedical Centre for Autism Research and Therapy, 70126 Bari, Italy; [email protected] 3 Department of Precision Medicine, University of Campania, 80138 Naples, Italy; [email protected] 4 Department of Experimental Medicine, University of Campania, 80138 Naples, Italy * Correspondence: [email protected] Abstract: Persistent deficits in social communication and interaction, and restricted, repetitive pat- terns of behavior, interests or activities, are the core items characterizing autism spectrum disorder (ASD). Strong inflammation states have been reported to be associated with ASD. The endocannabi- noid system (ECS) may be involved in ASD pathophysiology. This complex network of lipid signal- ing pathways comprises arachidonic acid and 2-arachidonoyl glycerol-derived compounds, their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. Alter- Citation: Schultz, S.; Gould, G.G.; ations of the ECS have been reported in both the brain and the immune system of ASD subjects. ASD Antonucci, N.; Brigida, A.L.; Siniscalco, D. Endocannabinoid children show low EC tone as indicated by low blood levels of endocannabinoids. Acetaminophen System Dysregulation from use has been reported to be associated with an increased risk of ASD.
    [Show full text]
  • The Cannabinoid WIN 55,212-2 Prevents Neuroendocrine Differentiation of Lncap Prostate Cancer Cells
    OPEN Prostate Cancer and Prostatic Diseases (2016) 19, 248–257 www.nature.com/pcan ORIGINAL ARTICLE The cannabinoid WIN 55,212-2 prevents neuroendocrine differentiation of LNCaP prostate cancer cells C Morell1, A Bort1, D Vara2, A Ramos-Torres1, N Rodríguez-Henche1 and I Díaz-Laviada1 BACKGROUND: Neuroendocrine (NE) differentiation represents a common feature of prostate cancer and is associated with accelerated disease progression and poor clinical outcome. Nowadays, there is no treatment for this aggressive form of prostate cancer. The aim of this study was to determine the influence of the cannabinoid WIN 55,212-2 (WIN, a non-selective cannabinoid CB1 and CB2 receptor agonist) on the NE differentiation of prostate cancer cells. METHODS: NE differentiation of prostate cancer LNCaP cells was induced by serum deprivation or by incubation with interleukin-6, for 6 days. Levels of NE markers and signaling proteins were determined by western blotting. Levels of cannabinoid receptors were determined by quantitative PCR. The involvement of signaling cascades was investigated by pharmacological inhibition and small interfering RNA. RESULTS: The differentiated LNCaP cells exhibited neurite outgrowth, and increased the expression of the typical NE markers neuron-specific enolase and βIII tubulin (βIII Tub). Treatment with 3 μM WIN inhibited NK differentiation of LNCaP cells. The cannabinoid WIN downregulated the PI3K/Akt/mTOR signaling pathway, resulting in NE differentiation inhibition. In addition, an activation of AMP-activated protein kinase (AMPK) was observed in WIN-treated cells, which correlated with a decrease in the NE markers expression. Our results also show that during NE differentiation the expression of cannabinoid receptors CB1 and CB2 dramatically decreases.
    [Show full text]
  • Modulation of Neuropathic and Inflammatory Pain by the Endocannabinoid Transport Inhibitor AM404 [N-(4-Hydroxyphenyl)-Eicosa-5,8,11,14-Tetraenamide]
    0022-3565/06/3173-1365–1371$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 317, No. 3 Copyright © 2006 by The American Society for Pharmacology and Experimental Therapeutics 100792/3113920 JPET 317:1365–1371, 2006 Printed in U.S.A. Modulation of Neuropathic and Inflammatory Pain by the Endocannabinoid Transport Inhibitor AM404 [N-(4-Hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide] G. La Rana,1 R. Russo,1 P. Campolongo, M. Bortolato, R. A. Mangieri, V. Cuomo, A. Iacono, G. Mattace Raso, R. Meli, D. Piomelli, and A. Calignano Department of Experimental Pharmacology, University of Naples, Naples, Italy (G.L.R., R.R., A.I., G.M.R., R.M., A.C.); Department of Human Physiology and Pharmacology, University of Rome “La Sapienza,” Rome, Italy (P.C., V.C.); and Department of Pharmacology and Center for Drug Discovery, University of California, Irvine, California (M.B., R.A.M., D.P.) Received December 29, 2005; accepted February 28, 2006 ABSTRACT The endocannabinoid system may serve important functions in (30 mg/kg i.p.). Comparable effects were observed with the central and peripheral regulation of pain. In the present UCM707 [N-(3-furylmethyl)-eicosa-5,8,11,14-tetraenamide], study, we investigated the effects of the endocannabinoid another anandamide transport inhibitor. In both the chronic transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa- constriction injury and complete Freund’s adjuvant model, daily 5,8,11,14-tetraenamide] on rodent models of acute and persis- treatment with AM404 (1–10 mg/kg s.c.) for 14 days produced tent nociception (intraplantar formalin injection in the mouse), a dose-dependent reduction in nocifensive responses to ther- neuropathic pain (sciatic nerve ligation in the rat), and inflam- mal and mechanical stimuli, which was prevented by a single matory pain (complete Freund’s adjuvant injection in the rat).
    [Show full text]
  • The Role of the Endocannabinoid System
    International Journal of Molecular Sciences Review The Impact of Early Life Exposure to Cannabis: The Role of the Endocannabinoid System Annia A. Martínez-Peña 1,2,†, Genevieve A. Perono 1,2,† , Sarah Alexis Gritis 2, Reeti Sharma 3, Shamini Selvakumar 3, O’Llenecia S. Walker 2,3, Harmeet Gurm 2,3, Alison C. Holloway 1,2 and Sandeep Raha 2,3,* 1 Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; [email protected] (A.A.M.-P.); [email protected] (G.A.P.); [email protected] (A.C.H.) 2 Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; [email protected] (S.A.G.); [email protected] (O.S.W.); [email protected] (H.G.) 3 Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada; [email protected] (R.S.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +1-905-521-2100 (ext. 76213) † These authors contributed equally to the preparation of this manuscript. Abstract: Cannabis use during pregnancy has continued to rise, particularly in developed countries, as a result of the trend towards legalization and lack of consistent, evidence-based knowledge on the matter. While there is conflicting data regarding whether cannabis use during pregnancy leads to adverse outcomes such as stillbirth, preterm birth, low birthweight, or increased admission to neonatal intensive care units, investigations into long-term effects on the offspring’s health are limited. Historically, studies have focused on the neurobehavioral effects of prenatal cannabis exposure on Citation: Martínez-Peña, A.A.; the offspring.
    [Show full text]
  • Acetaminophen Relieves Inflammatory Pain Through CB1 Cannabinoid Receptors in the Rostral Ventromedial Medulla
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Systems/Circuits Acetaminophen Relieves Inflammatory Pain Through CB1 Cannabinoid Receptors in the Rostral Ventromedial Medulla Pascal P. Klinger-Gratz1, William T. Ralvenius1, Elena Neumann1, Ako Kato2, Rita Nyilas2, Zsolt Lele2, István Katona2 and Hanns Ulrich Zeilhofer1,3 1Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland 2Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, H-1083 Budapest, Hungary 3Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland DOI: 10.1523/JNEUROSCI.1945-17.2017 Received: 9 July 2017 Revised: 27 October 2017 Accepted: 14 November 2017 Published: 22 November 2017 Author contributions: P.P.K.-G., W.T.R., E.N., A.K., R.N., Z.L., and I.K. performed research; P.P.K.-G., W.T.R., E.N., A.K., R.N., Z.L., I.K., and H.U.Z. analyzed data; W.T.R., I.K., and H.U.Z. designed research; I.K. and H.U.Z. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. The authors thank Drs. Beat Lutz and Giovanni Marsicano for providing CB1fl/fl mice, Dr. Masahiko Watanabe for the CB1 receptor antibody, Sébastien Druart, Andreas Pospischil, Roseline Weilenmann for the analyses of biomarkers of liver damage, and Isabelle Kellenberger, Balázs Pintér, Erika Tischler and Louis Scheurer for technical assistance. The work was partially supported by a grant from Federal Government of Switzerland through the Swiss Contribution (SH7/2/18) to IK and HUZ and by the Hungarian Academy of Sciences Momentum Program LP-54/2013 (to IK).
    [Show full text]
  • Cannabinoid Ligands Targeting TRP Channels By
    Cannabinoid ligands targeting TRP channels By: Chanté Muller, Paula Morales, and Patricia H. Reggio Muller, C., Morales, P., & Reggio, P.H. (2019). Cannabinoid ligands targeting TRP channels. Frontiers in Molecular Neuroscience, 11, 497. https://doi.org/10.3389/fnmol.2018.00487 © 2019 Muller, Morales and Reggio. Published under a Creative Commons Attribution International License (CC BY 4.0); https://creativecommons.org/licenses/by/4.0/. Abstract: Transient receptor potential (TRP) channels are a group of membrane proteins involved in the transduction of a plethora of chemical and physical stimuli. These channels modulate ion entry, mediating a variety of neural signaling processes implicated in the sensation of temperature, pressure, and pH, as well as smell, taste, vision, and pain perception. Many diseases involve TRP channel dysfunction, including neuropathic pain, inflammation, and respiratory disorders. In the pursuit of new treatments for these disorders, it was discovered that cannabinoids can modulate a certain subset of TRP channels. The TRP vanilloid (TRPV), TRP ankyrin (TRPA), and TRP melastatin (TRPM) subfamilies were all found to contain channels that can be modulated by several endogenous, phytogenic, and synthetic cannabinoids. To date, six TRP channels from the three subfamilies mentioned above have been reported to mediate cannabinoid activity: TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, and TRPM8. The increasing data regarding cannabinoid interactions with these receptors has prompted some researchers to consider these TRP channels to be “ionotropic cannabinoid receptors.” Although CB1 and CB2 are considered to be the canonical cannabinoid receptors, there is significant overlap between cannabinoids and ligands of TRP receptors. The first endogenous agonist of TRPV1 to be discovered was the endocannabinoid, anandamide (AEA).
    [Show full text]
  • Neuropsychiatric Implications of Transient Receptor Potential Vanilloid (TRPV) Channels in the Reward System T
    Neurochemistry International 131 (2019) 104545 Contents lists available at ScienceDirect Neurochemistry International journal homepage: www.elsevier.com/locate/neuint Neuropsychiatric implications of transient receptor potential vanilloid (TRPV) channels in the reward system T ∗∗ ∗ Raghunath Singha, Yashika Bansala, Ishwar Parharb, Anurag Kuhada, , Tomoko Sogab, a Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India b Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, 47500, Malaysia ARTICLE INFO ABSTRACT Keywords: Neuropsychiatric disorders (NPDs) exert a devastating impact on an individual's personal and social well-being, TRPV channels encompassing various conditions and brain anomalies that influence affect, cognition, and behavior. Because the Addiction pathophysiology of NPDs is multifactorial, the precise mechanisms underlying the development of such disorders Food reward remain unclear, representing a unique challenge in current neuropsychopharmacotherapy. Transient receptor Opioids potential vanilloid (TRPV) type channels are a family of ligand-gated ion channels that mainly include sensory Alcohol receptors that respond to thermal, mechanical and chemical stimuli. TRPV channels are abundantly present in Cannabinoids dopaminergic neurons, thus playing a pivotal role in the modulation of the reward system and in pathophy- siology of diseases such as stress, anxiety, depression, schizophrenia, neurodegenerative disorders and substance abuse/addiction. Recent evidence has highlighted TRPV channels as potential targets for understanding mod- ulation of the reward system and various forms of addiction (opioids, cocaine, amphetamines, alcohol, nicotine, cannabis). In this review, we discuss the distribution, physiological roles, ligands and therapeutic importance of TRPV channels with regard to NPDs and addiction biology.
    [Show full text]
  • Introduction Endocannabinoid System Cannabinoid Tetrad THC, CB1 And
    Natural Defense Against THC Overdose Type-1 Cannabinoid Receptors and the Functional Effects of Pregnenolone Brigitte Rios Llamosa and Alexis Camacho Advisor: Mr. Justin Spaeth, Messmer High School, Milwaukee WI Mentor: Dr. Aaron Miller - Assistant Professor of Physiology at Concordia University Introduction THC, CB1 and Pregnenolone CB1 Receptor Model Cannabis, often referred to as marijuana, is a drug produced from the Cannabis plant. Tetrahydrocannabinol (THC), the active ingredient in marijuana, also activates the CB1 Recently, marijuana has become an often debated topic as people work to legalize its use receptor. THC and similar drugs have therapeutic potential in the treatment of pain, Our model highlights the amino acids E133 and R409, which for both recreational (as in Colorado) and medical purposes. Marijuana is able to help Alzheimer’s disease, anxiety, arthritis, and cancer. A downside to the medicinal use of form hydrogen bonds with pregnenolone and are required for relieve pain, but it can also lower performance in everyday tasks. THC is that it also induces psychotropic effects. its binding to the allosteric site of CB1. Negatives Positives Both of these amino acids are colored in cpk color and • Poor coordination of • Can help control connected with a strut to our pregnenolone molecule. Other movement epileptic seizures areas that are highlighted are color-coded as follows: • Afterwards, users feel • May decrease anxiety tired or depressed • Can slow progression Alpha helixes are red. • Increases heartbeat and of diseases such as risk of heart attack Alzheimer’s disease Struts are colored white. • Inability to understand • Has been used to treat Non-motif portions are colored cornflower blue.
    [Show full text]
  • Cannabis and Endocannabinoid System
    ISSN: 2455-3484 DOI: https://dx.doi.org/10.17352/jamts MEDICAL GROUP Received: 28 December, 2020 Mini Review Accepted: 18 January, 2021 Published: 19 January, 2021 *Corresponding author: Somchai Amornyotin, As- Cannabis and sociate Professor, Department of Anesthesiology and Siriraj GI Endoscopy Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Endocannabinoid System Tel: 66-2-419-7990; Fax: 662-4113256; E-mail: Somchai Amornyotin* ORCID: https://orcid.org/0000-0002-4345-5836 Department of Anesthesiology and Siriraj GI Endoscopy Center, Faculty of Medicine Siriraj Hospital, Keywords: Cannabis; Endocannabinoid system; Mahidol University, Bangkok, Thailand Cannabinoid; Marijuana https://www.peertechz.com Abstract The endocannabinoid system is involved in various physiological pathways in the human body. A large number of endogenous cannabinoids have been acknowledged, and cannabinoid receptor type 1 (CB-1) and cannabinoid receptor type 2 (CB-2) have been categorized. The activation of endocannabinoid system could regulate the activity in several neural pathways. The complex functions of this system have generated multiple new targets for pharmacotherapies. Several research studies have concentrated on these issues. However, these efforts have been generally unsuccessful. Although cannabinoids have therapeutic potential, their psychoactive properties have largely limited their usage in clinical practice. In this review, the author briefly summarized the knowledge of cannabis and the endocannabinoid system. Introduction The human body has a cannabis chemical producing factory called the endocannabinoid system. All vertebrate In 1964, Raphael Mechoulam and colleagues at Hebrew species, including humans, have an endocannabinoid system. University in Jerusalem isolated Tetrahydrocannabinol The endocannabinoid system is one of the great unknowns of (THC) and found it to be the main psychoactive compound in the biology.
    [Show full text]
  • The Endocannabinoid System and Invertebrate Neurodevelopment and Regeneration
    International Journal of Molecular Sciences Review The Endocannabinoid System and Invertebrate Neurodevelopment and Regeneration Tristyn L. Clarke 1, Rachael L. Johnson 1 , Jonathan J. Simone 1,2,3 and Robert L. Carlone 1,2,* 1 Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; [email protected] (T.L.C.); [email protected] (R.L.J.); [email protected] (J.J.S.) 2 Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada 3 eCB Consulting Inc., P.O. Box 652, 3 Cameron St. W., Cannington, ON L2S 3A1, Canada * Correspondence: [email protected] Abstract: Cannabis has long been used for its medicinal and psychoactive properties. With the rela- tively new adoption of formal medicinal cannabis regulations worldwide, the study of cannabinoids, both endogenous and exogenous, has similarly flourished in more recent decades. In particular, research investigating the role of cannabinoids in regeneration and neurodevelopment has yielded promising results in vertebrate models. However, regeneration-competent vertebrates are few, whereas a myriad of invertebrate species have been established as superb models for regeneration. As such, this review aims to provide a comprehensive summary of the endocannabinoid system, with a focus on current advances in the area of endocannabinoid system contributions to invertebrate neurodevelopment and regeneration. Keywords: AEA; 2-AG; CB1; CB2; endocannabinoid; regeneration; neurodevelopment; invertebrate Citation: Clarke, T.L.; Johnson, R.L.; Simone, J.J.; Carlone, R.L. The Endocannabinoid System and Invertebrate Neurodevelopment and 1. Historical Introduction to Cannabis and Endocannabinoids Regeneration. Int. J. Mol. Sci.
    [Show full text]