SGR Powerpoint Template
Total Page:16
File Type:pdf, Size:1020Kb
2011 International SWAT Conference An Assessment of Anthropogenic Impacts on a Hydrological System using SWAT Model Rajesh Nune Biju George Andrew W Western Outline Introduction – Study Area Statement of the Problem Catchment Characteristics SWAT modeling Preliminary Results Conclusions Aim: This study aims to quantify the historic and future impacts of major anthropogenic changes on the hydrology of the upper Musi catchment, India. Objectives: Anthropogenic Impacts: Effects, those that are derived from human activities. Ex: Hydrological structures (Farm dams, Check dams, etc.), Groundwater extractions, Land use change, etc., Study Area: Himayat Sagar Catchment Hyderabad City 78°0'0"E 78°10'0"E 78°20'0"EHydera bad ¯ 17°20'0"N City 17°20'0"N Andhra Pradesh 17°10'0"N 17°10'0"N Legend Himayat_Sagar_Catchment_Area HSC_Drainage HSC_Stream 17°0'0"N HSC_Big Tanks 17°0'0"N HSC_Small Tanks Southern Kilometers India SWAT_19_Subbasins 0 3 6 12 18 24 78°0'0"E 78°10'0"E 78°20'0"E Himayat Sagar Reservoir : 1340 km2 Inflows: AAI = 69 GL 1980-89 = 100 GL 1990-99 = 64 GL 2000-09 = 43 GL Statement of the Problem Anthropogenic Impacts: Effects, those that are derived from human activities. Ex: Hydrological structures (Farm dams, Check dams, etc.), Groundwater extractions, Land use change, etc., Catchment Characteristics Check Dam Percolation Tank Mini Percolation Tank )"")%,") # %, # CHEVELLA # 1% %, MOINABAD 4 % %, % % 2 # 5 11# %% 6 3 % % 7 % 8 9 #18 % % ¯ 21 25# # % 26 1514 % % %%12 %13 # % % 16 20 %19 17% # % 23 10 % 24 %% % %% PUDUR 29 22 %30% % % % % % ## %, 28 33 # 27 #32 # 31 SHAMSHAB# %35% 38 # 36 % 34%35 %, % 37% %% # 39% SHABAD % % 40 41 42% %, % 44 47 51 % % 50 45% #% Farm pit 48 52 %% 49 # 46 53 KOTHUR KONDURG %, 43 %, 54 Legend 57 %% # Checkdams_and_Ponds MonitoringPoint 55 <all other values> KANDUKUR Type %, KESHAMPE Linking stream added Outlet 56 Manually added Outlet %, % Reservoir %, Precipitation Gage FAROOQNA %, Temperature Gage %, )" Humidity Gage ") Solar Gage ") Wind Gage Reach Kilometers um_all_tanks 0 2.5 5 10 15 20 Watershed Sunken pit Data collected for 25 different types of hydrological structures (storages and usage) Catchment Characteristics Groundwater extraction survey points (60) ")%,") !. !. !. !. !. %, !. !. CHEVELLA !. 1% %, MOINABAD 4 % !. % % 2 !. !. !. !. %, !. !. 5 11 %% 6 3 !. % % 7 !. % !. !. % 8 9 18 !. !. !. !. !. % ¯ !. !. 21 !.25 !. % 26 1514 % % !. %%12 %13 !. % % 16 20 %19 17% % 23 10 % 24 %% % %% PUDUR !. 29 22 %30% % % !. % % !.!. % %, 28 !. 33!. 27 !. !. !. !.!.!. !. 32 31 SHAMSHAB!. !. %35% 38 36 % !. !. !. 34%35 %,!. % 37% !. %% 39% !. SHABAD !. % % 40 41 42% %, % 44 47 51 !. % % 50 45% % !. !.48 !. 52 !. !. !. %% 46 49 !. !. !. !. 53 KOTHUR !. KONDURG %, 43 %, !. 54 Legend 57 %% !. Samples_of_Groundwater_extraction_Survey MonitoringPoint 55 <all other values> KANDUKUR Type %, KESHAMPE Linking stream added Outlet 56 Manually added Outlet %, % Reservoir %, Precipitation Gage FAROOQNA %, Temperature Gage %, )" Humidity Gage ") Solar Gage ") Wind Gage Reach Kilometers um_all_tanks 0 2.5 5 10 15 20 Watershed • Every 2 Acre Has One bore at least (Irrigated Land) • Each Bore well is pumping 600 hrs (Per year) • ~ 121 MCM are pumping from GW (93 mm, 12.5% Rf) Modelling Hydrological Structures - Reservoirs Hydrological Structures P erc olation Tanks Series2 100000 1000000 Series1 90000 900000 3000 0.559 y = 28.032x 80000 800000 2000 R 2 = 0.992 70000 700000 60000 600000 Percolation Tanks (No's) Area 1000 50000 500000 Power (Percolation Tanks) 40000 400000 0 No Cumm Structures 30000 300000 0 500 1000 1500 2000 2500 3000 20000 200000 Cumm Volume m3 10000 100000 Volume 0 0 C hec k Dam 1995 1997 1998 1999 2000 Year 2001 2002 2003 2004 2005 !. !. !.!. 1000 0.5949 !. y = 7.9159x 18 4 5 21 20 2 % 19 25 500 R = 0.9949 % ¯ % % % !. % % 22 29 % PUDUR !. !.!. % %, % % 7 0 !. 8 28 33 0 200 400 600 800 1000 1200 1400 %% 36 35 % 34 C heckdam Power (C heckdam) %35 31 % 37 % !. !. 51 14 12 • 25% of runoff Volume is stopped by 50 !. !. Legend Structures ( 25 GL) 49 11 !. Samples_of_Groundwater_extraction_Survey 48 MonitoringPoint 10 <all other values> Type Linking stream added Outlet Manually added Outlet KONDURG % Reservoir %, • %, Precipitation Gage 100 % of recharge is pumping back to %, Temperature Gage 55 )" Humidity Gage 17 ") Solar Gage Irrigation (121 GL) ") Wind Gage Reach Kilometers um_all_tanks 0 1.25 2.5 5 7.5 10 Watershed Modelling : Land use Land cover & Groundwater Extractions Second Calibaration & Validation First Calibaration & Validation First Set: Second Set: Warm up Period: 1980 - 1982 Warm up Period: 1997 - 1999 Calibration Period: 1983 – 1987 Calibration Period: 2000 – 2005 Validation Period: 1988 – 2009 Validation Period: 1995 – 2000 Land use Area :Ave (1986) Land use Area :Ave (2000-2002) Hydrological Structures: 1995-2005 Hydrological Structures: 1995-2005 GW Extractions: Ave (2000 – 2005) GW Extractions: Ave (2000 – 2005) First Set Validation Period (1988-1992) 120 y = 0.96x - 0.40 R ² = 0.7684 E = 0.71 57 100 80 60 S imulated Inflows 40 20 0 0 20 40 60 80 100 120 Observed Inflows From (1983 – 1992) Total Evapotranspiration Evapotranspiration Volume Et (71%) Et (71%) of water due to Hydrological Structures RF Land use Evaporation Land use Runoff Runoff (13%) StreamRunoff (13%)flows Percolation Lat Q (1%) Percolation (16%) Percolation (16%) Lat Q (1%) Lat Q (1%) Results Analysis of residuals : 1995-2005 Wet Year: 6-8% Normal Year: 8-25% Dry Year : 27-36% Conclusion • The results to date clearly show that the impacts of Anthropogenic changes on streamflows are significantly greater during dry years. • Model calibration for the second set of period • Separating the individual effects of these changes and • Quantifying the relative impacts of these changes on catchment hydrology. Thank You .