Novel Roles for the Drosophila Melanogaster Ortholog of Smarcal1 in Dna Damage Repair

Total Page:16

File Type:pdf, Size:1020Kb

Novel Roles for the Drosophila Melanogaster Ortholog of Smarcal1 in Dna Damage Repair NOVEL ROLES FOR THE DROSOPHILA MELANOGASTER ORTHOLOG OF SMARCAL1 IN DNA DAMAGE REPAIR Julie Korda Holsclaw A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum in Genetics and Molecular Biology in the School of Medicine. Chapel Hill 2017 Approved by: Jeff Sekelsky Jean Cook Robert Duronio Dale Ramsden David Kaufman ©2017 Julie Korda Holsclaw ALL RIGHTS RESERVED ii ABSTRACT Julie Korda Holsclaw: Novel roles for the Drosophila melanogaster ortholog of SMARCAL1 in DNA damage repair (Under the direction of Jeff Sekelsky) Schimke immuno-osseous dysplasia (SIOD) is a monogenic, autosomal recessive disorder with highly variable penetrance and expressivity caused by biallelic mutations in the gene SMARCAL1. SMARCAL1 and its orthologs have been implicated in multiple repair pathways including replication-associated DNA damage repair and stability, gene expression in response to environmental stress, and non-homologous end joining. Early studies of SMARCAL1 suggest a role in double strand break (DSB) repair but have not been thoroughly tested. DSBs pose a serious threat to genomic integrity. If unrepaired, they can lead to chromosome fragmentation and cell death. If repaired incorrectly, they can cause mutations and chromosome rearrangements. DSBs are repaired using end-joining or homology- directed repair strategies, with the predominant form of homology-directed repair being synthesis-dependent strand annealing (SDSA). SDSA is the first defense against genomic rearrangements and information loss during DSB repair, making it a vital component of cell health and an attractive target for chemotherapeutic development. SDSA has also been proposed to be the primary mechanism for integration of large insertions during genome editing with CRISPR/Cas9. Despite the central role for SDSA in genome stability, little is known about the defining step: annealing. I hypothesized that annealing during SDSA is performed by SMARCAL1, which can anneal RPA-coated single DNA strands during iii replication-associated DNA damage repair. I utilized unique genetic tools in Drosophila melanogaster to test whether the fly ortholog of SMARCAL1, Marcal1, mediates annealing during SDSA. Repair that requires annealing is significantly reduced in Marcal1 null mutants in both a synthesis-dependent and synthesis-independent (single-strand annealing) assays. Elimination of the ATP binding activity of Marcal1 also reduced annealing-dependent repair, suggesting that the annealing activity requires translocation along DNA. Unlike the null mutant, however, the ATP binding-defect mutant showed reduced end-joining, shedding light on the interaction between SDSA and end-joining pathways. Lastly, I found that Marcal1 genetically interacts with Blm in SDSA and replication-associated repair. Blm prevents replication fork damage that is often repaired via Marcal1-mediated pathways. These data contribute to our understanding of DNA damage repair mechanisms and regulation. iv To Dee and Tom Korda, for opportunity, curiosity, grit, and fearlessness. To Rowan, for laughter, love, and the bravery to be who you are. To Tain for resilience, kindness, and always trying to do the right thing. And to Matt, for being the steadfast star around which I orbit. You make all things possible. v ACKNOWLEDGEMENTS I owe a huge debt of gratitude to my advisor, Jeff Sekelsky, for his trust, his enthusiasm, and his respect for my ideas throughout my studies. Thanks for always having time for me, no matter how often or unpredictably I leaned on your doorframe. It has been an honor to be a member of your lab. Many thanks to my committee: Robert Duronio, Jean Cook, Dale Ramsden, and David Kaufman. Thank you all for good ideas, solid advice, and valued criticism both inside and outside of meetings. I would also like to thank my undergraduate advisor Tom Wolkow for convincing me that I could thrive in graduate school, for guiding me toward UNC, and for endless support along the way. You were right, grad school was one of the best times of my life. I especially want to thank my labmates: Dr. Lydia Morris, Dr. Nicole Crown, Dr. Noelle-Erin Romero, Dr. Stephanie Bellendir, Dr. Kathryn Kohl, Dr. Gregorz Zapotoczny, (almost) Dr. Danielle Rognstad, (future) Dr. Talia Hatkevich, (future) Dr. Morgan Brady, (future) Dr. Kale Hartmann, and (future) Dr. Juan Carvajal Garcia. Thanks for writing edits, insightful comments, and rigorous criticism—you have been so much more than co-workers and I treasure your brilliant minds and open hearts. A special thanks to Susan Cheek for being amazing in every way: genetics resource, workplace mediator, shoulder to cry on, and unabashed lover of yacht rock. You have brightened every day in the fly room; everyone should have a Susan. vi TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................ x LIST OF TABLES ................................................................................................................. xi LIST OF ABBREVIATIONS ................................................................................................. xii CHAPTER 1: HOMOLOGY-DIRECTED REPAIR OF DOUBLE-STRAND BREAKS ............. 1 Drosophila as a model system: Why flies? ........................................................................ 2 Homology-directed repair .................................................................................................. 2 Initial strategy choice ..................................................................................................... 7 Resection ...................................................................................................................... 9 Strand exchange ..........................................................................................................10 Special circumstances ..................................................................................................11 Synthesis .....................................................................................................................13 Dissociation loops ........................................................................................................14 Complementarity tests and annealing ..........................................................................17 The dHJ model .............................................................................................................18 CHAPTER 2: SMARCAL1: STRUCTURE, ACTIVITY, AND DISEASE STATES .................21 Structure and conserved interactions ...............................................................................21 Activity .............................................................................................................................24 Replication ...................................................................................................................24 Gene expression ..........................................................................................................25 vii DSB repair ...................................................................................................................27 Disease states .................................................................................................................28 CHAPTER 3: ANNEALING OF COMPLEMENTARY SEQUENCES DURING DOUBLE STRAND BREAK REPAIR IS MEDIATED BY THE DROSOPHILA ORTHOLOG OF SMARCAL1 ..................................30 Introduction ......................................................................................................................30 Results ............................................................................................................................31 Marcal1 mutants show elevated lethality when exposed to DSB-inducing agents ........31 Marcal1 mutants have reduced annealing capacity during gap repair ..........................34 Marcal1 mediates annealing independent of synthesis .................................................38 ATP-binding is required for Marcal1 activity during SDSA ............................................43 Discussion .......................................................................................................................45 Materials and methods .....................................................................................................45 CHAPTER 4: PRELIMINARY DATA REFINING THE ROLE OF MARCAL1 IN DOUBLE STRAND BREAK REPAIR .........................................................51 Marcal1 null mutations do not affect meiotic chromosome segregation ............................51 Marcal1 genetically interacts with Blm helicase but not structure-specific endonucleases .....................................................................................53 The balancer effect ......................................................................................................56 Marcal1 does not have genetic interactions with structure-specific endonucleases ......56 Marcal1 genetically interacts with Blm ..........................................................................57 Marcal1 mutant viability is increased in a Polα-180/+ background ................................60 Marcal1 and Blm have complex genetic interactions ........................................................61 Marcal1 mutants do not have elevated spontaneous mitotic crossovers
Recommended publications
  • Bioinformatics Applications Through Visualization of Variations on Protein
    1 Bioinformatics applications through visualization of variations on protein structures, comparative functional genomics, and comparative modeling for protein structure studies A dissertation presented by Alper Uzun to The Department of Biology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Biology Northeastern University Boston, Massachusetts July 2009 2 ©2009 Alper Uzun ALL RIGHTS RESERVED 3 Bioinformatics applications through visualization of variations on protein structures, comparative functional genomics, and comparative modeling for protein structure studies by Alper Uzun ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology in the Graduate School of Arts and Sciences of Northeastern University, July, 2009 4 Abstract The three-dimensional structure of a protein provides important information for understanding and answering many biological questions in molecular detail. The rapidly growing number of sequenced genes and related genomic information is intensively accumulating in the biological databases. It is significantly important to combine biological data and developing bioinformatics tools while information of protein sequences, structures and DNA sequences are exponentially growing. On the other hand, especially the number of known protein sequences is much larger than the number of experimentally solved protein structures. However the experimental methods cannot always be applied or protein structures
    [Show full text]
  • DNA Replication Stress Response Involving PLK1, CDC6, POLQ
    DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients C. Allera-Moreau, I. Rouquette, B. Lepage, N. Oumouhou, M. Walschaerts, E. Leconte, V. Schilling, K. Gordien, L. Brouchet, Mb Delisle, et al. To cite this version: C. Allera-Moreau, I. Rouquette, B. Lepage, N. Oumouhou, M. Walschaerts, et al.. DNA replica- tion stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis, Nature Publishing Group: Open Access Journals - Option C, 2012, 1, pp.e30. 10.1038/oncsis.2012.29. hal-00817701 HAL Id: hal-00817701 https://hal.archives-ouvertes.fr/hal-00817701 Submitted on 9 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Citation: Oncogenesis (2012) 1, e30; doi:10.1038/oncsis.2012.29 & 2012 Macmillan Publishers Limited All rights reserved 2157-9024/12 www.nature.com/oncsis ORIGINAL ARTICLE DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients C Allera-Moreau1,2,7, I Rouquette2,7, B Lepage3, N Oumouhou3, M Walschaerts4, E Leconte5, V Schilling1, K Gordien2, L Brouchet2, MB Delisle1,2, J Mazieres1,2, JS Hoffmann1, P Pasero6 and C Cazaux1 Lung cancer is the leading cause of cancer deaths worldwide.
    [Show full text]
  • A Structure-Specific Nucleic Acid-Binding Domain Conserved Among DNA Repair Proteins
    A structure-specific nucleic acid-binding domain conserved among DNA repair proteins Aaron C. Masona, Robert P. Rambob, Briana Greera, Michael Pritchetta, John A. Tainerb, David Cortezc, and Brandt F. Eichmana,c,1 aDepartment of Biological Sciences, Vanderbilt University, Nashville, TN 37232; bLife Sciences Division, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and cDepartment of Biochemistry, Vanderbilt School of Medicine, Nashville, TN 37232 Edited by James M. Berger, Johns Hopkins University School of Medicine, Baltimore, MD, and approved April 17, 2014 (received for review December 30, 2013) SMARCAL1, a DNA remodeling protein fundamental to genome 1),alsoknownasHARP(HepA-relatedprotein),isoneofseveral integrity during replication, is the only gene associated with the ATP-dependent motor proteins capable of fork regression and im- developmental disorder Schimke immuno-osseous dysplasia (SIOD). portant for genetic stability, including Rad54, RecQ paralogs, BLM, SMARCAL1-deficient cells show collapsed replication forks, S-phase WRN, FANCM, ZRANB3, HLTF/Rad5, T4 bacteriophage UvsW, cell cycle arrest, increased chromosomal breaks, hypersensitivity to archaeal HelQ/Hel308/Hjm, and Escherichia coli RecG (18–26). genotoxic agents, and chromosomal instability. The SMARCAL1 cat- SMARCAL1 is a distant SNF2 family member of dsDNA trans- alytic domain (SMARCAL1CD) is composed of an SNF2-type double- locating chromatin remodeling proteins (27) with a binding prefer- ence for branched DNA structures, and has been shown to catalyze stranded DNA motor ATPase fused to a HARP domain of unknown A function. The mechanisms by which SMARCAL1 and other DNA ATP-dependent regression of model replication forks (Fig. 1 ), branch migration of Holliday junctions, and reannealing of RPA- translocases repair replication forks are poorly understood, in part – because of a lack of structural information on the domains outside coated plasmids (28 30).
    [Show full text]
  • Structure of the SWI2/SNF2 Chromatin-Remodeling Domain of Eukaryotic Rad54
    ARTICLES Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54 Nicolas H Thomä1, Bryan K Czyzewski1,2, Andrei A Alexeev3, Alexander V Mazin4, Stephen C Kowalczykowski3 & Nikola P Pavletich1,2 SWI2/SNF2 chromatin-remodeling proteins mediate the mobilization of nucleosomes and other DNA-associated proteins. SWI2/SNF2 proteins contain sequence motifs characteristic of SF2 helicases but do not have helicase activity. Instead, they couple ATP hydrolysis with the generation of superhelical torsion in DNA. The structure of the nucleosome-remodeling domain of zebrafish Rad54, a protein http://www.nature.com/nsmb involved in Rad51-mediated homologous recombination, reveals that the core of the SWI2/SNF2 enzymes consist of two ␣/␤-lobes similar to SF2 helicases. The Rad54 helicase lobes contain insertions that form two helical domains, one within each lobe. These insertions contain SWI2/SNF2-specific sequence motifs likely to be central to SWI2/SNF2 function. A broad cleft formed by the two lobes and flanked by the helical insertions contains residues conserved in SWI2/SNF2 proteins and motifs implicated in DNA-binding by SF2 helicases. The Rad54 structure suggests that SWI2/SNF2 proteins use a mechanism analogous to helicases to translocate on dsDNA. Cellular processes such as transcription, replication, DNA repair and breaks by Rad51-mediated homologous recombination15–20. Like other recombination require direct access to DNA. This process is facilitated SWI2/SNF2 remodeling enzymes, Rad54 can translocate on DNA, gen- by the SWI2/SNF2 family of ATPases, which detach DNA from histones erate superhelical torsion and enhance the accessibility to nucleosomal and other bound proteins1,2. The SWI2/SNF2 chromatin remodeling DNA18,19,21.
    [Show full text]
  • Smarcal1 and Zranb3 Protect Replication Forks from Myc-Induced DNA Replication Stress
    Author Manuscript Published OnlineFirst on January 4, 2019; DOI: 10.1158/0008-5472.CAN-18-2705 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Smarcal1 and Zranb3 protect replication forks from Myc-induced DNA replication stress 1,2 1 1 1* Matthew V. Puccetti , Clare M. Adams , Saul Kushinsky , and Christine M. Eischen 1Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 2Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN *Corresponding author: Thomas Jefferson University Department of Cancer Biology 233 S. 10th Street, Philadelphia, PA, 19107 Phone: 215-503-3712 Fax: 215-923-4498 Email: [email protected] Running Title: DNA translocases resolve oncogenic stress Key Words: Smarcal1, Zranb3, Myc, DNA replication stress, lymphoma Financial Support: This work was supported by F30CA189433 (M. V. Puccetti), the Vanderbilt MSTP Training Grant T32GM007347 (M. V. Puccetti), R01CA226432 (C. M. Eischen), and the National Cancer Institute Cancer Center Grant P30CA056036 for supporting C. M. Eischen and the Bioimaging, Flow Cytometry, and Lab Animals core facilities. Conflict of Interest Statement: The authors have no conflicts of interest. 1 Downloaded from cancerres.aacrjournals.org on September 29, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 4, 2019; DOI: 10.1158/0008-5472.CAN-18-2705 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract The cellular DNA replication stress response functions to stabilize DNA replication forks and inhibit genome instability and tumorigenesis induced by oncogenes. However, the specific proteins required for resolving oncogenic stress remain poorly understood.
    [Show full text]
  • Generation of Inducible SMARCAL1 Knock-Down Ipsc to Model Severe
    bioRxiv preprint doi: https://doi.org/10.1101/546093; this version posted February 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Generation of inducible SMARCAL1 knock-down iPSC to model severe Schimke immune- osseous dysplasia reveals a link between replication stress and altered expression of master differentiation genes Giusj Monia Pugliese,1 * Federico Salaris 2,3 *, Valentina Palermo,1 Veronica Marabitti,1 Nicolò Morina,1,4 Alessandro Rosa,2,3 Annapaola Franchitto,1 and Pietro Pichierri1,§ 1 Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità - Viale Regina Elena 299, 00161 Rome (Italy) 2 Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome (Italy) 3 Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy) 4 Present address: * Equally contributing authors § Author to whom correspondence should be addressed: Pietro Pichierri Tel. +39 0649902994 Fax +39 0660513138 [email protected] Running title: SIOD iPSC and replication stress bioRxiv preprint doi: https://doi.org/10.1101/546093; this version posted February 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Anti-SMARCAL1 (Aa 1-954) Polyclonal Antibody (DPABH-07701) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-SMARCAL1 (aa 1-954) polyclonal antibody (DPABH-07701) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description ATP-dependent annealing helicase that catalyzes the rewinding of the stably unwound DNA. Rewinds single-stranded DNA bubbles that are stably bound by replication protein A (RPA). Acts throughout the genome to reanneal stably unwound DNA, performing the opposite reaction of many enzymes, such as helicases and polymerases, that unwind DNA. Immunogen Full length protein, corresponding to amino acids 1-954 of Human SmarcAL1 (NP_054859.2). Isotype IgG Source/Host Mouse Species Reactivity Human Purification Protein A purified Conjugate Unconjugated Applications WB, ICC/IF Format Liquid Size 50 μg Buffer pH: 7.20; Constituent: 100% PBS Preservative None Storage Store at 4°C short term (1-2 weeks). Aliquot and store at -20°C long term. Avoid repeated freeze / thaw cycles. GENE INFORMATION Gene Name SMARCAL1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a-like 1 [ Homo sapiens ] Official Symbol SmarcAL1 Synonyms SMARCAL1; SWI/SNF related, matrix associated, actin dependent regulator of chromatin, 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved subfamily a-like 1; SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1; ATP driven annealing helicase; HARP; HepA related protein;
    [Show full text]
  • A Novel Compound Heterozygous Mutation of the SMARCAL1 Gene
    Liu et al. BMC Pediatrics (2017) 17:217 DOI 10.1186/s12887-017-0968-8 CASE REPORT Open Access A novel compound heterozygous mutation of the SMARCAL1 gene leading to mild Schimke immune-osseous dysplasia: a case report Shuaimei Liu1†, Mingchao Zhang2†, Mengxia Ni1, Peiran Zhu1 and Xinyi Xia1* Abstract Background: Schimke immune-osseous dysplasia (SIOD, OMIM 242900) is characterized by spondyloepiphyseal dysplasia, T-cell deficiency, renal dysfunction and special facial features. SMARCAL1 gene mutations are determined in approximately 50% of patients diagnosed with SIOD. Case presentation: The case presented here is that of a 6-year-old boy who was born at 33 weeks to healthy, non-consanguineous Chinese parents. He presented with short stature (95 cm; <3rd percentile) and proteinuria. Initially suspected of having IgM nephropathy, the patient was finally diagnosed with mild Schimke immune-osseous dysplasia. One novel mutation (p.R817H) and one well-known mutation (p.R645C) was identified in the SMARCAL1 gene. Conclusion: This report describes a clinical and genetic diagnostic model of mild SIOD. It also highlights the importance of molecular testing or clinical diagnosis and the guidance it provides in disease prognosis. Keywords: Schimke immune-osseous dysplasia, SMARCAL1, Next generation sequencing, Mutation analysis Background manifestations. Contrarily, most missense mutations Schimke immune-osseous dysplasia (SIOD, MIM cause mild symptoms. 242900) is characterized by spondyloepiphyseal SIOD was first reported in 1971 [6], and its pheno- dysplasia (SED), T-cell deficiency, renal dysfunction type varies from mild to severe [7, 8]. Nonsense, and special facial features [1–3]. SIOD is a rare, frame shift and splicing mutations in the SMARCAL1 multi-system, autosomal recessive disease with an gene destroy the normal structure of SNF2 proteins, incidence of 1:1 × 106~3 × 106.
    [Show full text]
  • The SIOD Disorder Protein SMARCAL1 Is an RPA-Interacting Protein Involved in Replication Fork Restart
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart Alberto Ciccia,1,4 Andrea L. Bredemeyer,1,4 Mathew E. Sowa,2 Marie-Emilie Terret,3 Prasad V. Jallepalli,3 J. Wade Harper,2 and Stephen J. Elledge1,5 1Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA; 2Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA; 3Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA The integrity of genomic DNA is continuously challenged by the presence of DNA base lesions or DNA strand breaks. Here we report the identification of a new DNA damage response protein, SMARCAL1 (SWI/SNF-related, matrix associated, actin-dependent regulator of chromatin, subfamily a-like 1), which is a member of the SNF2 family and is mutated in Schimke immunoosseous dysplasia (SIOD). We demonstrate that SMARCAL1 directly interacts with Replication protein A (RPA) and is recruited to sites of DNA damage in an RPA-dependent manner. SMARCAL1-depleted cells display sensitivity to DNA-damaging agents that induce replication fork collapse, and exhibit slower fork recovery and delayed entry into mitosis following S-phase arrest. Furthermore, SIOD patient fibroblasts reconstituted with SMARCAL1 exhibit faster cell cycle progression after S-phase arrest. Thus, the symptoms of SIOD may be caused, at least in part, by defects in the cellular response to DNA replication stress.
    [Show full text]
  • Defining Sites of Replication Fork Collapse Caused by Atr Inhibition
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Defining Sites Of Replication orkF Collapse Caused By Atr Inhibition Nishita Kalpendu Shastri University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Cell Biology Commons, Molecular Biology Commons, and the Pharmacology Commons Recommended Citation Shastri, Nishita Kalpendu, "Defining Sites Of Replication orkF Collapse Caused By Atr Inhibition" (2017). Publicly Accessible Penn Dissertations. 2581. https://repository.upenn.edu/edissertations/2581 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2581 For more information, please contact [email protected]. Defining Sites Of Replication orkF Collapse Caused By Atr Inhibition Abstract DEFINING SITES OF REPLICATION FORK COLLAPSE CAUSED BY ATR INHIBITION Nishita K. Shastri Eric J. Brown Replication stress, characterized by stalling of DNA replication and the accumulation of abnormal replication intermediates, has been linked to the genomic instability observed in cancer. Previous studies have defined specific genomic sequences that ear difficulto t replicate to be more vulnerable to replication-associated breaks and rearrangements. However, many of these sequences have been identified through indirect and potentially biased approaches. To identify DNA sequences that contribute to replication-associated genomic instability, I will describe genome-wide screens I have performed
    [Show full text]
  • Inducible SMARCAL1 Knockdown in Ipsc Reveals a Link Between
    © 2019. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2019) 12, dmm039487. doi:10.1242/dmm.039487 RESEARCH ARTICLE Inducible SMARCAL1 knockdown in iPSC reveals a link between replication stress and altered expression of master differentiation genes Giusj Monia Pugliese1,§,‡, Federico Salaris2,3,§, Valentina Palermo1, Veronica Marabitti1, NicolòMorina1,*, Alessandro Rosa2,3, Annapaola Franchitto1 and Pietro Pichierri1,4,¶ ABSTRACT INTRODUCTION Schimke immuno-osseous dysplasia (SIOD) is an autosomal Schimke immuno-osseous dysplasia is an autosomal recessive recessive genetic osteochondrodysplasia characterized by genetic osteochondrodysplasia characterized by dysmorphism, dysmorphism, spondyloepiphyseal dysplasia, nephrotic syndrome spondyloepiphyseal dysplasia, nephrotic syndrome and frequently and frequently T cell immunodeficiency (Boerkoel et al., 2000; T cell immunodeficiency. Several hypotheses have been proposed to Clewing et al., 2007; Saraiva et al., 1999). Patients usually suffer explain the pathophysiology of the disease; however, the mechanism from other less penetrant features and, depending on the severity of by which SMARCAL1 mutations cause the syndrome is elusive. Here, the disease, they can undergo premature death in childhood or early we generated a conditional SMARCAL1 knockdown model in induced adolescence (Clewing et al., 2007). The disease is caused by bi- pluripotent stem cells (iPSCs) to mimic conditions associated with the allelic mutations in the SMARCAL1 gene (Boerkoel et al., 2002).
    [Show full text]
  • Expanding Phenotype of Schimke Immuno-Osseous Dysplasia: Congenital Anomalies of the Kidneys and of the Urinary Tract and Alteration of NK Cells
    International Journal of Molecular Sciences Article Expanding Phenotype of Schimke Immuno-Osseous Dysplasia: Congenital Anomalies of the Kidneys and of the Urinary Tract and Alteration of NK Cells 1, 2, 3 3 Cristina Bertulli y, Antonio Marzollo y , Margherita Doria , Silvia Di Cesare , Claudio La Scola 1 , Francesca Mencarelli 1, Andrea Pasini 1, Maria Carmen Affinita 2, Enrico Vidal 4 , Pamela Magini 5, Paola Dimartino 6, Riccardo Masetti 7 , Laura Greco 8 , 9 10, , 7,10, Patrizia Palomba , Francesca Conti * z and Andrea Pession z 1 Nephrology and Dialysis Unit, Department of Pediatrics, S. Orsola-Malpighi Hospital Scientific Institute for Research and Healthcare (IRCCS), 40138 Bologna, Italy; [email protected] (C.B.); [email protected] (C.L.S.); [email protected] (F.M.); [email protected] (A.P.) 2 Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, 35128 Padua, Italy; [email protected] (A.M.); draffi[email protected] (M.C.A.) 3 Unit of Primary Immunodeficiency, Academic Department of Pediatrics (DPUO), Bambino Gesù Childrens’ Hospital-Scientific Institute for Research and Healthcare (IRCCS), 00165 Rome, Italy; [email protected] (M.D.); [email protected] (S.D.C.) 4 Dialysis and Transplantation Unit, Pediatric Nephrology, Department of Woman’s and Child’s Health, University Hospital of Padua, 35128 Padua, Italy; [email protected] 5 Medical Genetics Unit, Department of Medical and Surgical Science, S. Orsola-Malpighi Hospital_Scientific Institute for Research and Healthcare (IRCCS), 40138 Bologna, Italy; [email protected] 6 Medical Genetics Unit, DIMEC, University of Bologna, 40138 Bologna, Italy; [email protected] 7 “Lalla Seràgnoli”, Hematology-Oncology Unit, Department of Pediatrics, University of Bologna, 40138 Bologna, Italy; [email protected] (R.M.); [email protected] (A.P.) 8 Pediatric Radiology Unit, Department of Diagnostic and Preventive Medicine, S.
    [Show full text]