Gene and Schizophrenia K Sakurai1, O Migita1, M Toru2 and T Arinami1

Total Page:16

File Type:pdf, Size:1020Kb

Gene and Schizophrenia K Sakurai1, O Migita1, M Toru2 and T Arinami1 Molecular Psychiatry (2002) 7, 412–415 2002 Nature Publishing Group All rights reserved 1359-4184/02 $25.00 www.nature.com/mp ORIGINAL RESEARCH ARTICLE An association between a missense polymorphism in the close homologue of L1 (CHL1, CALL) gene and schizophrenia K Sakurai1, O Migita1, M Toru2 and T Arinami1 1Department of Medical Genetics, Institute of Basic Medical Sciences, University of Tsukuba, 305–8575, Ibaraki, Japan; 2Department of Neuropsychiatry, Tokyo Medical and Dental University School of Medicine, 113–8519, Tokyo, Japan Keywords: CHL1; CALL; signal peptide; missense; associ- kDa NCAM in the hippocampi and prefrontal cortices ation; schizophrenia of patients with schizophrenia was found, though lev- 6,7 Morphological alterations in the brains of schizophrenia els of other NCAMs and L1CAM were not altered. patients suggest that neurodevelopmental dysfunction Since NCAMs function can be impaired by viral neu- is involved in the etiology of the disease.1 Such dys- roaminidase associated with maternal influenza infec- function may be due to functional alterations of cell tion during embryonic development,8 and since adhesion molecules, which play important roles in cell increased CSF NCAM and decreased CSF L1CAM lev- migration, axonal growth, fasciculation, synaptogen- els were found in affected but not non-affected twins esis, and synaptic remodeling. We screened for in a study of monozygotic discordant twins, the mutations in the coding region of the close homologue changes in NCAMs observed in schizophrenia may not to L1 gene (CHL1), which is located on human chromo- contribute to the genetic predisposition to schizo- some 3p26, in 24 Japanese patients with schizophrenia. 4 A missense polymorphism (Leu17Phe) in the signal pep- phrenia. However, schizophrenia is known to have a tide region was identified. A case-control comparison genetic component, and a cohort study suggested an revealed significantly higher frequencies of the Leu/Leu interaction between genetic risk for schizophrenia and genotype (P = 0.004) and the Leu allele (P = 0.006) in 282 obstetric complications.9,10 It is possible that mutations Japanese schizophrenic patients than in 229 Japanese in the genes encoding CAMs are part of the genetic control subjects. The estimated odds ratio for schizo- background that is influenced by environmental factors phrenia was 1.83 (95% CI, 1.28–2.26) for the Leu/Leu and lead to the abnormal neural development observed genotype compared with the other genotypes. An in schizophrenia. Genetic studies have not provided association between this CHL1 gene polymorphism and evidence for involvement of NCAM1 gene mutations schizophrenia supports the notion that cell adhesion 11 molecules are involved in the etiology of schizophrenia. in the development of schizophrenia, but a possible Molecular Psychiatry (2002) 7, 412–415. DOI: 10.1038/ association between an intronic polymorphism of the sj/mp/4000973 L1CAM gene on Xq28 and schizophrenia in male sub- jects has been reported.12 Cell adhesion molecules (CAMs) play important roles The L1 family of neural recognition molecules is part in specifying cell–cell interactions during develop- of the Ig superfamily.13 Members of the L1 family are ment, regeneration, and modification of synaptic characterized by six Ig-like domains at the N-terminus activity. In humans, mutations in the L1 cell adhesion of the protein and at least four fibronectin type III (FN) molecule (L1CAM) are associated with a neurological homologous repeats.14 Members of this family are syndrome termed CRASH, which includes corpus cal- either homophilic or heterophilic. A recently identified losum agenesis, mental retardation, adducted thumbs, close homologue of L1 (CHL1, also called CALL (cell spasticity, hydrocephalus, and a wide spectrum of adhesion L1-like)) is a member of this family and is a other clinical features. A mouse model with null powerful promoter of neurite outgrowth.14,15 CHL1 is mutation in the L1CAM gene suggests roles for L1CAM expressed during brain development at times of neurite in the mechanism of cortical dendrite differentiation outgrowth. Expression of CHL1 and L1CAM show over- as well as in guidance of callosal axons and regulation lapping but distinct patterns in neurons and glia, sug- of hippocampal development.2 gesting differential effects of L1-like molecules on An abnormality in expression of one of the CAMs neurite outgrowth.15 The continued expression of could result in the histologic abnormalities observed CHL1 throughout adulthood suggests that CHL1 pro- in the brains of individuals with schizophrenia.3 tein functions in the adult nervous system. Increased neural CAM (NCAM) and decreased L1CAM We consider CHL1 to be a candidate gene for schizo- immunoreactivities have been observed in the cerebro- phrenia on the basis of the link between abnormal neu- spinal fluid (CSF) of schizophrenic patients in com- rodevelopment and schizophrenia. The CHL1 gene is parison to immunoreactivities in normal control sub- composed of 26 exons distributed over a total length jects.4,5 A selective increase in levels of 105- to 115- of approximately 90 kb on human chromosome 3p26 Mutation search in CHL1 in schizophrenia K Sakurai et al 413 Figure 1 Genomic structure and locations of polymorphic sites in the human CHL1 gene. Numbers in parentheses indicate allele frequencies. (GenBank Accession Number AC011609). Although allele compared with the Phe17 allele (95% CI, 1.15– significant linkage of chromosome 3p26 to schizo- 1.89). This association was due to the higher frequency phrenia has not been found in genome-wide linkage of homozygosity for the Leu17 allele in the schizo- studies,16–19 it is possible that the CHL1 gene has minor phrenia group than in the control group. The estimated or modest association with the development of schizo- odds ratio for schizophrenia was 1.83 (95% CI, 1.28– phrenia. 2.26) for the Leu/Leu genotype in comparison to the We screened for mutations in the CHL1 gene by other genotypes. There was no significant association sequencing all exons and exon–intron junctions in 24 between the polymorphism and age at onset of schizo- randomly selected schizophrenia patients. The total phrenia, subtypes of schizophrenia, or the presence or length of the genomic region we examined was more absence of a family history of schizophrenia. The Leu1- than 11 kb per individual. Four variants, a C to T tran- 7Phe genotypes were not significantly associated with sition in exon 1 (320C→T, Leu17Phe), a T to A trans- onset age (P = 0.19) or subtypes (P = 0.12) in the schizo- version 3 bp upstream of exon 2 (IVS1–3T→A), a G to phrenic patients. A transition 41 bp upstream of exon 8 (IVS7–41G→A), The frequency of the G allele of the IVS7–41G/A and an A to G transition 6 bp downstream of exon 9 polymorphism was higher in the schizophrenic group (IVS9+6A→G), were identified (Figure 1). The fre- (0.60) than in the control group (0.54), though the dif- quency of each variant was 0.36, 0.01, 0.48, and 0.03, ference was not significant (P = 0.056). The Leu17Phe respectively, in 48 randomly selected control subjects and IVS7–41G/A polymorphisms were in modest link- (Figure 1). We examined associations of the Leu17Phe age disequilibrium in the schizophrenic (D = 0.06 and and IVS7–41G/A polymorphisms with schizophrenia DЈ = 0.35) and control (D = 0.07 and DЈ = 0.35) groups. by determining the genotype of these polymorphisms Therefore, the relatively high frequency of the G allele in 282 unrelated Japanese patients with schizophrenia of the IVS7–41G/A polymorphism in the schizophrenic and 229 unrelated Japanese control subjects. Genotypic group is likely to be due to an association between the distributions of these two polymorphisms did not devi- Leu17Phe polymorphism and schizophrenia in the ate significantly from Hardy–Weinberg equilibrium. population. The frequency of the Leu17 allele was significantly The leucine at amino acid 17 is contained within the higher in the schizophrenic group (0.71) than in the signal peptide (most likely cleavage site is between control group (0.63) (P = 0.006, Table 1). The estimated residues 24 and 25) and is conserved in the mouse Chl1 odds ratio for schizophrenia was 1.45 for the Leu17 protein. Signal peptides play a critical role in the tar- Table 1 Genotype and allele counts (frequencies) of the Leu17Phe and IVS7-41G/A polymorphisms of the CHL1 gene in the two study groups Polymorphism Genotype count (frequency) Allele count (frequency) Leu17Phe Leu/Leu Leu/Phe Phe/Phe P Leu Phe P Schizophrenics n = 282 145 (0.51) 110 (0.39) 27 (0.10) 0.004 400 (0.71) 164 (0.29) 0.006 Controls n = 229 84 (0.37) 119 (0.52) 26 (0.11) (␹2 = 11.3) 287 (0.63) 171 (0.37) IVS7-41G/A G/G G/A A/A G A Schizophrenics n = 282 100 (0.35) 138 (0.49) 44 (0.16) 0.14 338 (0.60) 226 (0.40) 0.056 Controls n = 229 64 (0.28) 119 (0.52) 46 (0.20) (␹2 = 3.9) 247 (0.54) 211 (0.46) The data of schizophrenic patients were compared with those of control subjects by using the ␹2 test (df = 2) for genotype distributions and by Fisher’s exact test (two-sided) for allele distributions. Molecular Psychiatry Mutation search in CHL1 in schizophrenia K Sakurai et al 414 geting of proteins to the endoplasmic reticulum and 76 disorganized, 12 catatonic, 37 residual, and 23 translocation of proteins across the membrane. They undifferentiated). Control subjects comprised 229 typically have three distinct domains: a positively anonymous, unrelated Japanese individuals (135 men charged amino-terminal region, a central hydrophobic and 94 women, 47.3 ± 11.5 years of age).
Recommended publications
  • Clinical Significance and Biological Role of L1 Cell Adhesion Molecule In
    www.nature.com/bjc ARTICLE Molecular Diagnostics Clinical significance and biological role of L1 cell adhesion molecule in gastric cancer Takashi Ichikawa1, Yoshinaga Okugawa 1, Yuji Toiyama1, Koji Tanaka1, Chengzeng Yin1, Takahito Kitajima1, Satoru Kondo1, Tadanobu Shimura1, Masaki Ohi1, Toshimitsu Araki1 and Masato Kusunoki1 BACKGROUND: L1 cell adhesion molecule (L1CAM) is highly expressed in malignant tumours and might play a pivotal role in tumour progression. METHODS: We analysed by immunohistochemistry L1CAM protein expression in formalin-fixed, paraffin-embedded specimens from 309 GC patients. We performed propensity score matching (PSM) analysis to clarify the prognostic impact of L1CAM in GC patients. We evaluated L1CAM gene expression in fresh frozen specimens from another group of 131 GC patients to establish its clinical relevance. The effects of changes in L1CAM were investigated in vitro and in vivo. RESULTS: L1CAM was mainly expressed in tumour cells of GC tissues. Elevated L1CAM expression was an independent prognostic factor for overall and disease-free survival, and an independent risk factor for distant metastasis in GC patients. PSM analysis showed that high L1CAM expression was significantly associated with poor prognosis. L1CAM gene expression using fresh frozen specimens successfully validated all of these findings in an independent cohort. Inhibition of L1CAM suppressed cell proliferation, cycle progress, invasion, migration and anoikis resistance in GC cells. Furthermore, L1CAM inhibition suppressed the growth of peritoneal
    [Show full text]
  • CHL1 and Nrcam Are Primarily Expressed in Low Grade Pediatric
    Open Med. 2019; 14: 920-927 Research Article Robin Wachowiak, Steffi Mayer, Anne Suttkus, Illya Martynov, Martin Lacher, Nathaniel Melling, Jakob R. Izbicki, Michael Tachezy CHL1 and NrCAM are primarily expressed in low grade pediatric neuroblastoma https://doi.org/10.1515/med-2019-0109 Keywords: CHL1; NrCAM; Neuroblastoma; Immunohisto- received November 7, 2018; accepted October 19, 2019 chemistry; Tumor markers; Neuropathology Abstract: Background. Neural cell adhesion molecules like close homolog of L1 protein (CHL1) and neuronal glia related cell adhesion molecule (NrCAM) play an impor- tant role in development and regeneration of the central 1 Introduction nervous system. However, they are also associated with Neuroblastoma is an embryonic malignancy deriving cancerogenesis and progression in adult malignancies, from neural crest cells that undergo rapid differentia- thus gain increasing importance in cancer research. We tion during fetal development. As the transition from therefore studied the expression of CHL1 and NrCAM normal to malignant tissue can occur in multiple steps, according to the course of disease in children with neu- its phenotype is highly heterogeneous [1]. Although pro- roblastoma. gress has been made in the treatment of neuroblastoma, Methods. CHL1 and NrCAM expression levels were histo- the outcome of children at high risk remains poor with a logically assessed by tissue microarrays from surgically long-term survival as low as 50 % [2]. Different parameters resected neuroblastoma specimens of 56 children. Expres- such as age, stage and chromosomal aberrations have an sion of both markers was correlated to demographics as impact on prognosis. Still, there is an ongoing need for well as clinical data including metastatic dissemination tumor markers, which allow a better determination of the and survival.
    [Show full text]
  • Upregulation of NETO2 Gene in Colorectal Cancer Maria S
    Fedorova et al. BMC Genetics 2017, 18(Suppl 1):117 DOI 10.1186/s12863-017-0581-8 RESEARCH Open Access Upregulation of NETO2 gene in colorectal cancer Maria S. Fedorova1†, Anastasiya V. Snezhkina1†, Elena A. Pudova1, Ivan S. Abramov1, Anastasiya V. Lipatova1, Sergey L. Kharitonov1, Asiya F. Sadritdinova1, Kirill M. Nyushko2, Kseniya M. Klimina3, Mikhail M. Belyakov2, Elena N. Slavnova2, Nataliya V. Melnikova1, Maria A. Chernichenko2, Dmitry V. Sidorov2, Marina V. Kiseleva2, Andrey D. Kaprin2, Boris Y. Alekseev2, Alexey A. Dmitriev1 and Anna V. Kudryavtseva1,2* From Belyaev Conference Novosibirsk, Russia. 07-10 August 2017 Abstract Background: Neuropilin and tolloid-like 2 (NETO2) is a single-pass transmembrane protein that has been shown primarily implicated in neuron-specific processes. Upregulation of NETO2 gene was also detected in several cancer types. In colorectal cancer (CRC), it was associated with tumor progression, invasion, and metastasis, and seems to be involved in epithelial-mesenchymal transition (EMT). However, the mechanism of NETO2 action is still poorly understood. Results: We have revealed significant increase in the expression of NETO2 gene and deregulation of eight EMT-related genes in CRC. Four of them were upregulated (TWIST1, SNAIL1, LEF1,andFOXA2); the mRNA levels of other genes (FOXA1, BMP2, BMP5,andSMAD7) were decreased. Expression of NETO2 gene was weakly correlated with that of genes involved in the EMT process. Conclusions: We found considerable NETO2 upregulation, but no significant correlation between the expression of NETO2 and EMT-related genes in CRC. Thus, NETO2 may be involved in CRC progression, but is not directly associated with EMT. Keywords: Colorectal cancer, NETO2, Epithelial-mesenchymal transition, Gene expression, QPCR Background and signaling pathways [3–6].
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • L1 Induces Colon Cancer Metastasis but Not EMT and CSC Markers
    Author Manuscript Published OnlineFirst on December 1, 2010; DOI: 10.1158/1541-7786.MCR-10-0406 Author manuscripts havePublished been peer reviewed OnlineFirst and accepted on December for publication 1, 2010but have not yet been edited. L1 induces colon cancer metastasis but not EMT and CSC markers L1-mediated Colon Cancer Cell Metastasis does not Require Changes in EMT and Cancer Stem Cell Markers Nancy Gavert1, Alessia Vivanti1, John Hazin1, Thomas Brabletz2, and Avri Ben-Ze’ev1 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel 2Department of Visceral Surgery, University of Freiburg, Hugstetter Str 55, Freiburg, 79095, Germany Running title: L1 induces colon cancer metastasis but not EMT and CSC markers Key words: L1, colon cancer, metastasis, EMT, CSC Corresponding author: Avri Ben-Ze’ev Tel: (972)-8-9342422 Fax: (972)-8-9465261 E-mail: [email protected] Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Copyright © 2010 American Association for Cancer Research Downloaded from mcr.aacrjournals.org on October 1, 2021. © 2010 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 1, 2010; DOI: 10.1158/1541-7786.MCR-10-0406 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. L1 induces colon cancer metastasis but not EMT and CSC markers Abstract Aberrant activation of WNT/β-catenin signaling is common in most sporadic and inherited colorectal cancer (CRC) cells leading to elevated β-catenin-TCF transactivation. We previously identified the neural cell adhesion molecule L1 as a target gene of β-catenin- TCF in CRC cells.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Full Text (PDF)
    Published OnlineFirst January 23, 2019; DOI: 10.1158/0008-5472.CAN-18-1261 Cancer Genome and Epigenome Research Sleeping Beauty Insertional Mutagenesis Reveals Important Genetic Drivers of Central Nervous System Embryonal Tumors Pauline J. Beckmann1, Jon D. Larson1, Alex T. Larsson1, Jason P. Ostergaard1, Sandra Wagner1, Eric P. Rahrmann1,2, Ghaidan A. Shamsan3, George M. Otto1,4, Rory L. Williams1,5, Jun Wang6, Catherine Lee6, Barbara R. Tschida1, Paramita Das1, Adrian M. Dubuc7, Branden S. Moriarity1, Daniel Picard8,9, Xiaochong Wu10, Fausto J. Rodriguez11, Quincy Rosemarie1,12, Ryan D. Krebs1, Amy M. Molan1,13, Addison M. Demer1, Michelle M. Frees1, Anthony E. Rizzardi14, Stephen C. Schmechel14,15, Charles G. Eberhart16, Robert B. Jenkins17, Robert J. Wechsler-Reya6, David J. Odde3, Annie Huang18, Michael D. Taylor10, Aaron L. Sarver1, and David A. Largaespada1 Abstract Medulloblastoma and central nervous system primitive identified several putative proto-oncogenes including Arh- neuroectodermal tumors (CNS-PNET) are aggressive, poorly gap36, Megf10,andFoxr2. Genetic manipulation of these differentiated brain tumors with limited effective therapies. genes demonstrated a robust impact on tumorigenesis Using Sleeping Beauty (SB) transposon mutagenesis, we in vitro and in vivo. We also determined that FOXR2 interacts identified novel genetic drivers of medulloblastoma and with N-MYC, increases C-MYC protein stability, and acti- CNS-PNET. Cross-species gene expression analyses classified vates FAK/SRC signaling. Altogether, our study identified SB-driven tumors into distinct medulloblastoma and several promising therapeutic targets in medulloblastoma CNS-PNET subgroups, indicating they resemble human and CNS-PNET. Sonic hedgehog and group 3 and 4 medulloblastoma and CNS neuroblastoma with FOXR2 activation.
    [Show full text]
  • Learning from Cadherin Structures and Sequences: Affinity Determinants and Protein Architecture
    Learning from cadherin structures and sequences: affinity determinants and protein architecture Klára Fels ıvályi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Klara Felsovalyi All rights reserved ABSTRACT Learning from cadherin structures and sequences: affinity determinants and protein architecture Klara Felsovalyi Cadherins are a family of cell-surface proteins mediating adhesion that are important in development and maintenance of tissues. The family is defined by the repeating cadherin domain (EC) in their extracellular region, but they are diverse in terms of protein size, architecture and cellular function. The best-understood subfamily is the type I classical cadherins, which are found in vertebrates and have five EC domains. Among the five different type I classical cadherins, the binding interactions are highly specific in their homo- and heterophilic binding affinities, though their sequences are very similar. As previously shown, E- and N-cadherins, two prototypic members of the subfamily, differ in their homophilic K D by about an order of magnitude, while their heterophilic affinity is intermediate. To examine the source of the binding affinity differences among type I cadherins, we used crystal structures, analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), and electron paramagnetic resonance (EPR) studies. Phylogenetic analysis and binding affinity behavior show that the type I cadherins can be further divided into two subgroups, with E- and N-cadherin representing each. In addition to the affinity differences in their wild-type binding through the strand-swapped interface, a second interface also shows an affinity difference between E- and N-cadherin.
    [Show full text]
  • L1 Cell Adhesion Molecule in Cancer, a Systematic Review on Domain-Specific Functions
    International Journal of Molecular Sciences Review L1 Cell Adhesion Molecule in Cancer, a Systematic Review on Domain-Specific Functions Miriam van der Maten 1,2, Casper Reijnen 1,3, Johanna M.A. Pijnenborg 1,* and Mirjam M. Zegers 2,* 1 Department of Obstetrics and Gynaecology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands 2 Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, 6525 GA Nijmegen, The Netherlands 3 Department of Obstetrics and Gynaecology, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands * Correspondence: [email protected] (J.M.A.P); [email protected] (M.M.Z.) Received: 24 June 2019; Accepted: 23 August 2019; Published: 26 August 2019 Abstract: L1 cell adhesion molecule (L1CAM) is a glycoprotein involved in cancer development and is associated with metastases and poor prognosis. Cellular processing of L1CAM results in expression of either full-length or cleaved forms of the protein. The different forms of L1CAM may localize at the plasma membrane as a transmembrane protein, or in the intra- or extracellular environment as cleaved or exosomal forms. Here, we systematically analyze available literature that directly relates to L1CAM domains and associated signaling pathways in cancer. Specifically, we chart its domain-specific functions in relation to cancer progression, and outline pre-clinical assays used to assess L1CAM. It is found that full-length L1CAM has both intracellular and extracellular targets, including interactions with integrins, and linkage with ezrin. Cellular processing leading to proteolytic cleavage and/or exosome formation results in extracellular soluble forms of L1CAM that may act through similar mechanisms as compared to full-length L1CAM, such as integrin-dependent signals, but also through distinct mechanisms.
    [Show full text]
  • Interaction of the Cell Adhesion Molecule CHL1 with Vitronectin
    14606 • The Journal of Neuroscience, October 29, 2014 • 34(44):14606–14623 Cellular/Molecular Interaction of the Cell Adhesion Molecule CHL1 with Vitronectin, Integrins, and the Plasminogen Activator Inhibitor-2 Promotes CHL1-Induced Neurite Outgrowth and Neuronal Migration Jelena Katic,1* Gabriele Loers,1* Ralf Kleene,1* Nicole Karl,1* Carsten Schmidt,1 Friedrich Buck,2 Jaroslaw W. Zmijewski,6 Igor Jakovcevski,1 Klaus T. Preissner,3 and Melitta Schachner4,5 1Zentrum fu¨r Molekulare Neurobiologie, and 2Institut fu¨r Klinische Chemie, Universita¨tsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany, 3Department of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany, 4Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, 5Center for Neuroscience, Shantou University Medical College, Shantou 515041, People’s Republic of China, and 6Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, BMRII-304, Birmingham, Alabama 35294 The cell adhesion molecule close homolog of L1 (CHL1) plays important functional roles in the developing and adult nervous system. In search of the binding partners that mediate the diverse and sometimes opposing functions of CHL1, the extracellular matrix-associated proteins vitronectin and plasminogen activator inhibitor-2 (PAI-2) were identified as novel CHL1 interaction partners and tested for involvement in CHL1-dependent functions during mouse cerebellar development. CHL1-induced cerebellar neurite outgrowth and cell migration at postnatal days 6–8 were inhibited by a CHL1-derived peptide comprising the integrin binding RGD motif, and by antibodies against vitronectin or several integrins, indicating a vitronectin-dependent integrin-mediated pathway. A PAI-2-derived peptide, or antibodies against PAI-2, urokinase type plasminogen activator (uPA), uPA receptor, and several integrins reduced cell migration.
    [Show full text]
  • Characterization of the Neuron-Specific L1-CAM
    4160 Biochemistry 2008, 47, 4160–4168 Characterization of the Neuron-Specific L1-CAM Cytoplasmic Tail: Naturally Disordered in Solution It Exercises Different Binding Modes for Different Adaptor Proteins† Sergiy Tyukhtenko,‡ Lalit Deshmukh,‡ Vineet Kumar,‡ Jeffrey Lary,§ James Cole,| Vance Lemmon,⊥ and Olga Vinogradova*,‡ Department of Pharmaceutical Sciences, School of Pharmacy, Department of Molecular and Cell Biology, and Biotechnology Center, UniVersity of Connecticut, Storrs, Connecticut 06269, and The Miami Project to Cure Paralysis and Neurological Surgery, UniVersity of Miami, Miami, Florida 33136 ReceiVed December 13, 2007; ReVised Manuscript ReceiVed February 11, 2008 ABSTRACT: L1, a highly conserved transmembrane glycoprotein member of the immunoglobulin superfamily of cell adhesion molecules, mediates many developmental processes in the nervous system. Here we present the biophysical characterization and the binding properties of the least structurally defined part of this receptor: its cytoplasmic tail (CT). We have shown by analytical ultracentrifugation and dynamic light scattering experiments that it is mostly monomeric and unstructured in aqueous solution. We have defined by nuclear magnetic resonance the molecular details of L1-CT binding to two major targets: a membrane-cytoskeletal linker (MCL), ezrin, and an endocytosis mediator, AP2. Surprisingly, in addition to the two previously identified ezrin binding motifs, the juxtamembrane and the 1176YRSLE regions, we have discovered a third one, a part of which has been previously associated with binding to another MCL, ankyrin. For the L1 interaction with AP2 we have determined the precise interaction region surrounding the 1176YRSLE binding site and that this overlaps with the second ezrin binding site. In addition, we have shown that the juxtamembrane region of L1-CT has some binding affinity to AP2-µ2, although the specificity of this interaction needs further investigation.
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]