Acute Myeloid Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

Acute Myeloid Leukemia Milan, Italy, June 12 – 15, 2014 were associated with overexpression by RQ-PCR. High levels of PRDM16 Acute myeloid leukemia - Biology 3 expression (greater that three standard deviations above the mean 2- ΔΔ Ct of 10 normal bone marrow controls) were observed in a significant subset of AML with normal karyotype (AML-NK) (12/25;48%) and with adverse cytogenetic P779 prognostic group (3/11;27.3%) but they were also associated with isolated rare translocations (4/10;40%). In 3 cases with a complex karyotype FISH analysis DECREASE EXPRESSION OF MIR-20A PROMOTES CANCER CELL detected an extra copy of PRDM16. Cases with gene amplification were PROLIFERATION AND PREDICTS POOR SURVIVAL OF ACUTE MYELOID associated with older age, complex karyotype involving chromosome 5 and 7 LEUKEMIA 1 1 1 1,* 1 1 1 1 abnormalities, higher WBC and AML compared to cases with PRDM16 P Li , D Ning , X Dahai , Z Nan , L Xiaoliang , W Yang , Z Xiuxian , C Hongli translocations. 1Emergency Department, First Hospital of Jilin University, changchun, China Summary and Conclusion: PRDM16 gene is a frequent target of 1p36 abnormalities in AML. Copy number gain of PRDM16 is a recurrent genetic Background: MicroRNAs (miRNAs) are a family of 19- to 25-nucleotides non- abnormality in AML with 1p36 abnormalities and, although less common, in coding small RNAs that primarily function as gene regulators. Growing AML with complex karyotype but undetectable 1p36 abnormalities. Copy evidences indicate miRNAs play important roles in cancer development, number gain of chromosome 1p36 has not been previously associated with progression, metastasis and may constitute robust biomarkers for cancer PRDM16 overexpression in patients with myeloid malignancies. We also prognosis. To date, although certain miRNAs have been established a clear demonstrated overexpression of PRDM16 in different subgroups of AML without oncogenic role in hematological malignancies, other individual miRNAs PRDM16 rearrangements or amplification, especially in AML-NK subset. Since potentially involved in human leukemogenesis still remain elusive. the poor prognosis associated to PRDM16, the role and prevalence of PRDM16 Aims: This study aimed to determine the clinical characteristics and prognostic expression should be addressed further in a larger cohort of patient. Although significance of microRNA-20a (miR-20a) in adult de novo acute myeloid the limited case series, amplification seems to be associated with distinct leukemia (AML) patients. cytogenetic and clinical features and could reflect a different pathway or role of Methods: The expression levels of miR-20a in bone marrow mononuclear cells PRDM16 in the pathogenesis of these AML patients. Supported by University were measured in 98 newly diagnosed AML patients and 20 cases of normal of Bologna RFO, BolognAil and Coop Reno. healthy donors by real-time quantitative polymerase chain reaction. Kaplan- Meier and Cox proportional regression analyses were utilized to determine the association of miR-20a with survival of patients. The potential functions of miR- P781 20a on proliferation were evaluated by proliferation and flow cytometry analysis. The direct target gene of miR-20a was also identified by luciferase reporter CHARACTERIZATION OF THE RARE TRANSLOCATION T(3;10)(Q26;Q21) assays. IN AN ACUTE MYELOID LEUKEMIA PATIENT Results: miR-20a was expressed at significantly lower levels in the bone T Jancuskova 1,* , R Plachy 1, J Stika 1, D W Hardekopf 1, L Zejskova 1, I Praulich 2, marrow of AML patients compared with normal controls. Patients with lower KA Kreuzer 2, N Kosyakova 3, T Liehr 3, S Pekova 1 miR-20a expression had significantly poorer complete remission (CR) rates 1Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Prague, Czech (Log rank p<0.001), relapse-free survival (RFS, Log rank p<0.001) and overall Republic, 2Department I of Internal Medicine, University at Cologne, Cologne, survival (OS, Log rank p<0.001). Low miR-20a expressers had lower CR rates 3Institute of Human Genetics, Jena University Hospital, Jena, Germany and OS within the Southwest Oncology Group classification. Multivariate analysis revealed that lower miR-20a was an independent predictor of poor Background: Recently, we introduced a flexible strategy for mapping prognosis. MiR-20a restoration could result in low levels of cAMP and weak cytogenetically identified unique abnormalities down to the single nucleotide activity of PKA, thus relieving the inhibitory effect of PKA on mononuclear- level. This strategy has enabled us to design clone-specific assays for sensitive leukemic cell proliferation. Subsequent investigations revealed that miR-20a minimal residual disease (MRD) monitoring in acute leukemia patients directly reduced the endogenous protein level of myeloid cell leukemia (Jancuskova et al . Leuk Res. 2013) as well as to elucidate regions/genes sequence 1 (Mcl-1) in mononuclear-leukemic cell. involved in congenital chromosomal aberrations (unpublished data). Here we Summary and Conclusion: MiR-20a is decreased in AML and correlates with characterize the rare chromosomal translocation t(3;10)(q26;q21), involving AML prognosis. Down-regulation of miR-20a increases the proliferation abilities the MECOM gene (MDS and EVI1 complex locus located in band 3q26), of AML cells. Our findings suggest miR-20a may represent a novel potential identified in an acute myeloid leukemia (AML) patient. therapeutic target and biomarker for survival of AML patients. Aims: Our aim was to use our strategy to identify the fusion partner on chromosome 10q21 and to characterize the precise nucleotide sequence of the chromosomal breakpoint. P780 Methods: The chromosomal translocation was revealed by standard cytogenetic techniques (G-banding, mFISH), and involvement of the MECOM COPY NUMBER GAINS OF CHROMOSOME 1P36 LEAD TO PRDM16 gene was confirmed by FISH with the use of a commercially available probe OVEREXPRESSION IN AML PATIENTS 1,* 1 1 1 1 1 set. The derivative chromosome 10 was isolated using fine-needle C Baldazzi , E Ottaviani , S Luatti , G Marzocchi , G Ameli , C Papayannidis , microdissection followed by whole genome amplification (WGA). Ten dissected C Gamberini 1, E Franchini 1, M Cavo 1, G Martinelli 1, N Testoni 1 1 fragments were sequenced on the GS-Junior next-generation sequencing Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, S.Orsola- platform. The reads obtained were aligned to reference sequences of Malpighi Hospital, Bologna, Italy chromosomes 3 and 10 using in-house developed software. The last mapped reads from both chromosomes were used as docking sites for primers for long- Background: PRDM16 gene (1p36) is rearranged in AML/MDS with range PCR to amplify the putative breakpoint. The long-range PCR products t(1;3)(p36;q21), t(1;21)(p36;q22) and t(1;12)(p36;p13). These translocation were directly sequenced using Sanger sequencing to reveal the precise resulted in PRDM16 overexpression through juxtaposition to the enhancer of nucleotide sequence of the breakpoint. RPN1 at 3q21 or through fusion transcript formation with RUNX1at 21q22 or Results: Using a combination of cytogenetic and molecular approaches, we ETV6 at 12p13, respectively. AML/MDS with t(1;3)(p36;q21) showed similar mapped the t(3;10)(q26;q21) to the single nucleotide level, revealing a fusion clinical and prognostic characteristics with AML/MDS with inv(3)/t(3;3) and EVI1 of the MECOM gene (3q26.2) and C10orf107 (10q21.2). rearrangements. PRDM16 overexpression has been reported in AML in Summary and Conclusion: In AML patients, the MECOM gene can be absence of 1p36 rearrangements, but the mechanisms are still unknown and rearranged with a variety of other partner chromosomes and partner genes. the studies not conclusive. According to the Mitelman database, only one case with a t(3;10)(q26;q21) Aims: To characterize PRDM16 in cases with 1p36 abnormalities and to assess translocation has been reported, but neither the fusion partner of the MECOM PRDM16 expression in a cohort of AML without 1p36 involvement. gene nor DNA sequence were identified. The approach described here opens Methods: The study group was composed of 14 AML and MDS cases with 1p36 up new possibilities in characterizing acquired as well as congenital abnormalities and a cohort of 80 AML without 1p36 involvement by conventional chromosomal aberrations. In addition, DNA sequences of chromosomal cytogenetic (CC) and were analysed by relative RQ-PCR and FISH using 3 BAC breakpoints may be a useful tool for unique molecular MRD target identification probes covering PRDM16 and its flanking regions (BlueGnome Ltd. Cambridge, UK). in acute leukemia patients. Results: We identified 14 cases with 1p36 abnormalities: FISH analysis of 13 available samples identified 4 cases with PRDM16 rearrangement. Two cases showed a t(1;3)(p36;q21), one a t(1;21)(p36;q22) and the last one an add(1)(p36) in CC. In 3 cases the breakpoint was at 5’ of PRDM16, whereas in t(1;21) it was at 3’ of PRDM16, which is a rare event. We were not able to identify the chromosome partner involved in the case with add(1)(p36). Other 3 cases showed copy number gains of PRDM16 identified as the presence from 3 to 5 signals with all the three probes used in interphase FISH. To exclude the amplification of the whole p arm we used a control probe on 1p32 that did not show amplification. Metaphases FISH localized the site of amplification on the der(1)(p36) in two cases, whereas it was localized on unidentified chromosome in the last one. Rearrangements and amplification of PRDM16 haematologica | 2014; 99(s1) | 283 19 th Congress of the European Hematology Association although in myeloid malignancies with a t(3;17) translocation over-expressed EVI1 rearranged with MSI2 7. Interestingly, haematological features of all the available cases suggest that GSX2 ectopic expression delineates a genetic subgroup among CD7+ AML. Although the fine mechanisms of GSX2 de- regulation remain to be understood, in our cases we hypothesize that they are related to inactivation of silencers located close to GSX2, at 5’ in patient 1 and at 3’ in patient 2.
Recommended publications
  • MECOM Permits Pancreatic Acinar Cell Dedifferentiation Avoiding Cell Death Under Stress Conditions
    Cell Death & Differentiation (2021) 28:2601–2615 https://doi.org/10.1038/s41418-021-00771-6 ARTICLE MECOM permits pancreatic acinar cell dedifferentiation avoiding cell death under stress conditions 1 2 2 1 1 1,3 Elyne Backx ● Elke Wauters ● Jonathan Baldan ● Mathias Van Bulck ● Ellis Michiels ● Yves Heremans ● 4 5 5 2 6 Diedert Luc De Paep ● Mineo Kurokawa ● Susumu Goyama ● Luc Bouwens ● Patrick Jacquemin ● 1,2 1 Isabelle Houbracken ● Ilse Rooman Received: 20 July 2020 / Revised: 3 March 2021 / Accepted: 4 March 2021 / Published online: 24 March 2021 © The Author(s) 2021. This article is published with open access Abstract Maintenance of the pancreatic acinar cell phenotype suppresses tumor formation. Hence, repetitive acute or chronic pancreatitis, stress conditions in which the acinar cells dedifferentiate, predispose for cancer formation in the pancreas. Dedifferentiated acinar cells acquire a large panel of duct cell-specific markers. However, it remains unclear to what extent dedifferentiated acini differ from native duct cells and which genes are uniquely regulating acinar cell dedifferentiation. Moreover, most studies have been performed on mice since the availability of human cells is scarce. Here, we applied a non- fi 1234567890();,: 1234567890();,: genetic lineage tracing method of human pancreatic exocrine acinar and duct cells that allowed cell-type-speci c gene expression profiling by RNA sequencing. Subsequent to this discovery analysis, one transcription factor that was unique for dedifferentiated acinar cells was functionally characterized. RNA sequencing analysis showed that human dedifferentiated acinar cells expressed genes in “Pathways of cancer” with a prominence of MECOM (EVI-1), a transcription factor that was not expressed by duct cells.
    [Show full text]
  • Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
    The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells.
    [Show full text]
  • Factsheet XL T3;3 GATA2MECOM DF D-5124.Cdt
    XL t(3;3) GATA2/ MECOM DF Translocation/Dual Fusion Order No.: Probe D-5124-100-OG Description XL t(3;3) GATA2/MECOM DF is designed as a dual fusion probe. The orange labeled probe spans the breakpoint at 3q26 (MECOM), the green labeled probe spans the breakpoint at 3q21 (GATA2 and RPN1). Clinical Details The chromosomal aberrations inv(3)(q21q26.2) and t(3;3)(q21;q26.2) characterize a distinct entity within patients with acute myeloid leukemia (AML). Their incidence in AML is about 1%-2.5% and patients have an unfavorable prognosis and low response to chemotherapy. Inv(3)/t(3;3) juxtapose the GATA2 enhancer with the MECOM locus which results in overexpression of EVI1. The EVI1 gene is located in 3q26 and is involved in hematopoietic stem cell maintenance. EVI1 is together with MDS located in the ´MDS1 and EVI1 complex locus´ (MECOM) and is the major player in this subtype XL t(3;3) GATA2/MECOM DF hybridized to lymphocytes. of AML. Furthermore, structural rearrangements caused by inv(3)/t(3;3) result in One normal interphase and two chromosomes 3 are reduced GATA2 expression which may contribute to the oncogenic potential of this shown. The expected normal signal pattern of XL t(3;3) GATA2/MECOM DF is two orange and two green aberration. GATA2 is located in chromosomal region 3q21 and is involved in develop- signals, representing the two normal MECOM and ment and proliferation of hematopoietic stem cells. Several other recurrent 3q26 G ATA 2 l o c i . B o t h , i n v ( 3 ) ( q 2 1 q 2 6 .
    [Show full text]
  • Leukaemia Section
    Atlas of Genetics and Cytogenetics in Oncology and Haematology INIST -CNRS OPEN ACCESS JOURNAL Leukaemia Section Short Communication t(3;12)(q26;p13) ETV6/MECOM / t(3;12)(q26;p13) ETV6/EVI1 Etienne De Braekeleer, Nathalie Douet-Guilbert, Marc De Braekeleer Cytogenetics Laboratory, Faculty of Medicine, University of Brest, France (EDB, NDG, MDB) Published in Atlas Database: April 2014 Online updated version : http://AtlasGeneticsOncology.org/Anomalies/t0312.html DOI: 10.4267/2042/54377 This article is an update of : Desangles F. t(3;12)(q26;p13). Atlas Genet Cytogenet Oncol Haematol 1997;1(1):21. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2014 Atlas of Genetics and Cytogenetics in Oncology and Haematology Abstract M7. Short communication on t(3;12)(q26;p13) Epidemiology ETV6/MECOM, with data on clinics, and the genes 46 cases described so far; sex ratio: 29M/16F (1 implicated. unknown); age: 2.5-87 yrs (med: 49 yrs), unknown age for 10 cases. Identity Cytology Note Dysplasia of megakaryocytes, multilineage Only a few cases were shown to involve a involvement. ETV6/MECOM fusion by FISH or RT-PCR. In Prognosis other cases, only MECOM or ETV6 was shown to be rearranged by FISH. Over-expression of See survival curve above. MECOM/EVI1 was found in other cases. Finally, no cytogenetic or molecular analysis was performed Cytogenetics in a few cases. Cytogenetics molecular Heterogeneity of the EVI1 breakpoints, as evidenced by the Cytocell Aquarius EVI1 Breakapart probe. The EVI1 Breakapart probe contains three probes: a probe labeled in Aqua of 562 kb in size centromeric to the EVI1 gene, a probe labeled in Spectrum Green of 181 kb covering EVI1 and its flanking regions and a probe labeled in Spectrum Orange of 124 kb telomeric of the EVI1 gene (telomeric of t(3;12)(q26;p13) G-banding - Courtesy Jean-Luc Lai and Alain Vanderhaegen.Clinics and pathology MYNN and covering LRRC34).
    [Show full text]
  • IGH Rearrangement in Myeloid Neoplasms Sion and Activation
    CASE REPORTS genes such as MYC and BCL2, leading to their overexpres- IGH rearrangement in myeloid neoplasms sion and activation. Here, we found two IGH rearrange- ments in myeloid tumors, including an IGH-MECOM in a Though immunoglobulin genes are typically expressed myelodysplastic syndrome (MDS) and an IGH-CCNG1 in in B lymphocytes, recent studies found ectopic an AML. Our studies provide the first evidence that a once immunoglobulin expression in non-B-cell tumor cells believed B-cell tumor-specific oncogenic mechanism is including acute myeloid leukemia (AML). The also present in myeloid tumors. immunoglobulin genes, including immunoglobulin heavy Case #1: A 60-year-old female with a history of breast chain genes (IGH), light kappa (k) chain genes (IGK) and cancer presented with fatigue, bilateral flank pain, and 9 light lambda (λ) chain genes (IGL), are frequently hematuria. Complete blood count showed 24.82x10 /L of rearranged in B-cell tumors. These rearrangements result white blood cells, 11.2 g/dL of hemoglobin, 33.9% of in a juxtaposition of IG enhancers to the vicinity of onco- hematocrit, and 68x109/L of platelets. The bone marrow A B C D E Figure 1. Acute myeloid leukemia with an IGH-CCNG1 rearrangement. (A) Chromosome analysis of the bone marrow aspirate showed a complex karyotype, including an unbalanced translocation involving chromosomes 5, 14 and 19. Arrows indicate clonal aberrations. (B) Fluorescence in situ hybridization (FISH) on abnormal metaphase showed the 3'IGH (red) remaining on the derivative chromosome 14 and the 5'IGH lost, consistent with an unbalanced IGH rearrange- ment.
    [Show full text]
  • Posttranslational Modifications of RUNX1 As Potential Anticancer
    Oncogene (2015) 34, 3483–3492 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc REVIEW Posttranslational modifications of RUNX1 as potential anticancer targets S Goyama1, G Huang1, M Kurokawa2 and JC Mulloy1 The transcription factor RUNX1 is a master regulator of hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Recent studies also highlight the importance of RUNX1 in solid tumors both as a tumor promoter and a suppressor. Given its central role in cancer development, RUNX1 is an excellent candidate for targeted therapy. A potential strategy to target RUNX1 is through modulation of its posttranslational modifications (PTMs). Numerous studies have shown that RUNX1 activity is regulated by PTMs, including phosphorylation, acetylation, methylation and ubiquitination. These PTMs regulate RUNX1 activity either positively or negatively by altering RUNX1-mediated transcription, promoting protein degradation and affecting protein interactions. In this review, we first summarize the available data on the context- and dosage- dependent roles of RUNX1 in various types of neoplasms. We then provide a comprehensive overview of RUNX1 PTMs from biochemical and biologic perspectives. Finally, we discuss how aberrant PTMs of RUNX1 might contribute to tumorigenesis and also strategies to develop anticancer therapies targeting RUNX1 PTMs. Oncogene (2015) 34, 3483–3492; doi:10.1038/onc.2014.305; published online 29 September 2014 INTRODUCTION recent studies have revealed the important role of RUNX1 in solid 8 RUNX1 is an essential transcription factor for the generation of tumors. Given its central roles for cell fate decisions in definitive hematopoietic stem cells and for hematopoietic hematopoiesis and leukemogenesis, RUNX1 is an attractive target differentiation to myeloid and lymphoid lineages (reviewed in to develop curative therapies for leukemia patients.
    [Show full text]
  • Cryptic Genomic Lesions in Adverse-Risk Acute Myeloid Leukemia Identified by Integrated Whole Genome and Transcriptome Sequencing
    Leukemia (2020) 34:306–311 https://doi.org/10.1038/s41375-019-0546-1 LETTER Cytogenetics and molecular genetics Cryptic genomic lesions in adverse-risk acute myeloid leukemia identified by integrated whole genome and transcriptome sequencing 1,2,3 2 3 3,4 2 Jaeseung C. Kim ● Philip C. Zuzarte ● Tracy Murphy ● Michelle Chan-Seng-Yue ● Andrew M. K. Brown ● 2 5 1,3,4 1,3 1,2,6 Paul M. Krzyzanowski ● Adam C. Smith ● Faiyaz Notta ● Mark D. Minden ● John D. McPherson Received: 15 March 2019 / Revised: 23 April 2019 / Accepted: 17 June 2019 / Published online: 21 August 2019 © The Author(s) 2019. This article is published with open access To the Editor: treated accordingly [1]. In recent years, advancements in next-generation sequencing and efforts by large genomics Acute myeloid leukemia (AML) is a heterogeneous group studies have led to a classification of 11 AML subgroups of hematologic malignancies characterized by the pro- based on cytogenetic abnormalities as well as mutations in liferation of myeloid cells blocked in their ability to dif- genes, such as NPM1 or CEBPA [1]. 1234567890();,: 1234567890();,: ferentiate. Evaluation by G-banding and fluorescence in situ AML with a complex karyotype, defined by the presence hybridization is an essential aspect in the initial disease of three or more unrelated chromosomal aberrations and the characterization and even now is fundamental in identifying absence of favorable cytogenetic rearrangements, is asso- cytogenetic abnormalities that can inform disease diagnosis, ciated with TP53 mutations and strikingly poor outcome prognosis, and treatment decision [1, 2]. For instance, the [1, 3].
    [Show full text]
  • 4-Phenylthiobutanoic Acid Inhibits Histone Deacetylase 8 to Enhance Post-Acute Kidney Injury Repair
    Title Page Slow and Steady: 4-Phenylthiobutanoic Acid Inhibits Histone Deacetylase 8 to Enhance Post-Acute Kidney Injury Repair by Hwa In Han B.S., College of William & Mary, 2014 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2020 Committee Page UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Hwa In Han It was defended on May 29, 2020 and approved by Jacqueline Ho, M.D., Department of Pediatric Nephrology Penelope Morel, M.D., Department of Immunology Kyle Orwig, Ph.D., Department of Obstetrics, Gynecology & Reproductive Services Michael Tsang, Ph.D., Department of Developmental Biology Dissertation Director: Neil Hukriede, Ph.D., Department of Developmental Biology ii Copyright © by Hwa In Han 2020 iii Abstract Slow and Steady: 4-Phenylthiobutanoic Acid Inhibits Histone Deacetylase 8 to Enhance Post-Acute Kidney Injury Repair Hwa In Han, PhD University of Pittsburgh, 2020 Acute kidney injury (AKI) is a rapid decline in kidney function that is associated with high mortality and morbidity rates, affecting 1 in 5 adults worldwide 1. While damaged renal tubular epithelial cells (RTECs) undergo reparative process to proliferate and replace the damaged epithelium, it is not a robust mechanism. The initial damage is followed by a cross-talk of innate immune system and RTECs resulting in exacerbation of inflammation, fibrosis, and sometimes irreversible damage. Despite the prevalence and severity of AKI, no FDA approved therapeutics exist to replace damaged or lost RTECS. Therefore, it is imperative to screen, identify, and understand mechanisms with which candidate therapeutics can enhance repair.
    [Show full text]
  • Grimme, Acadia.Pdf
    MECHANISM OF ACTION OF HISTONE DEACETYLASE INHIBITORS ON SURVIVAL MOTOR NEURON 2 PROMOTER by Acadia L. Grimme A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Bachelors of Science in Biological Sciences with Distinction Spring 2018 © 2018 Acadia Grimme All Rights Reserved MECHANISM OF ACTION OF HISTONE DEACETYLASE INHIBITORS ON SURVIVAL MOTOR NEURON 2 PROMOTER by Acadia L. Grimme Approved: __________________________________________________________ Matthew E. R. Butchbach, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Deni S. Galileo, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Carlton R. Cooper, Ph.D. Committee member from the Department of Biological Sciences Approved: __________________________________________________________ Gary H. Laverty, Ph.D. Committee member from the Board of Senior Thesis Readers Approved: __________________________________________________________ Michael Chajes, Ph.D. Chair of the University Committee on Student and Faculty Honors ACKNOWLEDGMENTS I would like to acknowledge my thesis director Dr. Butchbach for his wonderful guidance and patience as I worked through my project. He has been an excellent research mentor over the last two years and I am forever thankful that he welcomed me into his lab. His dedication to his work inspires me as an aspiring research scientist. His lessons will carry on with me as I pursue future research in graduate school and beyond. I would like to thank both current and former members of the Motor Neuron Disease Laboratory: Sambee Kanda, Kyle Hinkle, and Andrew Connell. Sambee and Andrew patiently taught me many of the techniques I utilized in my project, and without them it would not be what it is today.
    [Show full text]
  • Investigation of the Molecular Mechanisms Underlying Postoperative Recurrence in Prostate Cancer by Gene Expression Profiling
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 15: 761-768, 2018 Investigation of the molecular mechanisms underlying postoperative recurrence in prostate cancer by gene expression profiling CHENG YAJUN1*, TANG YUAN2*, WANG ZHONG1 and XU BIN1 1Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011; 2Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China Received March 16, 2017; Accepted October 20, 2017 DOI: 10.3892/etm.2017.5510 Abstract. The present study aimed to identify potential genes The results of the present study have provided novel ideas for associated with prostate cancer (PCa) recurrence following predicting the prognosis of patients with PCa following RP. radical prostatectomy (RP) in order to improve the prediction of the prognosis of patients with PCa. The GSE25136 micro- Introduction array dataset, including 39 recurrent and 40 non-recurrent PCa samples, was downloaded from the Gene Expression Omnibus Prostate cancer (PCa), as one of the most common men's malig- database. Differentially-expressed genes (DEGs) were identi- nancy in America, is the second leading cause of cancer-related fied using limma packages, and the pheatmap package was death in men (1). Although more than 80% of PCa was diag- used to present the DEGs screened using a hierarchical cluster nosed as localized disease and commonly treated by radical analysis. Furthermore, gene ontology functional enrich- prostatectomy (RP), postoperative recurrence occurred in ment analysis was used to predict the potential functions of about 15% of patients within 5 years and up to 40% within the DEGs. Subsequently, Kyoto Encyclopedia of Genes and 10 years (2).
    [Show full text]
  • ABBOTT MOLECULAR ONCOLOGY and GENETICS 2015-2016 Product Catalog
    DESCRIPTOR, 9/12, ALL CAPS ABBOTT MOLECULAR ONCOLOGY AND GENETICS 2015-2016 Product Catalog Area for placed imagery Only use imagery that is relevant to the communication CHOOSE TRANSFORMATION See where it will take you at AbbottMolecular.com 2 Please note some products may not be for sale in all markets. Contact your local representative for availability. ASR (Analyte Specific Reagent) Analytical and performance characteristics are not established CE (CE Marked) Conformité Européenne GPR (General Purpose Reagent) For Laboratory use RUO (Research Use Only) Not for use in diagnostic procedures All products manufactured and/or distributed by Abbott Molecular should be used in accordance with the products’ labeled intended use. Products labeled “Research Use Only” should be used for research applications, and are not for use in diagnostic procedures. CEP, LSI, AneuVysion, MultiVysion, PathVysion and Vysis are registered trademarks of Vysis, Inc., AutoVysion, ProbeChek, SpectrumAqua, SpectrumBlue, SpectrumGreen, SpectrumGold, SpectrumOrange, SpectrumRed, TelVysion, ToTelVysion, UroVysion and VP 2000 are trademarks of Abbott Molecular in various jurisdictions. All other trademarks are the property of their respective owners. Please note some products may not be for sale in all markets. Contact your local representative for availability. 3 Abbott Molecular is Transforming Laboratory Partnerships and Productivity—Today and into the Future As a leader in molecular Our commitment to exploring new clinical frontiers is evident in the development and delivery of innovative diagnostics, Abbott is committed systems and assay solutions that aid physicians in the diagnosis of disease, selection of therapies and monitoring to providing solution-oriented of disease. offerings built on FISH and PCR.
    [Show full text]
  • Next Generation Cytogenetics in Myeloid Hematological Neoplasms: Detection of Cnvs and Translocations
    cancers Article Next Generation Cytogenetics in Myeloid Hematological Neoplasms: Detection of CNVs and Translocations María Chicano 1,2, Diego Carbonell 1,2 , Julia Suárez-González 2,3, Sergio Lois 4, Mercedes Ballesteros-Culebras 1, Cristina Andrés-Zayas 2,3, Paula Muñiz 1,2, Gabriela Rodríguez-Macias 1, Mariana Bastos-Oreiro 1,2, Patricia Font 1,2,Mónica Ballesteros 1, Mi Kwon 1,2, Javier Anguita 1,2, José Luis Díez-Martín 1,2,5, Ismael Buño 1,2,3,6,† and Carolina Martínez-Laperche 1,2,*,† 1 Department of Hematology, Gregorio Marañón General University Hospital, 28009 Madrid, Spain; [email protected] (M.C.); [email protected] (D.C.); [email protected] (M.B.-C.); [email protected] (P.M.); [email protected] (G.R.-M.); [email protected] (M.B.-O.); [email protected] (P.F.); [email protected] (M.B.); [email protected] (M.K.); [email protected] (J.A.); [email protected] (J.L.D.-M.); [email protected] (I.B.) 2 Gregorio Marañón Health Research Institute (IiSGM), 28009 Madrid, Spain; [email protected] (J.S.-G.); [email protected] (C.A.-Z.) 3 Genomics Unit, Gregorio Marañón General University Hospital, IiSGM, 28009 Madrid, Spain 4 Sistemas Genómicos, 46980 Valencia, Spain; [email protected] 5 Department of Medicine, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain Citation: Chicano, M.; Carbonell, D.; 6 Department of Cell Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain Suárez-González, J.; Lois, S.; * Correspondence: [email protected] Ballesteros-Culebras, M.; † These authors contributed equally to this work.
    [Show full text]