Nuclear Genetic Codes with a Different Meaning of the UAG and the UAA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
3.2.2 Diplomonad (Hexamitid) Flagellates - 1
3.2.2 Diplomonad (Hexamitid) Flagellates - 1 3.2.2 Diplomonad (Hexamitid) Flagellates: Diplomonadiasis, Hexamitosis, Spironucleosis Sarah L. Poynton Department of Comparative Medicine Johns Hopkins University School of Medicine 1-127 Jefferson Building, Johns Hopkins Hospital 600 North Wolfe Street Baltimore, MD 21287 410/502-5065 fax: 443/287-2954 [email protected] [email protected] A. Name of Disease and Etiological Agent Diplomonadiasis or hexamitosis is infection by diplomonad flagellates (Order Diplomonadida, suborder Diplomonadina, Family Hexamitidae). If the exact genus is known, the infections may be reported as hexamitiasis (Hexamita), octomitosis (Octomitus), or spironucleosis (Spironucleus); of these, probably only the latter is applicable to fish (see below). Infections may be reported as localized (commonly in the intestine, and possibly also including “hole-in-the head disease” of cichlids (Paull and Matthews 2001), or disseminated or systemic (Ferguson and Moccia 1980; Kent et al. 1992; Poppe et al. 1992; Sterud et al. 1998). Light microscopy studies have reported three genera from fish - namely Hexamita, Octomitus, and Spironucleus. However, transmission electron microscopy (TEM) is needed to confirm genus (Poynton and Sterud 2002), and light microscopy studies are therefore taxonomically unreliable. If TEM is not available, the organisms should be recorded as diplomonad or hexamitid flagellates. All recent comprehensive ultrastructural studies show only the genus Spironucleus infecting fish, and it is probable that this is the genus to which all diplomonads from fish belong (Poynton and Sterud 2002). Some 15 to 20 species of diplomonads have been reported from fish (Poynton and Sterud 2002). However, most descriptions do not include comprehensive surface and internal ultrastructure and thus are incomplete. -
Omar Ariel Espinosa Domínguez
Omar Ariel Espinosa Domínguez DIVERSIDADE, TAXONOMIA E FILOGENIA DE TRIPANOSSOMATÍDEOS DA SUBFAMÍLIA LEISHMANIINAE Tese apresentada ao Programa de Pós- Graduação em Biologia da Relação Patógeno –Hospedeiro do Instituto de Ciências Biomédicas da Universidade de São Paulo, para a obtenção do título de Doutor em Ciências. Área de concentração: Biologia da Relação Patógeno-Hospedeiro. Orientadora: Profa. Dra. Marta Maria Geraldes Teixeira Versão original São Paulo 2015 RESUMO Domínguez OAE. Diversidade, Taxonomia e Filogenia de Tripanossomatídeos da Subfamília Leishmaniinae. [Tese (Doutorado em Parasitologia)]. São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo; 2015. Os parasitas da subfamília Leishmaniinae são tripanossomatídeos exclusivos de insetos, classificados como Crithidia e Leptomonas, ou de vertebrados e insetos, dos gêneros Leishmania e Endotrypanum. Análises filogenéticas posicionaram espécies de Crithidia e Leptomonas em vários clados, corroborando sua polifilia. Além disso, o gênero Endotrypanum (tripanossomatídeos de preguiças e flebotomíneos) tem sido questionado devido às suas relações com algumas espécies neotropicais "enigmáticas" de leishmânias (a maioria de animais selvagens). Portanto, Crithidia, Leptomonas e Endotrypanum precisam ser revisados taxonomicamente. Com o objetivo de melhor compreender as relações filogenéticas dos táxons dentro de Leishmaniinae, os principais objetivos deste estudo foram: a) caracterizar um grande número de isolados de Leishmaniinae e b) avaliar a adequação de diferentes -
Cyprinus Carpio
Cyprinus carpio Investigation of infection by some Endo- parasitic Protozoa species in common carp ( Cyprinus carpio ) in AL-Sinn fishfarm 2014 Cyprinus carpio Investigation of infection by some Endo- parasitic Protozoa species in common carp ( Cyprinus carpio ) in AL-Sinn fishfarm 2014 I IV V VI VII 2 1 3 2 3 3 4 4 4 1 4 4 1 1 4 2 4 6 6 1 2 4 6 6 7 8 8 10 12 14 15 15 16 2 2 4 I 16 16 16 17 17 18 18 19 19 19 Hexamitosis 3 2 4 19 19 20 20 21 21 21 1 3 4 22 23 2 3 4 26 5 26 1 5 27 2 5 28 3 5 29 4 5 29 1 4 5 29 2 4 5 33 3 4 5 II 34 4 4 5 34 5 4 5 36 6 36 1 6 42 2 6 42 Hexamitosis 3 6 43 7 44 8 44 9 49 10 49 1 10 51 2 10 III 5 1 Oocyst 7 2 15 3 11 Merozoites 4 12 5 12 6 13 7 14 8 15 9 Trypanosoma 1 18 10 Trypanoplasma 2 19 11 21 Hexamita 12 23 Hexamita 13 A 28 14 B 30 Cyprinus carpio carpio 15 31 16 33 17 34 18 34 19 35 20 35 21 36 22 IV 40 Goussia carpelli 23 40 Macrogametocyte 24 41 Merozoites 25 37 1 Goussia carpelli 39 2 Goussia 41 3 carpelli Goussia 42 carpelli 4 43 5 Goussia 44 carpelli 6 V Goussia Trypanosoma Trypanoplasma borreli Goussia subepithelialis carpelli Hexamita intestinalis danilewskyi Hexamitosis 200 2013 / 5 / 14 2012 / 6 / 6 Goussia carpelli Goussia subepithelials Nodular Coccidiosis Macrogametocytes Merozoites 3 Goussia carpelli 5.4 1.6 17.6 95.84 17.5 16 Trypanosoma Trypanoplasma borreli Hexamita intestinalis danilewskyi VI Abstract This study aimed at investigating the infection of cultured common carp ( Cyprinus carpio L. -
Phylogenomic Analysis of Balantidium Ctenopharyngodoni (Ciliophora, Litostomatea) Based on Single-Cell Transcriptome Sequencing
Parasite 24, 43 (2017) © Z. Sun et al., published by EDP Sciences, 2017 https://doi.org/10.1051/parasite/2017043 Available online at: www.parasite-journal.org RESEARCH ARTICLE Phylogenomic analysis of Balantidium ctenopharyngodoni (Ciliophora, Litostomatea) based on single-cell transcriptome sequencing Zongyi Sun1, Chuanqi Jiang2, Jinmei Feng3, Wentao Yang2, Ming Li1,2,*, and Wei Miao2,* 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China 2 Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, Hubei Province, PR China 3 Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan 430056, PR China Received 22 April 2017, Accepted 12 October 2017, Published online 14 November 2017 Abstract- - In this paper, we present transcriptome data for Balantidium ctenopharyngodoni Chen, 1955 collected from the hindgut of grass carp (Ctenopharyngodon idella). We evaluated sequence quality and de novo assembled a preliminary transcriptome, including 43.3 megabits and 119,141 transcripts. Then we obtained a final transcriptome, including 17.7 megabits and 35,560 transcripts, by removing contaminative and redundant sequences. Phylogenomic analysis based on a supermatrix with 132 genes comprising 53,873 amino acid residues and phylogenetic analysis based on SSU rDNA of 27 species were carried out herein to reveal the evolutionary relationships among six ciliate groups: Colpodea, Oligohymenophorea, Litostomatea, Spirotrichea, Hetero- trichea and Protocruziida. The topologies of both phylogenomic and phylogenetic trees are discussed in this paper. In addition, our results suggest that single-cell sequencing is a sound method of obtaining sufficient omics data for phylogenomic analysis, which is a good choice for uncultivable ciliates. -
Protist Phylogeny and the High-Level Classification of Protozoa
Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane). -
An Enigmatic Catalase of Blastocrithidia T Claretta Bianchia, Alexei Yu
Molecular & Biochemical Parasitology 232 (2019) 111199 Contents lists available at ScienceDirect Molecular & Biochemical Parasitology journal homepage: www.elsevier.com/locate/molbiopara An enigmatic catalase of Blastocrithidia T Claretta Bianchia, Alexei Yu. Kostygova,b,1, Natalya Kraevaa,1, Kristína Záhonovác,d, ⁎ Eva Horákovác, Roman Sobotkae,f, Julius Lukešc,f, Vyacheslav Yurchenkoa,g, a Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic b Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia c Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic d Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic e Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic f Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic g Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia ARTICLE INFO ABSTRACT Keywords: Here we report that trypanosomatid flagellates of the genus Blastocrithidia possess catalase. This enzyme is not Oxygen peroxide phylogenetically related to the previously characterized catalases in other monoxenous trypanosomatids, sug- Catalase gesting that their genes have been acquired independently. Surprisingly, Blastocrithidia catalase is less en- Trypanosomatidae zymatically active, compared to its counterpart from Leptomonas pyrrhocoris, posing an intriguing biological question why this gene has been retained in the evolution of trypanosomatids. Catalase (EC 1.11.1.6) is a ubiquitous enzyme, usually involved in peroxide plays a role in promastigote-to-amastigote differentiation of oxidative stress protection. It contains a heme cofactor in its active site these parasites [8]. Thus, presence of a catalase appears to be in- and converts hydrogen peroxide (H2O2) to water and oxygen [1]. -
Leishmaniases in the AMERICAS
MANUAL OF PROCEDURES FOR SURVEILLANCE AND CONTROL Leishmaniases IN THE AMERICAS Pan American World Health Health Organization Organization REGIONAL OFFICE FOR THE Americas Manual of procedures for leishmaniases surveillance and control in the Americas Pan American World Health Health Organization Organization REGIONAL OFFICE FOR THE Americas Washington, D.C. 2019 Also published in Spanish Manual de procedimientos para vigilancia y control de las leishmaniasis en las Américas ISBN: 978-92-75-32063-1 Manual of procedures for leishmaniases surveillance and control in the Americas ISBN: 978-92-75-12063-7 © Pan American Health Organization 2019 All rights reserved. Publications of the Pan American Health Organization (PAHO) are available on the PAHO website (www.paho. org). Requests for permission to reproduce or translate PAHO Publications should be addressed to the Publications Program throu- gh the PAHO website (www.paho.org/permissions). Suggested citation. Pan American Health Organization. Manual of procedures for leishmaniases surveillance and control in the Americas. Washington, D.C.: PAHO; 2019. Cataloguing-in-Publication (CIP) data. CIP data are available at http://iris.paho.org. Publications of the Pan American Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of PAHO concerning the status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. -
PDF Proof: Mol. Biol. Evol. 14 15 16 17 18 19 20 21 22 23 24 25 26 27 FIG
Page 1 of 61 Molecular Biology and Evolution 1 2 3 Submission intended as an Article for the section Resources of MBE 4 5 6 PhyloToL: A taxon/gene rich phylogenomic pipeline to explore genome evolution of 7 8 diverse eukaryotes 9 10 11 Cerón-Romero M. A a,b, Maurer-Alcalá, X. X. a,b,d, Grattepanche, J-D. a, e, Yan, Y. a, Fonseca, M. 12 c a,b. 13 M. , Katz, L. PDFA Proof: Mol. Biol. Evol. 14 15 16 a Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA. 17 b Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, 18 19 Amherst, Massachusetts, USA. 20 c 21 CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of 22 Porto, Porto, Portugal. 23 24 d Current address: Institute of Cell Biology, University of Bern, Bern, Switzerland. 25 e Current address: Biology Department, Temple University, Philadelphia, Pennsylvania, USA. 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 Support: (434) 964-4100 Molecular Biology and Evolution Page 2 of 61 1 2 3 ABSTRACT 4 5 Estimating multiple sequence alignments (MSAs) and inferring phylogenies are essential for 6 many aspects of comparative biology. Yet, many bioinformatics tools for such analyses have 7 8 focused on specific clades, with greatest attention paid to plants, animals and fungi. The rapid 9 10 increase of high-throughput sequencing (HTS) data from diverse lineages now provides 11 opportunities to estimate evolutionary relationships and gene family evolution across the 12 13 eukaryotic treePDF of life. -
Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published. -
Ciliophora, Heterotrichea
Phylogeny of two poorly known ciliate genera (Ciliophora, Heterotrichea), with notes on the redenition of Gruberia uninucleata Kahl, 1932 and Linostomella vorticella (Ehrenberg, 1833) based on populations found in China Yong Chi Ocean University of China Yuqing Li Ocean University of China Qianqian Zhang Chinese Academy of Sciences Mingzhen Ma Ocean University of China Alan Warren Natural History Museum Xiangrui Chen ( [email protected] ) Weibo Song Ocean University of China Research article Keywords: Heterotrichous, Morphology, Phylogeny, SSU rDNA Posted Date: February 3rd, 2020 DOI: https://doi.org/10.21203/rs.2.22447/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 2nd, 2020. See the published version at https://doi.org/10.1186/s12866-020-01879-4. Page 1/27 Abstract Background Heterotrichous ciliates are common members of microeukaryote communities which play important roles in the transfer of material and energy ow in aquatic food webs. This group has been known over two centuries due to their large body size and cosmopolitan distribution. Nevertheless, species identication and phylogenetic relationships of heterotrichs remain challenging due to the lack of accurate morphological information and insucient molecular data. Results The morphology and phylogeny of two poorly known heterotrichous ciliates, Gruberia uninucleata Kahl, 1932 and Linostomella vorticella (Ehrenberg, 1833) Aescht in Foissner et al. , 1999, were investigated based on their living morphology, infraciliature, and small subunit (SSU) rDNA sequence data. Based on a combination of previous and present studies, detailed morphometric data and the improved diagnoses of both species are supplied here. -
Trypanosomatids: Odd Organisms, Devastating Diseases
30 The Open Parasitology Journal, 2010, 4, 30-59 Open Access Trypanosomatids: Odd Organisms, Devastating Diseases Angela H. Lopes*,1, Thaïs Souto-Padrón1, Felipe A. Dias2, Marta T. Gomes2, Giseli C. Rodrigues1, Luciana T. Zimmermann1, Thiago L. Alves e Silva1 and Alane B. Vermelho1 1Instituto de Microbiologia Prof. Paulo de Góes, UFRJ; Cidade Universitária, Ilha do Fundão, Rio de Janeiro, R.J. 21941-590, Brasil 2Instituto de Bioquímica Médica, UFRJ; Cidade Universitária, Ilha do Fundão, Rio de Janeiro, R.J. 21941-590, Brasil Abstract: Trypanosomatids cause many diseases in and on animals (including humans) and plants. Altogether, about 37 million people are infected with Trypanosoma brucei (African sleeping sickness), Trypanosoma cruzi (Chagas disease) and Leishmania species (distinct forms of leishmaniasis worldwide). The class Kinetoplastea is divided into the subclasses Prokinetoplastina (order Prokinetoplastida) and Metakinetoplastina (orders Eubodonida, Parabodonida, Neobodonida and Trypanosomatida) [1,2]. The Prokinetoplastida, Eubodonida, Parabodonida and Neobodonida can be free-living, com- mensalic or parasitic; however, all members of theTrypanosomatida are parasitic. Although they seem like typical protists under the microscope the kinetoplastids have some unique features. In this review we will give an overview of the family Trypanosomatidae, with particular emphasis on some of its “peculiarities” (a single ramified mitochondrion; unusual mi- tochondrial DNA, the kinetoplast; a complex form of mitochondrial RNA editing; transcription of all protein-encoding genes polycistronically; trans-splicing of all mRNA transcripts; the glycolytic pathway within glycosomes; T. brucei vari- able surface glycoproteins and T. cruzi ability to escape from the phagocytic vacuoles), as well as the major diseases caused by members of this family.