Canadian Astronomy Long Range Plan

Total Page:16

File Type:pdf, Size:1020Kb

Canadian Astronomy Long Range Plan Discovery at the Cosmic Frontier: Canadian Astronomy Long Range Plan 2020–2030 Canadian Astronomical Society (CASCA) © 2021 Canadian Astronomical Society (CASCA) ISBN 978-0-9878010-4-3 Downloadable PDF available at www.casca.ca Aussi disponible en français All images not credited obtained from iStock Design by Intent forgoodintent.com Canadian Astronomical Society (CASCA) Discovery at the Cosmic Frontier: Canadian Astronomy Long Range Plan 2020–2030 COVER Joined by bright Jupiter and fainter Saturn, the summer Milky Way shines above the Atlantic coast of Nova Scotia. Canadian astronomy is poised to make great discoveries about the cosmos, and to deliver substantive benefits to Canada and to the world. Page 136 Table of Contents 6 Preface 81 Gemini 7 Chapter 1 – Executive Summary 83 LSST 84 MSE 10 Chapter 2 – Scope and Purpose of This Report 85 SDSS-V 12 Chapter 3 – The State of Astronomy in Canada in 2020 85 Subaru 14 Highlights and Achievements of the Last Decade 86 VLOT 14 Infrastructure 88 Ground-Based Facilities: Radio, Millimetre and Submillimetre 16 Knowledge 89 ALMA 20 Capacity 90 CHORD 21 Theoretical Astrophysics 91 CMB-S4 22 Current Facilities: Ground-based Telescopes 92 FYST 24 Current Facilities: Space Telescopes 92 JCMT and Future Large Submillimetre Single-Dish Telescopes 24 Instrumentation and Technology Development 93 ngVLA 27 Research Computing Infrastructure 94 Simons Observatory (SO) 28 Funding and Organizations 94 SKA1 33 People 98 Space Astronomy Missions 35 Canadian Astronomy and Society 98 ARIEL 35 Public Engagement 99 ATHENA 42 Astronomy and Other Scientific Fields 99 Ballooning 42 Industry-Astronomy Partnerships 100 CASTOR 43 Benefits to Society 102 Colibrì 46 Chapter 4 – Science Questions for the Next Decade 103 Cooled Infrared Space Telescope of Astrophysics In Canada 104 ÉPPÉ 51 How Did the Universe Begin and What Is It Made Of? 104 Euclid 51 How Have Stars and Galaxies Changed Over Cosmic Time? 105 JWST 52 What Are the Extreme Conditions of the Universe? 106 LiteBIRD 53 Why Are Planetary Systems So Diverse and Could Other 107 NASA Flagships Planets Host Life? 108 NEOSSat 54 Chapter 5 – Recommendations on Facilities, 108 POEP Projects and Resources 109 XRISM 59 Recommendation on Selecting the Locations of Astronomy Facilities and Infrastructure 110 Chapter 7 – Astronomy and Society 59 Recommendation on Coordination of Funding Agencies 112 Professional Culture and Responsibilities 59 Recommendations on Theoretical Astrophysics 112 Equity and Inclusion 59 Recommendations on Digital Research Infrastructure 115 Ethics and Values 60 Recommendations on NRC-University Partnerships 116 Indigenous Engagement 60 Recommendations on Observational Facilities 118 Education and Public Outreach 63 Recommended Large (>$30M) Investments 120 Sustainability in Ground-Based Facilities 121 Governance and Funding 66 Recommended Mid-Scale ($5M–$30M) Investments 121 NRC and HAA in Ground-Based Facilities 123 CSA and JCSA 69 Recommended Very Large (>$100M) Investments in Space Astronomy 126 CFI 69 Recommended Large ($25M–$100M) Investments 127 NSERC in Space Astronomy 128 CASCA, ACURA, and LRPIC 71 Recommended Additional (<$25M) Investments 129 CCA in Space Astronomy 131 Training of Highly-Qualified Personnel 72 Chapter 6 – Future Landscape 132 Professional Training and Skills Development 74 Theoretical Astrophysics 133 Career Development and Progression 77 Digital Research Infrastructure 136 Chapter 8 – Epilogue 79 Ground-Based Facilities: Optical and Infrared 138 Chapter 9 – Reference Material and Appendices 80 Arctic Astronomy 80 CFHT Preface On behalf of Matt Dobbs, Jeremy Heyl, Natasha Ivanova, David Lafrenière, Brenda Matthews and Alice Shapley, we are pleased to present the final report of the Canadian Astronomical Society’s 2020 Long Range Plan for Canadian Astronomy (LRP2020). This report presents a roadmap for Canadian astronomy over the next decade and beyond, reflecting Canadian astronomers’ aspirations and passion for understanding the Universe. The LRP2020 report is the work of not only the eight LRP panel members, but also the hundreds of researchers who contributed white papers, reports, ideas, detailed critiques, ideas and commentary, the dozens of staff members from funding agencies and other organizations who participated in consultations and provided feedback, and the many colleagues from around the world who responded to our requests for information. We are grateful to all of these individuals for their participation, to the agencies whose financial support enabled the LRP2020 process, and to the CASCA Board for entrusting us with the leadership of this exercise. We look forward to seeing the recommendations enacted and the discovery potential of Canadian astronomy fulfilled. Pauline Barmby and Bryan Gaensler Co-Chairs, 2020 Long Range Plan for Canadian Astronomy December 2020 6 Canadian Astronomy Long Range Plan 2020–2030 Chapter 1 Chapter 1 Executive Summary Canada has played a leading role in exploring the Universe for more than a century, with many spectacular discoveries over the last decade. Canadian astronomers now have exciting plans to further expand our horizons and our cosmic understanding, centred around four core questions: 1. How did the Universe begin and what is it made of? 2. How have stars and galaxies changed over cosmic time? 3. What are the extreme conditions of the Universe? 4. Why are planetary systems so diverse and could other planets host life? In order to answer these questions and then to share in Phase 1 of the Square Kilometre Array (SKA1). These these discoveries with the public, Canadian astronomers were also the highest ground-based priorities in the 2010 will need access to a wide range of powerful telescopes and Long Range Plan, and are anticipated to move forward supercomputers, paired with new ways of interacting with in the next two to three years. Two future projects, data, with each other, and with the broader community. the Maunakea Spectroscopic Explorer (MSE) and the In this 2020 Long Range Plan for Canadian Astronomy, Next Generation Very Large Array (ngVLA), represent we set out priorities and recommendations that will compelling future opportunities for Canada and should be ensure that Canadian astronomy sits at the forefront further developed. Mid-scale investments ($5M–$30M) of knowledge and discovery over the next ten years, in ground-based facilities are also of key importance. that the associated community of scientists, staff and Significant scientific returns lie ahead for several of students will succeed and flourish, and that this work Canada’s existing telescopes: Canada should continue benefits the Canadian economy and Canadian society. to support the Atacama Large Millimeter/submillimeter Large telescopes in remote locations are the core Array (ALMA), the Gemini Observatory, and the Canada- component of modern astronomy. We recommend that France-Hawaii Telescope (CFHT). Canada should also the Canadian astronomical community develop and adopt make new mid-scale investments in future facilities, a comprehensive set of guiding principles for the locations specifically in the Canadian Hydrogen Observatory of astronomy facilities and associated infrastructure, to and Radio-transient Detector (CHORD), the Cosmic be applied to all future Canadian participation in astronomy Microwave Background Stage 4 experiment (CMB-S4), projects. These principles should be centred on consent and the Legacy Survey of Space and Time (LSST). from relevant Indigenous Peoples and traditional title Space astronomy missions provide unique information holders, and should reject the use or threat of force not available from telescopes on the ground. Participation for developing or accessing an astronomical site. in multiple new space astronomy missions is needed to Over the next decade, Canada’s highest priorities for maintain Canada’s expertise and skill base, and to address large investments (>$30M) in ground-based telescopes the broad scientific needs of the Canadian astronomy are a very large optical telescope (VLOT) and participation community. The highest priority for very large (>$100M) Canadian Astronomical Society 7 Chapter 1 investments in space astronomy is the Cosmological and construction of university-led mid-scale initiatives, Advanced Survey Telescope for Optical and ultraviolet and to enhance the high-risk, high-reward innovation Research (CASTOR), an outstanding prospect for Canada’s capabilities of university-based astrophysics laboratories. first marquee space astronomy mission. Participation Theoretical astrophysics is an essential part of modern in NASA’s next flagship astronomy mission is also a high astronomy. Canada has built a critical mass of world-leading priority in this category. The community’s highest priority theorists who study phenomena across the Universe, unified for large ($25M–$100M) investments in space astronomy by the Canadian Institute for Theoretical Astrophysics is participation in the Japanese-led Lite satellite for the (CITA) at the University of Toronto and its accompanying studies of B-mode polarization and Inflation from cosmic national program. As CITA now moves into its fifth decade, background Radiation Detection (LiteBIRD), followed by CITA’s footprint should grow and decentralize, so that it pursuing opportunities for substantive participation in a can play a greater role in enhancing the national theoretical large, cooled, infrared international space telescope. The astrophysics profile on the world scene, and can
Recommended publications
  • A Needs Analysis Study of Amateur Astronomers for the National Virtual Observatory : Aaron Price1 Lou Cohen1 Janet Mattei1 Nahide Craig2
    A Needs Analysis Study of Amateur Astronomers For the National Virtual Observatory : Aaron Price1 Lou Cohen1 Janet Mattei1 Nahide Craig2 1Clinton B. Ford Astronomical Data & Research Center American Association of Variable Star Observers 25 Birch St, Cambridge MA 02138 2Space Sciences Laboratory University of California, Berkeley 7 Gauss Way Berkeley, CA 94720-7450 Abstract Through a combination of qualitative and quantitative processes, a survey was con- ducted of the amateur astronomy community to identify outstanding needs which the National Virtual Observatory (NVO) could fulfill. This is the final report of that project, which was conducted by The American Association of Variable Star Observers (AAVSO) on behalf of the SEGway Project at the Center for Science Educations @ Space Sci- ences Laboratory, UC Berkeley. Background The American Association of Variable Star Observers (AAVSO) has worked on behalf of the SEGway Project at the Center for Science Educations @ Space Sciences Labo- ratory, UC Berkeley, to conduct a needs analysis study of the amateur astronomy com- munity. The goal of the study is to identify outstanding needs in the amateur community which the National Virtual Observatory (NVO) project can fulfill. The AAVSO is a non-profit, independent organization dedicated to the study of vari- able stars. It was founded in 1911 and currently has a database of over 11 million vari- able star observations, the vast majority of which were made by amateur astronomers. The AAVSO has a rich history and extensive experience working with amateur astrono- mers and specifically in fostering amateur-professional collaboration. AAVSO Director Dr. Janet Mattei headed the team assembled by the AAVSO.
    [Show full text]
  • Flaming Star the Flaming Star Nebula (IC 405) in the Constellation Auriga Is a Surprisingly Colorful and Dramatic Emission/Reflection Nebula
    WESTCHESTER AMATEUR ASTRONOMERS January 2016 Image Copyright: Mauri Rosenthal Flaming Star The Flaming Star Nebula (IC 405) in the constellation Auriga is a surprisingly colorful and dramatic emission/reflection nebula. In This Issue . The most prominent star in the image is the variable blue dwarf AE pg. 2 Events For January Aurigae, burning with sufficient intensity to knock electrons off pg. 3 Almanac the hydrogen molecules found in a cloud 5 light years across, pg. 4 Vivian Towers which in turn emit red light. The bluish gray area is not from ion- pg. 5 The Radio Sky ized Oxygen (as found in the Veil Nebula); rather it is mostly a pg. 11 Kepler cloud of carbon dust, which reflects the blue light from the nearby pg. 12 President’s Report star. The result is an emission/reflection nebula 1500 light years distant and accessible from the suburbs with a small telescope. Mauri Rosenthal imaged this from his backyard in Scarsdale with a guided Questar 3.5” telescope over two nights in November using CLS (broadband) and H-alpha (narrowband) filters. Total exposure time was 9.5 hours. SERVING THE ASTRONOMY COMMUNITY SINCE 1986 1 WESTCHESTER AMATEUR ASTRONOMERS January 2016 WAA January Lecture Club Dates 2016 “Light Pollution” Friday January 8th, 7:30pm 2016 Lecture Dates Leinhard Lecture Hall, January 8 June 3 February 5 Sept. 16 Pace University, Pleasantville, NY March 4 October 7 Charles Fulco will speak on light pollution, the Inter- April 1 November 4 national Dark-Sky Association and preserving our May 6 December 2 night sky.
    [Show full text]
  • Echo Exoplanet Characterisation Observatory
    Exp Astron (2012) 34:311–353 DOI 10.1007/s10686-012-9303-4 ORIGINAL ARTICLE EChO Exoplanet characterisation observatory G. Tinetti · J. P. Beaulieu · T. Henning · M. Meyer · G. Micela · I. Ribas · D. Stam · M. Swain · O. Krause · M. Ollivier · E. Pace · B. Swinyard · A. Aylward · R. van Boekel · A. Coradini · T. Encrenaz · I. Snellen · M. R. Zapatero-Osorio · J. Bouwman · J. Y-K. Cho · V. Coudé du Foresto · T. Guillot · M. Lopez-Morales · I. Mueller-Wodarg · E. Palle · F. Selsis · A. Sozzetti · P. A. R. Ade · N. Achilleos · A. Adriani · C. B. Agnor · C. Afonso · C. Allende Prieto · G. Bakos · R. J. Barber · M. Barlow · V. Batista · P. Bernath · B. Bézard · P. Bordé · L. R. Brown · A. Cassan · C. Cavarroc · A. Ciaravella · C. Cockell · A. Coustenis · C. Danielski · L. Decin · R. De Kok · O. Demangeon · P. Deroo · P. Doel · P. Drossart · L. N. Fletcher · M. Focardi · F. Forget · S. Fossey · P. Fouqué · J. Frith · M. Galand · P. Gaulme · J. I. González Hernández · O. Grasset · D. Grassi · J. L. Grenfell · M. J. Griffin · C. A. Griffith · U. Grözinger · M. Guedel · P. Guio · O. Hainaut · R. Hargreaves · P. H. Hauschildt · K. Heng · D. Heyrovsky · R. Hueso · P. Irwin · L. Kaltenegger · P. Kervella · D. Kipping · T. T. Koskinen · G. Kovács · A. La Barbera · H. Lammer · E. Lellouch · G. Leto · M. A. Lopez Valverde · M. Lopez-Puertas · C. Lovis · A. Maggio · J. P. Maillard · J. Maldonado Prado · J. B. Marquette · F. J. Martin-Torres · P. Maxted · S. Miller · S. Molinari · D. Montes · A. Moro-Martin · J. I. Moses · O. Mousis · N. Nguyen Tuong · R.
    [Show full text]
  • The Atacama Pathfinder Experiment — Reaching New Heights in Submillimetre Astronomy
    The Atacama Pathfinder Experiment — Reaching New Heights in Submillimetre Astronomy European Southern Observatory APEX on watch at Chajnantor. Credit: ESO/B. Tafreshi (twanight.org) The Atacama Pathfinder Experiment — Reaching New Heights in Submillimetre Astronomy ESO operates the Atacama Pathfinder “thermometers” known as bolometers submillimeter Array, a revolutionary new Experiment telescope, APEX, at one of to detect submillimetre light. In order to telescope that ESO, together with its the highest observatory sites on Earth, at be able to detect the tiny temperature international partners, is now operating an elevation of 5100 metres, high on the changes caused by the faint submillimetre on the Chajnantor Plateau. APEX is based Chajnantor Plateau in Chile’s Atacama radiation, each of these thermometers on a prototype antenna constructed for region. is cooled to less than 0.3 degrees above the ALMA project, and it will find many absolute zero — a frigid –272.85 °C. targets that ALMA will be able to study in APEX is a 12-metre diameter telescope, LABOCA’s high sensi tivity, together with great detail. operating at millimetre and submillimetre its wide field of view (one third of the wavelengths — between infrared light diameter of the full Moon), make it an APEX is a collaboration between the and radio waves. Submillimetre astronomy invaluable tool for imaging the submilli- Max Planck Institute for Radio Astronomy, opens a window into the cold, dusty metre Universe. the Onsala Space Observatory and ESO. and distant Universe, but the faint signals The telescope is operated by ESO. from space are heavily absorbed by APEX was developed as a pathfinder for water vapour in the Earth’s atmosphere.
    [Show full text]
  • Site Testing for Submillimetre Astronomy at Dome C, Antarctica
    A&A 535, A112 (2011) Astronomy DOI: 10.1051/0004-6361/201117345 & c ESO 2011 Astrophysics Site testing for submillimetre astronomy at Dome C, Antarctica P. Tremblin1, V. Minier1, N. Schneider1, G. Al. Durand1,M.C.B.Ashley2,J.S.Lawrence2, D. M. Luong-Van2, J. W. V. Storey2,G.An.Durand3,Y.Reinert3, C. Veyssiere3,C.Walter3,P.Ade4,P.G.Calisse4, Z. Challita5,6, E. Fossat6,L.Sabbatini5,7, A. Pellegrini8, P. Ricaud9, and J. Urban10 1 Laboratoire AIM Paris-Saclay (CEA/Irfu, Univ. Paris Diderot, CNRS/INSU), Centre d’études de Saclay, 91191 Gif-Sur-Yvette, France e-mail: [pascal.tremblin;vincent.minier]@cea.fr 2 University of New South Wales, 2052 Sydney, Australia 3 Service d’ingénierie des systèmes, CEA/Irfu, Centre d’études de Saclay, 91191 Gif-Sur-Yvette, France 4 School of Physics & Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, UK 5 Concordia Station, Dome C, Antarctica 6 Laboratoire Fizeau (Obs. Côte d’Azur, Univ. Nice Sophia Antipolis, CNRS/INSU), Parc Valrose, 06108 Nice, France 7 Departement of Physics, University of Roma Tre, Italy 8 Programma Nazionale Ricerche in Antartide, ENEA, Rome Italy 9 Laboratoire d’Aérologie, UMR 5560 CNRS, Université Paul-Sabatier, 31400 Toulouse, France 10 Chalmers University of Technology, Department of Earth and Space Sciences, 41296 Göteborg, Sweden Received 25 May 2011 / Accepted 17 October 2011 ABSTRACT Aims. Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile.
    [Show full text]
  • Who Actually Invented the Astronomical Telescope?
    The International Year of Astronomy Vision To help the citizens of the world rediscover their place in the Universe through the day and night time sky, and thereby engage a personal sense of wonder and discovery. Celebration A global celebration of astronomy and its contributions to society and culture, highlighted by the 400th anniversary of the first use of an astronomical telescope by Galileo. Goals & Objectives Increase scientific awareness. Promote widespread access to new knowledge and observing experiences. Empower astronomical communities in developing countries. Support and improve formal and informal science education. Provide a modern image of science and scientists. Facilitate new networks and strengthen existing ones. Improve the gender-balanced representation of scientists at all levels and promote greater involvement by underrepresented minorities in scientific and engineering careers. Facilitate the preservation and protection of the world’s cultural and natural heritage of dark skies and historical astronomical sites. Organisational Structure IAU President: Catherine Cesarsky IAU General Secretary: Karel van der Hucht Chair: Catherine Cesarsky Secretary: Lars Lindberg Christensen Coordinator: Pedro Russo Organisational Current Status (203 days to go…) 118 National Nodes / Aim: 140 Nations 64 National Websites 20 Organisational Nodes 16 Organisational Associates 11 Cornerstone Projects 2 Special Projects 11 Special Task Groups 100 Hours of Astronomy • 100 Hours of Astronomy Global Cornerstone Project • Task group co-chairs:
    [Show full text]
  • Aworldwideastronomy
    hours100 Hours of Astronomy of Astronomy Y.NET.NZ) M AWorldwideAstronomy PAUL MOSS (WWW.ASTRONO MARATHON Grab your scopes and friends and head outside! Early April will be amateur astronomy’s time to shine for the International Year of Astronomy 2009. If you have a telescope, mark April 2–5 on your calen- star party will sweep around the world, with local gather- dar. The world is coming your way. ings beginning as darkness descends. Even city street cor- An unprecedented string of public skywatching events ners will come alive, with the third annual International will be packed into this brief period, all designed to engage Sidewalk Astronomy Night happening the first weekend people and bring them out for a worldwide star party that in April. Thus many sidewalk astronomy regulars will will cap the program on Saturday evening, April 4th. already be at their stations. Collectively, the period is called “100 Hours of Astron- omy.” It’s a Cornerstone Project of the International Year Get Involved of Astronomy 2009 (January issue, page 82) tailor-made This will be the largest amateur astronomy outreach for amateurs who’d like to try some out- event ever held, and everyone with a telescope is needed. MIKE SImmONS reach. During the final 24 hours a global Whether you’re an expert or a newbie yourself, whether your scope gets used regularly or has been relegated to a JOIN THE PARTY It will be a worldwide celebration April 2–5, as the Interna- garage or closet, someone new should get their chance to tional Year of Astronomy marks 100 Hours of Astronomy with public viewing, live see the heavens up close with it.
    [Show full text]
  • The IYA2009 in Europe at JENAM 2009 Reviews
    The IYA2009 in Europe at JENAM 2009 Reviews Ian Robson1 UK Astronomy Technology Centre E-mail: [email protected] to make the project happen. The film was given its first showing at the meeting and will be distributed to schools throughout the UK. For those interested in obtain- ing a copy, contact production team at [email protected]. In the education section, two of the IYA2009 Cornerstone projects were reviewed: UNAWE (Carolina Ödman) and the Galileo Teacher Training Program (Rosa Doran). There was lots of audience discussion on both of these topics. We also heard about Figure 1. The four children from the Meden School and Technology College: Warsop, Nottinghamshire — Niall Evans, Joshua Cantrell, a wide range of educational activities in Chloe Johnson and Laura Simpson (left to right) alongside Bridget, Astrium’s EXOMARS Rover prototype. Benin, Spain and the UK. The highlight of the education session was organised by The European Week of Astronomy and all those involved in its organisation and Mrs Tina Sherwood, a local schoolteacher, Space Science was marked by the combi- delivery. The “behind the scenes” snippets where four 11–12 year old schoolchil- nation of the UK National Astronomy Meet- from Douglas showed what a truly profes- dren gave very impressive and assured ing (NAM) and the Joint European National sional event this was and how complex the presentations about their project work on Astronomy Meeting (JENAM), both held at organisation had been. Many thanks are archaeoastronomy. Hatfield in the UK from 20 April through 23 due to ESO for the technical support.
    [Show full text]
  • Eao Submillimetre Futures Paper Series, 2019
    EAO SUBMILLIMETRE FUTURES PAPER SERIES, 2019 The East Asian Observatory∗ James Clerk Maxwell Telescope 660 N. A‘ohok¯ u¯ Place, Hilo, Hawai‘i, USA, 96720 1 About This Series Submillimetre astronomy is an active and burgeoning field that is poised to answer some of the most pressing open questions about the universe. The James Clerk Maxwell Telescope, operated by the East Asian Observatory, is at the forefront of discovery as it is the largest single-dish submillimetre telescope in the world. Situated at an altitude of 4,092 metres on Maunakea, Hawai‘i, USA, the facility capitalises on the 850 µm observing window that offers crucial insights into the cold dust that forms stars and galaxies. In 1997, the Submillimetre Common User Bolometer Array (SCUBA) was commissioned, allowing astronomers to detect the furthest galaxies ever recorded (so-called SCUBA galaxies) and develop our understanding of the earliest stages of star formation. Since 2011, its successor, SCUBA-2, has revolutionised submillimetre wavelength surveys by mapping the sky hundreds of times faster than SCUBA. The extensive data collected spans a wealth of astronomy sub-fields and has inspired world-wide collaborations and innovative analysis methods for nearly a decade. Building on the successes of these instruments, the East Asian Observatory is constructing a third generation 850 µm wide-field camera with intrinsic polarisation capabilities for deployment on the James Clerk Maxwell Telescope. In May, 2019, the “EAO Submillimetre Futures” meeting was held in Nanjing, China to discuss the science drivers of future instrumentation and the needs of the submillimetre astronomy community. A central focus of the meeting was the new 850 µm camera.
    [Show full text]
  • Table of Contents May AAC General Meeting No Summer AAC Meetings
    TTThehehe FFFTheocalocalocal Atlanta Astronomy Club PPPointointoint Vol. 29 No. 12Established 1947 Editor: Tom Faber May 2017 Table of Contents No Summer AAC Meetings Page 1... May General Meeting, No Summer Meetings, DAV Picnic Due to a decision made by the AAC Board of Directors earlier this year, Page 2... April Meeting Report and Photos the Atlanta Astronomy Club will not hold meetings during the summer months of June, July, and August. This decision was made due to low Page 3... Next CEA Meeting, President’s Desk, Ga Astronomers Mtg attendance at the summer meetings and the difficulty in finding speakers Page 4... Historic Refractor Moving to Arkansas for the summer months. So the next meeting of the Atlanta Astronomy Page 5... Astronomy Day at the Tellus Science Museum Club will be in September at a time and location to be announced. The Charlie Elliott Astronomy chapter of the Atlanta Astronomy Club will Page 6... Hubble Images Galaxy Cluster Abell 370 hold meetings during the summer and have observing after their meetings, Page 7... AAC Online, Memberships, Contact Info weather permitting. AAC members are encouraged to attend these Page 8... Calendar, AAC List Serv Info, Focal Point Deadline meetings. The CEA summer meetings will be on Saturday June 24, July 22, and August 19. Also, since the new moon is now starting to occur around the 3rd weekend of the month, to avoid conflicting with other events held on new moon May AAC General Meeting weekends, starting in September the monthly meetings of the AAC will move to the second Saturday of the month.
    [Show full text]
  • Aug. 15 Long Learners to the COC
    OBSERVATORY NEWS August 2014 Published by the Friends of the Observatory (FOTO) Volume 25 No. 8 513-321-5186 www.cincinnatiobservatory.org Bill Cartwright, editor Planning is well underway for COMING UP AT ScopeOut this September 13. This is a major public outreach event THE OBSERVATORY.... for COC. Dale Zoller and the ScopeOut Planning Committee have some great new ideas for this FOTOKids Aug 1 7p year’s event. Many FOTO Astronomy Friday Aug 1 8:30p volunteers are needed to make this Stargazing at Lincoln Ridge Aug 2 8:30p event a fun and educational Astronomy Thursday Aug 7 8:30p experience for everyone. If you Astronomy Friday Aug 8 8:30p would like to help, please contact SuperMoon Aug 9 7p Dale Zoller or come to the History Tours Aug 10 1-4p ScopeOut planning meeting (see *FOTO Member’s Meeting Aug 11 7:30p announcement later in this **Planetology Aug 12 7p newsletter). Astronomy Thursday Aug 14 8:30p There are also many Astronomy Friday Aug 15 8:30p THE WORD opportunities to participate in Late Night Date Night Aug 16 10:30p Sidewalk Astronomy this summer By Michelle Lierl Gainey and fall, while the weather is nice Astrophoto Workshop Aug 21 7p and people are out and about. Astronomy Thursday Aug 21 8:30p This is a great way to share your Stonelick Stargaze Aug 23 dusk Hello friends! I hope you are all enjoying the summer. The July 13 love of the night sky with people History Tours Aug 24 1-4p who might have never Member Movie Night Aug 25 7p FOTO picnic was held inside, due to bad weather; it was a very experienced it before.
    [Show full text]
  • Ann Bruun Astronomy Club of Tulsa President
    The Feb 2012 Newsletter did not appear due to technical problems The following appeared in its place. Posted Feb 28, 2012 By John Land Contents Meeting Announcement President’s Message Upcoming Solar Events Messier Marathon March Sky events Astronomy Videos online Photography from ISS at 17,500 mph & Flying PB sandwich Friday March 2 nd 7:00 PM Meeting at TCC NE Campus Program Observing the Sun – Counting Sunspots – Solar Activity Cycle – Making a Safe Solar filter - Details below Link to Campus Map http://astrotulsa.com/TCC-NE-CAMPUS-Website-Map.pdf Message from President – Ann Bruun Hello Astronomy Club of Tulsa Members. We have made it to February without too much trouble from the weather so far. It is nice to be able to get outside on these clear nights and take in the winter skies. Some of the most stunning sights are only available during these bitterly cold months. Right now we are also being treated to beautiful views of Venus, Jupiter and Mars in the evening sky. There are several observatory projects in the works for this year. Two of these projects will involve hiring professionals. We have a team in place that is currently collecting bids from contractors to find the right people. Tony, Teresa and Chris have taken on this not so easy task. If you have any ideas or suggestions please contact one of them. The two repairs we are looking for professional help on are first; the pulley system on the dome hatch needs to be updated and second; there are several cinder blocks that were damaged by water during the time the roof was leaking on the west side of the classroom.
    [Show full text]