Methods for the Electronic Structure of Large Chemical Systems Hong-Zhou Ye

Total Page:16

File Type:pdf, Size:1020Kb

Methods for the Electronic Structure of Large Chemical Systems Hong-Zhou Ye Methods for the Electronic Structure of Large Chemical Systems by Hong-Zhou Ye B.S., Peking University (2015) Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author............................................................................ Department of Chemistry May 7, 2020 Certified by. Troy Van Voorhis Haslam and Dewey Professor of Chemistry Thesis Supervisor Accepted by....................................................................... Robert W. Field Haslam and Dewey Professor of Chemistry Chairman, Department Committee on Graduate Theses 2 This doctoral thesis has been examined by a Committee of the Department of Chemistry as follows: Professor Adam P. Willard. Chairman, Thesis Committee Associate Professor of Chemistry Professor Troy Van Voorhis . Thesis Supervisor Haslam and Dewey Professor of Chemistry Professor Heather J. Kulik . Member, Thesis Committee Associate Professor of Chemical Engineering 4 Methods for the Electronic Structure of Large Chemical Systems by Hong-Zhou Ye Submitted to the Department of Chemistry on May 7, 2020, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Abstract An accurate description of the electronic structure of chemical systems is crucial to under- standing the atomistic mechanisms of many functional materials and designing new ones. In this thesis, we present methods that can potentially be used to computationally study the electronic structure of large chemical systems. The thesis can be roughly divided into two parts. In the first part, we focus on using quantum embedding (QE) theory to reduce the scaling of traditional electron correlation methods while maintaining their accuracy. Specifically, we extend bootstrap embedding (BE), a QE scheme that has displayed high performance for model Hamiltonians, to general chemical systems. Two challenges arise in such an extension. First, unlike the model systems, the basis functions of a real chemical system do not possess a uniquely defined connectivity and often lack high symmetries, which pose challenges on partitioning a chemical system into fragments that are necessary for a BE calculation (or other QE schemes). Second, the key to the success of BE on model Hamiltonians is the density matching between fragments that overlap with each other, which requires one to identify fragment centers and edges. Unlike model Hamiltonians where the fragments are regularly shaped – rendering the identification trivial – a real chemical system can have fragments that display complex patterns that make the distinction not obvious. To that end, we propose two fragment choices for partitioning a chemical system, one based on individual orbitals and the other on atoms, and systematically benchmark their effects on the performance of BE. Our finding is that the atom-based fragments are a better choice for BE, leading to fast convergence with the fragment size to the full-system calculations. We then develop an efficient implementation of atom-based BE using coupled cluster with singles and doubles (CCSD) as the local solver, and benchmark it on a series of conjugated molecules containing up to ∼ 2900 basis functions. Numerical tests confirm both the accuracy and computational efficiency of BE, rendering it a potential alternative to the more established local correlation methods. At the end of the first part, we also present another QE scheme, incremental embedding (IE), that does not rely on the connectivity between the units of a system (orbitals or atoms). In the second part, we switch our gear to develop self-consistent methods for locating excited states, which are complementary to the linear response-based methods for excited state calculations. Here, the difficulty is to avoid the variational collapse: unlike the ground state, which is the global minimum of the energy, excited states are often saddle points, making regular algorithms aimed at minimizing the energy collapse down to the ground state. To that end, we propose minimizing the energy variance, which is a minimum for all states and hence promises a numerically robust algorithm for locating them. To target a 5 specific state, we couple the variance minimization to a direct energy-targeting functional. The resulting method, which we dub 휎-SCF, can in principle locate any excited state by specifying a guess of the energy of the state. Numerical tests confirm that 휎-SCF solutions behave like the energy-stationary solutions. More importantly, for single excitations, 휎- SCF displays the pertinent spin symmetry breaking, which motivates us to improve it using spin projection. This effort leads to the half-projected (HP) 휎-SCF, which maintains the ability of 휎-SCF to effectively locate excited states, and significantly improves the results for singlet and triplet single excitations. In the conclusion, we comment on how self-consistent excited state methods could be combined with QE, hence enabling large-scale, correlated calculations for excited states. Thesis Supervisor: Troy Van Voorhis Title: Haslam and Dewey Professor of Chemistry 6 Acknowledgments First and foremost, I would like to thank my research advisor, Prof. Troy Van Voorhis, for his consistent support and patient encouragement on virtually every aspect of my research at MIT. It is under his guidance that I have gradually acquired interest in my current research area and prepared myself for exploring much more. I would like to thank my thesis committee, Prof. Adam P. Willard and Prof. Heather J. Kulik, for their time and advice, on not only my research, but also my academic career in the long run. I am also grateful to my undergraduate research advisor, Prof. Hong Jiang, for showing me the door of chemical theory and computation and supporting me for further pursuing that road in graduate school. The Van Voorhis group has always been a supportive place for me, and I would like to thank everyone in the group for making that happen. Particularly, I am grateful to Dr. Matthew Welborn and Dr. Nathan Ricke for their great mentorship in my rookie seasons, to Dr. Tianyu Zhu, Diptarka Hait, Prof. Zhou Lin and Prof. James Shepard for many useful discussions on research, to Henry Tran for his curiosity and hard work, to Alexandra McIsaac, Changhae Andrew Kim, Dr. Yael Cytter, Dr. Tamar Goldzak, Natasha Seelam and all other zoo residents for making me feel home in the zoo. Special thanks to Prof. Takashi Tsuchimochi: although you had left the group before I came to MIT, a big portion of my research has been inspired by your excellent works! Also, special thanks to Lexie, Andrew, and Henry for proofreading this thesis. I am also grateful to all my friends at MIT, especially Tian Xie, Jiayue Wang, Xinhao Li, Zhiwei Ding, Hejin Huang, Hongzi Mao, Manxi Wu, Ge Liu, and Danhao Ma, for their support and encouragement during my hard time at MIT. I would also like to thank my experimental collaborators, including Dr. Michelle MacLeod, Dr. Nathan Oldenhuis, Dr. Nolan Gallagher, and Dr. Yayuan Liu. It is the collaboration and discussion with them that has opened up a new world of chemistry in action to me. Special thanks to Prof. Jeremiah Johnson for many inspiring and enlightening discussions. Last but by no means the least, I am deeply grateful to my parents for their love and consistent support on all the decisions I have made. I am also greatly indebted to my girlfriend, Weiwei, for her accompanying through all the tough time of graduate school and being supportive to my career. Special thanks also go to Caomei, for helping me find bugs 7 in my code. This thesis is dedicated to all of you! 8 Contents 1 Theoretical background 25 1.1 Overview of electronic structure theory . 25 1.1.1 The Born-Oppenheimer approximation . 27 1.1.2 Representation of a state . 27 1.1.3 Second quantization . 29 1.1.4 Atomic orbitals and integral transform . 30 1.1.5 Density matrices . 31 1.2 Methods for electronic ground states . 32 1.2.1 Variational principle . 32 1.2.2 The Hartree-Fock theory . 33 1.2.3 Full configuration interaction, electron correlation, and size-consistency 34 1.2.4 Methods for weak electron correlation . 36 1.2.4.1 Truncated configuration interaction . 36 1.2.4.2 Møller-Plesset perturbation theory . 37 1.2.4.3 Coupled cluster theory . 38 1.2.5 Methods for strong electron correlation . 40 1.3 Methods for electronic excited states . 42 1.3.1 Linear response-based methods . 42 1.3.1.1 Linear response theory . 42 1.3.1.2 Time-dependent Hartree-Fock and configuration interaction with singles . 43 1.3.2 Self-consistent methods . 45 1.3.2.1 Single-reference methods . 45 1.3.2.2 Multi-reference methods . 46 9 1.4 Other theoretical tools . 47 1.4.1 Orbital localization . 47 1.4.2 Spin symmetry breaking and restoration . 47 1.5 Structure of this thesis . 48 2 Bootstrap embedding: general theory 53 2.1 Introduction . 53 2.2 Schmidt decomposition and embedding Hamiltonians . 56 2.3 Matching conditions and the BE equations . 57 2.4 The BE iteration algorithm . 59 2.5 Expectation values in BE . 61 2.6 Relation to other methods . 62 2.6.1 Complete active space methods . 62 2.6.2 Density matrix embedding theory . 63 2.6.3 Local correlation methods . 64 3 Bootstrap embedding using orbital-based fragments 65 3.1 Introduction . 65 3.2 Theory . 66 3.2.1 Orbital-centered fragments . 66 3.2.2 Normalized Coulomb metric . 68 3.2.3 Computational scaling . 68 3.3 Computational details . 69 3.4 Results and discussion . 71 3.4.1 Correlation energy at equilibrium geometry . 71 3.4.2 Homolytic cleavage of covalent bonds . 72 3.4.3 Polyacene chains . 74 3.5 Conclusion .
Recommended publications
  • Free and Open Source Software for Computational Chemistry Education
    Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching.
    [Show full text]
  • Core Software Blocks in Quantum Chemistry: Tensors and Integrals Workshop Program
    Core Software Blocks in Quantum Chemistry: Tensors and Integrals Workshop Program Start: Sunday, May 7, 2017 afternoon. Resort check-in at 4:00 pm. Finish: Wednesday, May 10, noon Lectures are in Scripps, posters are in Heather. Sunday 6:00-7:00: Dinner 7:30-9:00 Opening session 7:30–7:45 Anna Krylov (USC): “MolSSI and some lessons from previous workshop, goals of the workshop” 7:45-8:00 Theresa Windus (Iowa): “Mission of the Molecular Science Consortium” 8:00-9:00 Introduction of participants: 2 min presentation, can have one slide (send in advance) 9:00-10:30 Reception and posters Monday Breakfast: 7:30-9:00 9:00-11:45 Session I: Overview of tensors projects and current developments (moderator Daniel Smith) 9:00-9:10 Daniel Smith (MolSSI): Overview of tensor projects 9:10-9:30 Evgeny Epifanovsky (Q-Chem): Overview of Libtensor 9:30-9:50 Ed Solomonik: "An Overview of Cyclops Tensor Framework" 9:50-10:10 Ed Valeev (VT): "TiledArray: A composable massively parallel block-sparse tensor framework" 10:10-10:30 Coffee break 10:30-10:50 Devin Matthews (UT Austin): "Aquarius and TBLIS: Orthogonal Axes in Multilinear Algebra" 10:50-11:10 Karol Kowalskii (PNNL, NWChem): "NWChem, NWChemEX , and new tensor algebra systems for many-body methods" 11:10-11:30 Peng Chong (VT): "Many-body toolkit in re-designed Massively Parallel Quantum Chemistry package" 11:30-11:55 Moderated discussion: "What problems are we *still* solving?” Lunch: 12:00-1:00 Free time for unstructured discussions 5:00 Posters (coffee/tea) Dinner: 6-7:00 7:15-9:00 Session II: Computer
    [Show full text]
  • Pyscf: the Python-Based Simulations of Chemistry Framework
    PySCF: The Python-based Simulations of Chemistry Framework Qiming Sun∗1, Timothy C. Berkelbach2, Nick S. Blunt3,4, George H. Booth5, Sheng Guo1,6, Zhendong Li1, Junzi Liu7, James D. McClain1,6, Elvira R. Sayfutyarova1,6, Sandeep Sharma8, Sebastian Wouters9, and Garnet Kin-Lic Chany1 1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125, USA 2Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA 3Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4Department of Chemistry, University of California, Berkeley, California 94720, USA 5Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom 6Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA 7Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China 8Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80302, USA 9Brantsandpatents, Pauline van Pottelsberghelaan 24, 9051 Sint-Denijs-Westrem, Belgium arXiv:1701.08223v2 [physics.chem-ph] 2 Mar 2017 Abstract PySCF is a general-purpose electronic structure platform designed from the ground up to emphasize code simplicity, so as to facilitate new method development and enable flexible ∗[email protected] [email protected] 1 computational workflows. The package provides a wide range of tools to support simulations of finite-size systems, extended systems with periodic boundary conditions, low-dimensional periodic systems, and custom Hamiltonians, using mean-field and post-mean-field methods with standard Gaussian basis functions. To ensure ease of extensibility, PySCF uses the Python language to implement almost all of its features, while computationally critical paths are implemented with heavily optimized C routines.
    [Show full text]
  • Jaguar 5.5 User Manual Copyright © 2003 Schrödinger, L.L.C
    Jaguar 5.5 User Manual Copyright © 2003 Schrödinger, L.L.C. All rights reserved. Schrödinger, FirstDiscovery, Glide, Impact, Jaguar, Liaison, LigPrep, Maestro, Prime, QSite, and QikProp are trademarks of Schrödinger, L.L.C. MacroModel is a registered trademark of Schrödinger, L.L.C. To the maximum extent permitted by applicable law, this publication is provided “as is” without warranty of any kind. This publication may contain trademarks of other companies. October 2003 Contents Chapter 1: Introduction.......................................................................................1 1.1 Conventions Used in This Manual.......................................................................2 1.2 Citing Jaguar in Publications ...............................................................................3 Chapter 2: The Maestro Graphical User Interface...........................................5 2.1 Starting Maestro...................................................................................................5 2.2 The Maestro Main Window .................................................................................7 2.3 Maestro Projects ..................................................................................................7 2.4 Building a Structure.............................................................................................9 2.5 Atom Selection ..................................................................................................10 2.6 Toolbar Controls ................................................................................................11
    [Show full text]
  • Trends in Atomistic Simulation Software Usage [1.3]
    A LiveCoMS Perpetual Review Trends in atomistic simulation software usage [1.3] Leopold Talirz1,2,3*, Luca M. Ghiringhelli4, Berend Smit1,3 1Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland; 2Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 3National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 4The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society and Humboldt University, Berlin, Germany This LiveCoMS document is Abstract Driven by the unprecedented computational power available to scientific research, the maintained online on GitHub at https: use of computers in solid-state physics, chemistry and materials science has been on a continuous //github.com/ltalirz/ rise. This review focuses on the software used for the simulation of matter at the atomic scale. We livecoms-atomistic-software; provide a comprehensive overview of major codes in the field, and analyze how citations to these to provide feedback, suggestions, or help codes in the academic literature have evolved since 2010. An interactive version of the underlying improve it, please visit the data set is available at https://atomistic.software. GitHub repository and participate via the issue tracker. This version dated August *For correspondence: 30, 2021 [email protected] (LT) 1 Introduction Gaussian [2], were already released in the 1970s, followed Scientists today have unprecedented access to computa- by force-field codes, such as GROMOS [3], and periodic tional power.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape. Permalink https://escholarship.org/uc/item/4sm897jh Journal Chemical reviews, 121(8) ISSN 0009-2665 Authors Kowalski, Karol Bair, Raymond Bauman, Nicholas P et al. Publication Date 2021-04-01 DOI 10.1021/acs.chemrev.0c00998 Peer reviewed eScholarship.org Powered by the California Digital Library University of California From NWChem to NWChemEx: Evolving with the computational chemistry landscape Karol Kowalski,y Raymond Bair,z Nicholas P. Bauman,y Jeffery S. Boschen,{ Eric J. Bylaska,y Jeff Daily,y Wibe A. de Jong,x Thom Dunning, Jr,y Niranjan Govind,y Robert J. Harrison,k Murat Keçeli,z Kristopher Keipert,? Sriram Krishnamoorthy,y Suraj Kumar,y Erdal Mutlu,y Bruce Palmer,y Ajay Panyala,y Bo Peng,y Ryan M. Richard,{ T. P. Straatsma,# Peter Sushko,y Edward F. Valeev,@ Marat Valiev,y Hubertus J. J. van Dam,4 Jonathan M. Waldrop,{ David B. Williams-Young,x Chao Yang,x Marcin Zalewski,y and Theresa L. Windus*,r yPacific Northwest National Laboratory, Richland, WA 99352 zArgonne National Laboratory, Lemont, IL 60439 {Ames Laboratory, Ames, IA 50011 xLawrence Berkeley National Laboratory, Berkeley, 94720 kInstitute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794 ?NVIDIA Inc, previously Argonne National Laboratory, Lemont, IL 60439 #National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373 @Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 4Brookhaven National Laboratory, Upton, NY 11973 rDepartment of Chemistry, Iowa State University and Ames Laboratory, Ames, IA 50011 E-mail: [email protected] 1 Abstract Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems.
    [Show full text]
  • Openmolcas: from Source Code to Insight Ignacio Fdez
    Article Cite This: J. Chem. Theory Comput. XXXX, XXX, XXX−XXX pubs.acs.org/JCTC OpenMolcas: From Source Code to Insight Ignacio Fdez. Galvan,́ 1,2 Morgane Vacher,1 Ali Alavi,3 Celestino Angeli,4 Francesco Aquilante,5 Jochen Autschbach,6 Jie J. Bao,7 Sergey I. Bokarev,8 Nikolay A. Bogdanov,3 Rebecca K. Carlson,7,9 Liviu F. Chibotaru,10 Joel Creutzberg,11,12 Nike Dattani,13 Mickael̈ G. Delcey,1 Sijia S. Dong,7,14 Andreas Dreuw,15 Leon Freitag,16 Luis Manuel Frutos,17 Laura Gagliardi,7 Fredé rić Gendron,6 Angelo Giussani,18,19 Leticia Gonzalez,́ 20 Gilbert Grell,8 Meiyuan Guo,1,21 Chad E. Hoyer,7,22 Marcus Johansson,12 Sebastian Keller,16 Stefan Knecht,16 Goran Kovacevič ,́ 23 Erik Kallman,̈ 1 Giovanni Li Manni,3 Marcus Lundberg,1 Yingjin Ma,16 Sebastian Mai,20 Joaõ Pedro Malhado,24 Per Åke Malmqvist,12 Philipp Marquetand,20 Stefanie A. Mewes,15,25 Jesper Norell,11 Massimo Olivucci,26,27,28 Markus Oppel,20 Quan Manh Phung,29 Kristine Pierloot,29 Felix Plasser,30 Markus Reiher,16 Andrew M. Sand,7,31 Igor Schapiro,32 Prachi Sharma,7 Christopher J. Stein,16,33 Lasse Kragh Sørensen,1,34 Donald G. Truhlar,7 Mihkel Ugandi,1,35 Liviu Ungur,36 Alessio Valentini,37 Steven Vancoillie,12 Valera Veryazov,12 Oskar Weser,3 Tomasz A. Wesołowski,5 Per-Olof Widmark,12 Sebastian Wouters,38 Alexander Zech,5 J. Patrick Zobel,12 and Roland Lindh*,2,39 1Department of Chemistry − Ångström Laboratory, Uppsala University, P.O.
    [Show full text]
  • Electronic Structure Calculations in Quantum Chemistry
    Electronic Structure Calculations in Quantum Chemistry Alexander B. Pacheco User Services Consultant LSU HPC & LONI [email protected] HPC Training Louisiana State University Baton Rouge Nov 16, 2011 Electronic Structure Calculations in Quantum Chemistry Nov 11, 2011 HPC@LSU - http://www.hpc.lsu.edu 1 / 55 Outline 1 Introduction 2 Ab Initio Methods 3 Density Functional Theory 4 Semi-empirical Methods 5 Basis Sets 6 Molecular Mechanics 7 Quantum Mechanics/Molecular Mechanics (QM/MM) 8 Computational Chemistry Programs 9 Exercises 10 Tips for Quantum Chemical Calculations Electronic Structure Calculations in Quantum Chemistry Nov 11, 2011 HPC@LSU - http://www.hpc.lsu.edu 2 / 55 Introduction What is Computational Chemistry? Computational Chemistry is a branch of chemistry that uses computer science to assist in solving chemical problems. Incorporates the results of theoretical chemistry into efficient computer programs. Application to single molecule, groups of molecules, liquids or solids. Calculates the structure and properties of interest. Computational Chemistry Methods range from 1 Highly accurate (Ab-initio,DFT) feasible for small systems 2 Less accurate (semi-empirical) 3 Very Approximate (Molecular Mechanics) large systems Electronic Structure Calculations in Quantum Chemistry Nov 11, 2011 HPC@LSU - http://www.hpc.lsu.edu 3 / 55 Introduction Theoretical Chemistry can be broadly divided into two main categories 1 Static Methods ) Time-Independent Schrödinger Equation H^ Ψ = EΨ ♦ Quantum Chemical/Ab Initio /Electronic Structure Methods ♦ Molecular Mechanics 2 Dynamical Methods ) Time-Dependent Schrödinger Equation @ { Ψ = H^ Ψ ~@t ♦ Classical Molecular Dynamics ♦ Semi-classical and Ab-Initio Molecular Dynamics Electronic Structure Calculations in Quantum Chemistry Nov 11, 2011 HPC@LSU - http://www.hpc.lsu.edu 4 / 55 Tutorial Goals Provide a brief introduction to Electronic Structure Calculations in Quantum Chemistry.
    [Show full text]
  • Arxiv:2006.14956V1 [Physics.Comp-Ph]
    NECI: N-Electron Configuration Interaction with an emphasis on state-of-the-art stochastic methods Kai Guther,1, a) Robert J. Anderson,2 Nick S. Blunt,3 Nikolay A. Bogdanov,1 Deidre Cleland,4 Nike Dattani,5 Werner Dobrautz,1 Khaldoon Ghanem,1 Peter Jeszenski,6 Niklas Liebermann,1 Giovanni Li Manni,1 Alexander Y. Lozovoi,1 Hongjun Luo,1 Dongxia Ma,1 Florian Merz,7 Catherine Overy,3 Markus Rampp,8 Pradipta Kumar Samanta,1 Lauretta R. Schwarz,1, 3 James J. Shepherd,9 Simon D. Smart,3 Eugenio Vitale,1 Oskar Weser,1, 2 George H. Booth,2 and Ali Alavi1,3, b) 1)Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany 2)Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom 3)Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom 4)CSIRO Data61, Docklands VIC 3008, Australia 5)Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue, Waterloo, Canada 6)Centre for Theoretical Chemistry and Physics, NZ Institute for Advanced Study, Massey University, New Zealand arXiv:2006.14956v1 [physics.comp-ph] 26 Jun 2020 7)Lenovo HPC&AI Innovation Center, Meitnerstr. 9, 70563 Stuttgart 8)Max Planck Computing and Data Facility (MPCDF), Gießenbachstr. 2, 85748 Garching, Germany 9)Department of Chemistry & Informatics Institute, University of Iowa (Dated: 29 June 2020) 1 We present NECI, a state-of-the-art implementation of the Full Configuration Inter- action Quantum Monte Carlo algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function.
    [Show full text]
  • Efficient Open-Source Implementations of Linear-Scaling
    Efficient Open-Source Implementations of Linear-Scaling Polarizable Embedding: Use Octrees to Save the Trees Maximilian Scheurer,∗,y,x Peter Reinholdt,∗,z,x Jógvan Magnus Haugaard Olsen,{ Andreas Dreuw,y and Jacob Kongstedz yInterdisciplinary Center for Scientific Computing, Heidelberg University, D-69120 Heidelberg, Germany zDepartment of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark {DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark xContributed equally to this work E-mail: [email protected]; [email protected] Abstract We present open-source implementations of the linear-scaling Fast Multipole Method (FMM) within the Polarizable Embedding (PE) model for efficient treatment of large polarizable environments in computational spectroscopy simulations. The implementa- tions are tested for accuracy, efficiency, and usability on model systems as well as more realistic biomolecular systems. We explain how FMM parameters affect the calculation of molecular properties and show that PE calculations employing FMM can be carried out in a black-box manner. The efficiency of the linear-scaling approach is demonstrated by simulating the UV/Vis spectrum of a chromophore in an environment of more than 1 one million polarizable sites. Our implementations are interfaced to several open-source quantum chemistry programs, making computational spectroscopy simulations within the PE model and FMM available to a large variety of methods and a broad user base. 1 Introduction
    [Show full text]
  • Open Source Molecular Modeling
    Accepted Manuscript Title: Open Source Molecular Modeling Author: Somayeh Pirhadi Jocelyn Sunseri David Ryan Koes PII: S1093-3263(16)30118-8 DOI: http://dx.doi.org/doi:10.1016/j.jmgm.2016.07.008 Reference: JMG 6730 To appear in: Journal of Molecular Graphics and Modelling Received date: 4-5-2016 Accepted date: 25-7-2016 Please cite this article as: Somayeh Pirhadi, Jocelyn Sunseri, David Ryan Koes, Open Source Molecular Modeling, <![CDATA[Journal of Molecular Graphics and Modelling]]> (2016), http://dx.doi.org/10.1016/j.jmgm.2016.07.008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Open Source Molecular Modeling Somayeh Pirhadia, Jocelyn Sunseria, David Ryan Koesa,∗ aDepartment of Computational and Systems Biology, University of Pittsburgh Abstract The success of molecular modeling and computational chemistry efforts are, by definition, de- pendent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. 1. Introduction What is Open Source? Free and open source software (FOSS) is software that is both considered \free software," as defined by the Free Software Foundation (http://fsf.org) and \open source," as defined by the Open Source Initiative (http://opensource.org).
    [Show full text]
  • The Aomix Manual and the FAQ Webpage, You Cannot Resolve Your Problem, Contact the Aomix Developer with the Detailed Description of Your Problem
    AOMix version 6.94 Software Manual Dr. S. I. Gorelsky, AOMix manual (www.sg-chem.net) Updated on January 21, 2021 AOMix is a user-friendly, comprehensive package for the molecular orbital analysis. AOMix calculates percentage contributions of different molecular fragments (atoms, ligands, groups of atomic orbitals / basis functions, groups of fragment molecular orbitals, etc.) to molecular orbitals from output files generated by different computational chemistry packages and produces data tables (in the ASCII text format) with relevant MO information, condensed Fukui functions, etc. In addition, it generates total, partial and overlap population density-of-states (DOS) plots and can be used for MO composition analysis in systems with many fragments. It also calculates the MO compositions in the basis of fragment molecular orbitals (FOs), occupation numbers for FOs and atomic orbitals (AOs), and, if the number of fragments is greater than 1, the amounts of electron donation / back-donation between molecular fragments (charge decomposition analysis, CDA), electronic polarizations of fragments, and generates plot data for MO interaction diagrams. In addition, it can be used for Morokuma’s energy decomposition analysis (EDA) and to generate a guess wave function of multi-fragment molecular systems from the wave functions of fragments. The software calculates total and free valence indices of fragments, 2-center (Wiberg, Löwdin, and Mayer) and 3-, 4-, 5- and 6-center bond orders between molecular fragments (which can be defined as atoms, groups of atoms, or groups of atomic orbitals) and performs the Löwdin population analysis. The software can be also used for recovery of the initial guess (as the converged wave function) and the analysis of spin-unrestricted MO calculations: the program projects β-spin molecular orbitals on to -spin molecular orbitals and prints the overlap matrix i j .
    [Show full text]