Anionic Synthesis of In-Chain and Chain-End Functionalized

Total Page:16

File Type:pdf, Size:1020Kb

Anionic Synthesis of In-Chain and Chain-End Functionalized ANIONIC SYNTHESIS OF IN-CHAIN AND CHAIN-END FUNCTIONALIZED POLYMERS A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Sumana Roy Chowdhury December, 2006 ANIONIC SYNTHESIS OF IN-CHAIN AND CHAIN-END FUNCTIONALIZED POLYMERS Sumana Roy Chowdhury Dissertation Approved: Accepted: _________________________________ _______________________________ Advisor Department Chair Dr. Roderic P. Quirk Dr. Mark D. Foster _________________________________ _______________________________ Committee Member Dean of College Dr. Judit E. Puskas Dr. Frank N. Kelley _________________________________ _______________________________ Committee Member Dean of Graduate School Dr. Frank N. Kelley Dr. George R. Newkome ________________________________ _______________________________ Committee Member Date Dr. Frank W. Harris ________________________________ Committee Member Dr. Chrys Wesdemiotis ii ABSTRACT The objective of this work was to anionically synthesize well-defined polymers having functional groups either at the chain-end or along the polymer chain. General functionalization methods (GFM) were used for synthesizing both kinds of polymers. Chain-end functionalized polymers were synthesized by terminating the anionically synthesized, living polymer chains using chlorodimethylsilane. Hydrosilation reactions were then done between the silyl-hydride groups at the chain-ends and the double bonds of commercially available substituted alkenes. This produced a range of well-defined polymers having the desired functional groups at the chain-ends. In- chain functionalized polymers were synthesized by anionically polymerizing a silyl- hydride functionalized styrene monomer: (4-vinylphenyl)dimethysilane. Polymerizations were done at room temperature in hydrocarbon solvents to produce well-defined polymers. Functional groups were then introduced into the polymer chains by use of hydrosilation reactions done post-polymerization. The functionalized polymers produced were characterized using SEC, 1H and 13C NMR, FTIR, MALDI TOF mass spectrometry and DSC. The monomer reactivity ratios in the copolymerization of styrene with (4- vinylphenyl)dimethylsilane were also measured. A series of copolymerizaions was done with different molar ratios of styrene(S) and (4-vinylphenyl)dimethylsilane(Si). iii Three different methods were used to determine the values of the monomer reactivity ratios : Fineman-Ross, Kelen-Tudos and Error-In-Variable (EVM) methods. The average values of the two monomer reactivity ratios obtained were: rSi = 0.16 and rS = 1.74. From these values it was observed that in the copolymerization of styrene with (4-vinylphenyl)dimethylsilane, the second monomer was preferentially incorporated into the copolymer chain. Also, rSirS = 0.27, which shows that the copolymer has a tendency to have an alternating structure. Amino acid-functionalized polymers (biohybrids) were synthesized by using a simple and efficient, three-step method. The first step was to make a copolymer of styrene with (4-vinylphenyl)dimethylsilane, followed by introduction of amine functional groups into the polymer chain, using a hydrosilation reaction between the silyl-hydride units in the copolymer chain and the double bond of allyl amine. The third step was a condensation reaction between these amine functional groups on the copolymer chain and the carboxyl group on N-carbobenzyloxy-phenylalanine (a protected amino acid). Although this method has been used to incorporate a particular amino acid onto the polymer chain, it maybe possible to extend this procedure to introduce virtually any amino acid or peptide group into the polymer chain. Finally a thermoplastic elastomer (TPE) was synthesized using the monomer (4- vinylphenyl)dimethylsilane. The first block of this TPE was a copolymer block of styrene with (4-vinylphenyl)dimethylsilane, followed by a polyisoprene block and finally another copolymer block of styrene and (4-vinylphenyl)dimethylsilane. This polymer was characterized using SEC, 1H and 13C NMR, FTIR, DSC, DMTA, TEM iv and tensile testing. It was seen to exhibit properties similar to those of a regular styrene-diene-styrene TPE. However, the silyl-hydride units introduced into this polymer chain can be easily converted to different functional groups using hydrosilation reactions. Introduction of such functional groups would be helpful in tailoring the properties of the TPE. v ACKNOWLEDGEMENTS I am deeply grateful to my advisor, Professor Roderic P. Quirk, for his continued support and encouragement during the past few years. I am also very grateful to all my group members (past and present) for their help and also for making my stay here more enjoyable. I also want to thank my parents and my husband, Jayanta, for their support during my stay here. Without their help and encouragement I would not have been able to reach here. vi TABLE OF CONTENTS Page LIST OF FIGURES…………………………………………………………….......xii LIST OF TABLES………………………………………………………………….xvi LIST OF SCHEMES……………………………………………………………….xvii CHAPTER I. INTRODUCTION…………………….…………………………………….…....1 II. HISTORICAL BACKGROUND………………………………………….….....4 2.1 Living Anionic Polymerization…………………………….……………......4 2.1.1 General Aspects………………………………………………….……4 2.1.2 Monomers……………………………………………………….…….7 2.1.3 Solvents…………………………………………………………….....8 2.1.4 Initiators………………………………………………………….……9 2.1.5 Lewis Base Effects……………………………………………….......12 2.1.6 Initiation Reactions………………………………………………......13 2.1.7 Propagation Reactions…………………………………………….....15 2.1.8 Stereochemistry of diene polymerization……….…………………...16 2.2 Copolymerization…………………………………………………………..18 2.2.1 Block Copolymers…………………………………………………...20 2.2.1.1 Three-step sequential monomer addition……………….…..20 vii 2.2.1.2 Two-step monomer sequential addition and coupling………..21 2.2.1.3 Difunctional initiation and two-step monomer addition……...21 2.2.2 Determination of monomer reactivity ratios………………………….22 2.2.2.1 Fineman-Ross Method……………………………………….22 2.2.2.2 Kelen-Tudos Method………………………………………....23 2.2.2.3 Error-In-Variable (EVM) Method……………………………24 2.3 Functionalized Polymers…………………………………………………….24 2.3.1 Chain-end functionalized polymers…………….…………………….25 2.3.1.1 Hydrosilation Reactions…………….………………………..27 2.3.1.2 A General Functionalization Method by combination of anionic polymerization and hydrosilation reaction………….29 2.3.2 In-chain functionalized polymers………………………….…………30 III. EXPERIMENTAL…..…………………………………………………………34 3.1 Purification of Solvents, Monomers and Reagents…………………….…...36 3.1.1 General……………………………..…………………………………36 3.1.2 Hydrocarbon Solvents……………………………..………………….36 3.1.3 Ethers…………………………………………..……………………..37 3.1.4 Alcohols………………………………………………..……………..38 3.1.5 Styrene…………………………………………………..……………38 3.1.6 Isoprene…………………………………………………..…………...39 3.1.7 Chlorodimethylsilane……………………………………...………….39 3.1.8 Allyl functional compounds…………………………………………..39 3.2 Synthesis of (4-vinylphenyl)dimethylsilane……………………………...…39 viii 3.3 Introduction and modification of functional groups post- polymerization………………………………………………………………40 3.3.1 Hydrosilation Reactions………………………………………………40 3.4 Polymerization Techniques………………………………………………….42 3.5 Polymerization Studies……………………………………...………………44 3.5.1 Polystyrene and Poly(4-vinylphenyl)dimethylsilane…….…………..44 3.5.2 Poly(styrene-co-4-(vinylphenyl)dimethylsilane)…………….………46 3.5.3 Polyisoprene………………………………………………….………48 3.6 Synthesis of functional polymers………………………….………….…….48 3.6.1 Silyl-hydride chain-end functional polystyrene………………….…..48 3.6.2 Synthesis of cyanide-end functionalized polystyrene………………..49 3.6.3 Synthesis of ethyl ether, chain-end functionalized polymer……….…49 3.6.4 Synthesis of acetate, chain-end functionalized polymer……………...50 3.6.5 Synthesis of epoxide, in-chain functionalized polymer………………50 3.6.6 Synthesis of diol in-chain functionalized polymer…………………...51 3.6.7 Synthesis of perfluoroalkyl in-chain functionalized polymer………..51 3.6.8 Synthesis of polymer-peptide biohybrid……………………………..52 3.6.8.1 Synthesis of in-chain amine functionalized copolymer……..52 3.6.8.2 Synthesis of the biohybrid…………………………….……..52 3.6.9 Synthesis of the thermoplastic elastomer (TPE) using (4-vinylphenyl)dimethylsilane……………………………….............53 3.7 Polymer Characterization………………..………………………………….54 3.7.1 Molecular Weight and Molecular Weight Distribution……..……….54 ix 3.7.1.1 Size Exclusion Chromatography (SEC)…..…………………54 3.7.1.2 Matrix Assisted Laser Desorption-Ionization Time of Flight (MALDI TOF) Mass Spectroscopy………….…….55 3.7.2 Nuclear Magnetic Resonance (NMR) Spectroscopy………….….…..55 3.7.3 Fourier Transform Infrared Spectroscopy (FT-IR)…………………...56 3.7.4 Thermal Properties of Copolymers…………………………………...56 3.7.4.1 Differential Scanning Calorimetry (DSC)…………………...56 3.7.4.2 Dynamic Mechanical Thermal Analysis (DMTA)……….….56 3.7.4.3 Thermogravimetric Analysis (TGA)………………………...57 3.7.5 Thin Layer Chromatography (TLC)………………………..………...57 3.7.6 Column Chromatography……………………………………………..57 . 3.7.7 Tensile Testing…………………………………………………….….57 3.7.8 Transmission Electron Microscopy (TEM)……………………….….58 3.7.9 Contact Angle Measurements………………………………………...58 3.7.10 Ellipsometry Measurements………………………………………....58 3.7.11 Compression Molding……………………………………………….59 IV. RESULTS AND DISCUSSION………………………………………….……60 4.1 Synthesis of chain-end functionalized polystyrene……………………….…60 4.1.1 Synthesis of cyanide-functionalized polystyrene…………………......60 4.1.2 Synthesis of ethyl-ether terminated polystyrene………………….…..74
Recommended publications
  • Cationic/Anionic/Living Polymerizationspolymerizations Objectives
    Chemical Engineering 160/260 Polymer Science and Engineering LectureLecture 1919 -- Cationic/Anionic/LivingCationic/Anionic/Living PolymerizationsPolymerizations Objectives • To compare and contrast cationic and anionic mechanisms for polymerization, with reference to free radical polymerization as the most common route to high polymer. • To emphasize the importance of stabilization of the charged reactive center on the growing chain. • To develop expressions for the average degree of polymerization and molecular weight distribution for anionic polymerization. • To introduce the concept of a “living” polymerization. • To emphasize the utility of anionic and living polymerizations in the synthesis of block copolymers. Effect of Substituents on Chain Mechanism Monomer Radical Anionic Cationic Hetero. Ethylene + - + + Propylene - - - + 1-Butene - - - + Isobutene - - + - 1,3-Butadiene + + - + Isoprene + + - + Styrene + + + + Vinyl chloride + - - + Acrylonitrile + + - + Methacrylate + + - + esters • Almost all substituents allow resonance delocalization. • Electron-withdrawing substituents lead to anionic mechanism. • Electron-donating substituents lead to cationic mechanism. Overview of Ionic Polymerization: Selectivity • Ionic polymerizations are more selective than radical processes due to strict requirements for stabilization of ionic propagating species. Cationic: limited to monomers with electron- donating groups R1 | RO- _ CH =CH- CH =C 2 2 | R2 Anionic: limited to monomers with electron- withdrawing groups O O || || _ -C≡N -C-OR -C- Overview of Ionic Chain Polymerization: Counterions • A counterion is present in both anionic and cationic polymerizations, yielding ion pairs, not free ions. Cationic:~~~C+(X-) Anionic: ~~~C-(M+) • There will be similar effects of counterion and solvent on the rate, stereochemistry, and copolymerization for both cationic and anionic polymerization. • Formation of relatively stable ions is necessary in order to have reasonable lifetimes for propagation.
    [Show full text]
  • The Unique Properties of Siloxanes
    THE UNIQUE PROPERTIES OF SILOXANES This factsheet explains what makes siloxanes unique. Want to know how siloxanes are different from carbon-based materials? Or why they behave differently in the environment? Read on to find out more, including why the current PBT assessment criteria might not be suitable for them. WHAT ARE SILOXANES? Siloxanes are a group of substances characterized by a chain of alternating silicon (Si) and oxygen (O) atoms. Within the group, individual siloxane substances differ in size, weight and shape. They form the backbone of silicone polymers that are used in a variety of applications such as sealants, adhesives, coatings, plastics, cosmetics, medical devices, hygiene products, food contact materials, and many other industrial applications. Siloxane functional group Octamethylcyclotetrasiloxane (D4) WHAT ARE SILICONE POLYMERS? The structure and functionality of these chemical compounds drive the specific Silicones are specialty products that are used in small amounts in hundreds combination of properties of siloxanes of applications where their special performance is needed. They are used as including: adhesives, they create flow, they insulate, and they have excellent mechanical/ optical/thermal resistance among many other properties. Silicone polymers can • High propensity to repel water have very different forms depending on how they are built, for example: • Low water solubility • Volatility USED AS LUBRICANTS AND LIQUIDS/OIL IN HYDRAULIC FLUIDS Silicone materials offer a host of useful characteristics including:
    [Show full text]
  • Functionalized Hybrid Silicones – Catalysis, Synthesis and Application
    Technische Universität München Fakultät für Chemie Fachgebiet Molekulare Katalyse Functionalized Hybrid Silicones – Catalysis, Synthesis and Application Sophie Luise Miriam Putzien Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Schuster Prüfer der Dissertation: 1. Univ.-Prof. Dr. F. E. Kühn 2. Univ.-Prof. Dr. O.Nuyken (i.R.) Die Dissertation wurde am 16.02.2012 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 08.03.2012 angenommen. The following dissertation was prepared between April 2009 and March 2012 at the Chair of Inorganic Chemistry, Department of Molecular Catalysis of the Technische Universität München. I would like to express my deep gratitude to my academic supervisor Prof. Dr. Fritz E. Kühn for his support and confidence and the freedom of scientific research. This work was supported by a research grant from the BASF Construction Chemicals GmbH, Trostberg, Germany. Acknowledgement I would like to express my sincere gratitude to Prof. Dr. Oskar Nuyken and Dr. Eckhart Louis for their ongoing support and their undamped enthusiasm for my research topic. They supported this work with many inspiring discussions, new ideas and critical questions. I thank the BASF Construction Chemicals GmbH, Trostberg, for giving me the opportunity to work on an industrial cooperation project. Especially, I would like to thank Dr. Simone Klapdohr and Dr. Burkhard Walther, who accompanied this project from the industrial perspectice, for their support and the nice time I had in Trostberg during the application technological tests.
    [Show full text]
  • Environmental Risk Assessment Report: Decamethylcyclopentasiloxane
    Environmental Risk Assessment Report: Decamethylcyclopentasiloxane Science Report Environmental Risk Assessment: Decamethylcyclopentasiloxane 1 The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. Published by: Author(s): Environment Agency, Rio House, Waterside Drive, Aztec West, Brooke D N, Crookes M J , Gray D and Robertson S Almondsbury, Bristol, BS32 4UD Tel: 01454 624400 Fax: 01454 624409 Dissemination Status: www.environment-agency.gov.uk Publicly available / released to all regions ISBN: 978-1-84911-029-7 Keywords: © Environment Agency April 2009 Decamethylcyclosiloxane, siloxane All rights reserved. This document may be reproduced with prior Research Contractor: permission of the Environment Agency. Building Research Establishment Ltd, Bucknalls Lane, Garston, Watford, WD25 9XX. Tel. 01923 664000 The views expressed in this document are not necessarily those of the Environment Agency. Environment Agency’s Project Manager: Steve Robertson, Chemicals Assessment Unit, Red Kite House, This report is printed on Cyclus Print, a 100 per cent recycled Howbery Park, Wallingford OX10 8BD. Tel 01491 828555 stock, which is 100 per cent post consumer waste and is totally chlorine free. Water used is treated and in most cases returned Collaborator(s): to source in better condition than removed. D Gray, Health and Safety Executive Further copies of this report are available from: Product code: The Environment Agency’s National Customer Contact Centre SCHO0309BPQX-E-P by emailing [email protected] or by telephoning 08708 506506.
    [Show full text]
  • Silicone Elastomers with Exceptional Elongation ACS Rubber
    Silicone Elastomers with Exceptional Elongation Barry Arkles*, Jonathan Goff, Santy Sulaiman Gelest Inc. 11 East Steel Rd. Morrisville, PA 19067 Presented at the 188th Technical Meeting of Rubber Division, ACS / International Elastomer Conference Paper # 124 October 12-15, 2015 Cleveland, OH *Speaker 1 ABSTRACT Polysiloxanes elastomers formed by the step-growth of heterobifunctional macromers achieve high molecular weights and show elastomeric behavior. There is no apparent mechanism for crosslinking and advanced NMR and DSC techniques as well as rheological studies support the fact that, within the limits of detection, the step-growth elastomers are linear. When formed into nanocomposites by the incorporation of surface passivated fumed silica, they exhibit elongations exceeding 5000%. At extensions comparable to conventional silicone elastomers, they show similar elastic recovery. At greater extensions, recovery is reduced marginally. These materials are readily manufacturable and can be compounded and processed similar to conventional two-component platinum cure silicone RTVs. We have adopted the designation of xPDMS for these materials, a modified acronym for “high eXtension PolyDiMethylSiloxanes”. The synthesis, characterization, and mechanical properties of the first example of of an xPDMS suitable for commercial production is presented. INTRODUCTION In most commercial applications, single component silicone elastomers are conventionally prepared by either the crosslinking of a polysiloxane component in a silica reinforced base by a peroxide (HCR, high consistency rubber) or by a moisture-cure mechanism (condensation RTVs, room temperature vulcanizates)1. Another more flexible approach for commercial fabrication of silicone elastomers is to use two polysiloxane components in which 2 one polysiloxane component is generally of higher molecular weight and can be thought of the matrix polymer, and the second polysiloxane component, which is generally of lower molecular weight and can be thought of as a crosslinker.
    [Show full text]
  • Free-Radical Photopolymerization of Acrylonitrile Grafted Onto Epoxidized Natural Rubber
    polymers Article Free-Radical Photopolymerization of Acrylonitrile Grafted onto Epoxidized Natural Rubber Rawdah Whba 1,2, Mohd Sukor Su’ait 3, Lee Tian Khoon 1,* , Salmiah Ibrahim 4, Nor Sabirin Mohamed 4 and Azizan Ahmad 1,5,* 1 Department of Chemical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] 2 Department of Chemistry, Faculty of Applied Sciences, Taiz University, Taiz 6803, Yemen 3 Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] 4 Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] (S.I.); [email protected] (N.S.M.) 5 Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60286, Indonesia * Correspondence: [email protected] (L.T.K.); [email protected] (A.A.); Tel.: +60-12-7279286 (L.T.K.); +60-19-3666576 (A.A.) Abstract: The exploitation of epoxidized natural rubber (ENR) in electrochemical applications is approaching its limits because of its poor thermo-mechanical properties. These properties could be improved by chemical and/or physical modification, including grafting and/or crosslinking techniques. In this work, acrylonitrile (ACN) has been successfully grafted onto ENR- 25 by a radical photopolymerization technique. The effect of (ACN to ENR) mole ratios on chemical structure Citation: Whba, R.; Su’ait, M.S.; Tian and interaction, thermo-mechanical behaviour and that related to the viscoelastic properties of the Khoon, L.; Ibrahim, S.; Mohamed, polymer was investigated. The existence of the –C≡N functional group at the end-product of ACN-g- N.S.; Ahmad, A.
    [Show full text]
  • Dispersity Control in Atom Transfer Radical Polymerizations Through Addition of Phenyl Hydrazine
    Polymer Chemistry Dispersity Control in Atom Transfer Radical Polymerizations through Addition of Phenyl Hydrazine Journal: Polymer Chemistry Manuscript ID PY-ART-01-2018-000033.R1 Article Type: Paper Date Submitted by the Author: 04-May-2018 Complete List of Authors: Yadav, Vivek; University of Houston Hashmi, Nairah; University of Houston Ding, Wenyue; University of Houston Li, Tzu-Han; University of Houston Mahanthappa, Mahesh; University of Minnesota, Department of Chemical Engineering & Materials Science; University of Wisconsin–Madison, Department of Chemistry Conrad, Jacinta; University of Houston, Robertson, Megan; University of Houston, Chemical and Biomolecular Engineering Page 1 of 32 Polymer Chemistry Dispersity Control in Atom Transfer Radical Polymerizations through Addition of Phenyl Hydrazine Vivek Yadav,a Nairah Hashmi,a Wenyue Ding,a Tzu-Han Li,c Mahesh K. Mahanthappa,d Jacinta C. Conrad,*a and Megan L. Robertson*a,b a Department of Chemical and Biomolecular Engineering University of Houston, Houston, TX 77204-4004 b Department of Chemistry University of Houston, Houston, TX 77204-4004 c Materials Engineering Program University of Houston, Houston, TX 77204-4004d Department of Chemical Engineering and Materials Science University of Minnesota, Minneapolis, MN 55455 *Email: [email protected], [email protected] †Electronic Supplementary Information available online. 1 Polymer Chemistry Page 2 of 32 Abstract Molar mass dispersity in polymers affects a wide range of important material properties, yet there are few synthetic methods that systematically generate unimodal distributions with specifically tailored dispersities. Here, we describe a general method for tuning the dispersity of polymers synthesized via atom transfer radical polymerization (ATRP). Addition of varying amounts of phenyl hydrazine (PH) to the ATRP of tert-butyl acrylate led to significant deviations in the reaction kinetics, yielding poly(tert-butyl acrylate) with dispersities Đ = 1.08 – 1.80.
    [Show full text]
  • Synthesis of Pendant Epoxy Functional Polydimethyl Siloxane for Modification of Diglycidyl Ether of Bis-Phenol A
    Available online at http://www.urpjournals.com Advances in Polymer Science and Technology: An International Journal Universal Research Publications. All rights reserved Original Article Synthesis of pendant epoxy functional polydimethyl siloxane for modification of Diglycidyl Ether of Bis-phenol A Jenish Paul1, 2, A. Benny Cherian2, K.P.Unnikrishnan2 and Eby Thomas Thachil1 1- Polymer Science &Rubber Technology, Cochin university of science & Technology,Kochi- 22 2- Chemistry Department, Union Christian College, Aluva-5 Received 22 December 2011; accepted 30 December 2011 Abstract In this study, pendant epoxy functional poly dimethyl siloxanes were synthesized by the hydrosilylation reaction of pendant silyl hydride functional polydimethyl siloxane with allyl glycidyl ether. The hydrosilylation reaction was characterized by spectroscopic techniques. Samples of pendant epoxy functional poly dimethyl siloxanes and pendant silyl hydride functional polydimethyl siloxane were blended with commercial epoxy resin, diglycidyl ether of bis-phenol A, at various ratios using a polyamine as curing agent. The results show that the addition of functionalised poly dimethyl siloxanes increases the flexibility of the cross linked network and also the thermal stability and water resistance. © 2011 Universal Research Publications. All rights reserved Key words: DGEBA; resin; polysiloxanes; hydrosilylation; blending. 1. Introduction functionalise them. One of the major processes used to Epoxy resin exhibits many desirable properties, such as functionalize polysiloxanes is hydrosilylation of high strength and modulus, excellent chemical and solvent polyhydridosiloxanes [12]. resistance, good thermal and electrical properties and 1.2. Hydrosilylation outstanding adhesion to various substrates, and easy process Hydrosilanes react with compound containing carbon- ability under various conditions [1-5]. Epoxy resins are also carbon multiple bonds when catalyzed by transition metal widely used as molding compounds and encapsulation of complexes.
    [Show full text]
  • Living Free Radical Polymerization with Reversible Addition – Fragmentation
    Polymer International Polym Int 49:993±1001 (2000) Living free radical polymerization with reversible addition – fragmentation chain transfer (the life of RAFT) Graeme Moad,* John Chiefari, (Bill) YK Chong, Julia Krstina, Roshan TA Mayadunne, Almar Postma, Ezio Rizzardo and San H Thang CSIRO Molecular Science, Bag 10, Clayton South 3169, Victoria, Australia Abstract: Free radical polymerization with reversible addition±fragmentation chain transfer (RAFT polymerization) is discussed with a view to answering the following questions: (a) How living is RAFT polymerization? (b) What controls the activity of thiocarbonylthio compounds in RAFT polymeriza- tion? (c) How do rates of polymerization differ from those of conventional radical polymerization? (d) Can RAFT agents be used in emulsion polymerization? Retardation, observed when high concentra- tions of certain RAFT agents are used and in the early stages of emulsion polymerization, and how to overcome it by appropriate choice of reaction conditions, are considered in detail. Examples of the use of thiocarbonylthio RAFT agents in emulsion and miniemulsion polymerization are provided. # 2000 Society of Chemical Industry Keywords: living polymerization; controlled polymerization; radical polymerization; dithioester; trithiocarbonate; transfer agent; RAFT; star; block; emulsion INTRODUCTION carbonylthio compounds 2 by addressing the following In recent years, considerable effort1,2 has been issues: expended to develop free radical processes that display (a) How living is RAFT polymerization?
    [Show full text]
  • Comparing PPG Polysiloxane Coatings and Traditional Coating Systems
    Comparing PPG Polysiloxane Coatings and Traditional Coating Systems INTRODUCTION The last two decades have seen continuous This document examines the chemistry behind AND EXECUTIVE improvement in the performance and aesthetic PSX 700 and PSX 700SG coatings, and explains SUMMARY versatility of polysiloxane coatings. Recently, PPG why they offer superior long-term economic and achieved a significant technological advance with environmental performance compared to traditional the launch of PSX® 700SG, a new semi-gloss (SG) epoxy/urethane and epoxy/silicone-alkyd coating polysiloxane coating developed for applications systems. where the ultra-high solids content, long-term weatherability and performance of standard polysiloxane coatings are desired, but the inherent high gloss of the coating is not. PSX 700 PSX 700SG is the latest advance in the PSX 700 Since their introduction two decades ago, poly- COATINGS line of polysiloxane coatings by PPG. It offers siloxane coatings have continued to grow in both TECHNOLOGY all the performance and aesthetic advantages of development and application. Like urethanes and earlier PSX 700 coatings, but with a new propri- alkyds, they are recognized as a distinct category etary formulation that tempers the high-gloss of products within the coatings industry and, appearance of earlier-generation products. according to listings in a major industry trade magazine, the number of polysiloxane coatings “PSX 700SG is the latest The origins of the PSX 700 product line can be manufacturer tripled between 2000 and 2004. traced to 1994 when Ameron International, which advance in the PSX 700 line of was acquired by PPG in 2006, introduced the Even more importantly, polysiloxanes are now a polysiloxane coatings by PPG.” first polysiloxane coatings to the protective and preferred coating system for numerous industrial, marine coatings market.
    [Show full text]
  • Siloxane Sampling, Analysis and Data Reporting Recommendations on Standardization for the Biogas Utilization Industry
    Siloxane Sampling, Analysis and Data Reporting Recommendations on Standardization for the Biogas Utilization Industry Jeffrey L. Pierce, P.E. Senior Vice President SCS Energy 14th Annual EPA LMOP Conference and Project Expo January 18-20, 2011 Baltimore, Maryland Siloxanes – What and Why? • Siloxanes are volatile organic silicon compounds (VOSCs) • Widely used in personal health and beauty products and in commercial applications • Found in the ppmv level in landfill gas and WWTP digester gas • When burned as a fuel, the silicon (Si) in siloxane oxidizes to silica (SiO2) • Silica deposits cause performance and maintenance problems with LFGE equipment Silanes and Silanols • Silanes and silanols are also increasingly useful VOSCs • Silanes and silanols are also present in landfill gas and WWTP digester gas • Trimethylsilanol is frequently found in biogas and in large quantities • If lab is not reporting at least some silanes and silanols, you are not capturing a large portion of the VOSCs in your test program Common VOSCs in Landfill Gas Formal Name AKA Formula Hexamethylcyclotrisiloxane D3 Si3-O3-(CH3)6 Octamethylcyclotetrasiloxane D4 Si4-O4-(CH3)8 Decamethylcyclopentasiloxane D5 Si5-O5-(CH3)10 Hexamethyldisiloxane L2 Si2-O-(CH3)6 Octamethyltrisiloxane L3 Si3-O2-(CH3)8 Trimethylsilanol MOH Si-(CH3)3-OH Properties of Selected VOSCs Vapor Boiling Water % Compound MW Pressure Point Solubility Silicon mmHg (ºF) (mg/l) D3 222 .380 10 273 1.56 D4 297 .378 1.3 347 0.06 D5 371 .379 0.4 410 0.02 L3 236 .357 3.9 306 0.04 MOH 90 .312 210 Reporting
    [Show full text]
  • Oct 15, Controlled Polymerizations by Ki-Young Yoon
    Wednesday Meeting Controlled Polymerizations 10/15/2014 Ki-Young Yoon Organometallics : A Friend of Total Synthesis Total Synthesis Organometallics e.g. Barry Trost Organometallics : A Friend of Polymer Synthesis Organometallics Polymer Synthesis e.g. Bob Grubbs Organometallics : Still Blue Ocean Area Total Synthesis Organometallics Polymer Synthesis In theory, every organometallic reaction can branch out into polymerization Organometallics : Still Blue Ocean Area Hydrolytic kinetic resolution E. Jacobson Science 1997, 277, 936 J. Coates J. Am. Chem. Soc 2008, 130, 17658 Enantioselective Polymerization of Epoxides: the first person who borrows Jacobson’s catalyst for the polymerization Enantioselective Polymerization of Epoxides: Catalyst which Jacobson should have used for the polymerization 10 years ago Contents 1. Polymerization Mechanism o Step-growth polymerization o Chain-growth polymerization o Step-growth vs. Chain-growth 2. Efforts to turn Step-growth polymerization into Chain-growth polymerization o GRIM polymerization o Pd-catalyzed chain-growth polymerization Polymer is a mixture Polymer is not a pure substance. It is a mixture Organic reaction Single pure product Polymerization mixture Molecular Weight Distribution Irresponsible polymer chemist Average Molecular Weight mixture - Mn, Mw, PDI (=Mw/Mn) Polymer molecular weight Number Average Molecular Weight, Mn Danny’s Credit Grade Credit*Gr ade PhysOrg 3 4.0 (A) 12 Calculus 2 3.0 (B) 6 Weight Average Molecular Weight, Mw History 1 2.0 (C) 2 Mn (4.0+3.0+2.0) =3 SEC/3 trace
    [Show full text]