A Gröbner Basis? Bernd Sturmfels

Total Page:16

File Type:pdf, Size:1020Kb

A Gröbner Basis? Bernd Sturmfels ?WHAT IS... a Gröbner Basis? Bernd Sturmfels A Gröbner basis is a set of multivariate polynomi- An example of a term order (for n =2) is the als that has desirable algorithmic properties. Every degree lexicographic order set of polynomials can be transformed into a Gröb- 1 ≺ x ≺ x ≺ x2 ≺ x x ≺ x2 ≺ x3 ≺ x2x ≺ ··· . ner basis. This process generalizes three familiar 1 2 1 1 2 2 1 1 2 techniques: Gaussian elimination for solving linear If we fix a term order ≺, then every polynomial systems of equations, the Euclidean algorithm for f has a unique initial term in≺(f )=xa. This is the computing the greatest common divisor of two ≺-largest monomial xa which occurs with nonzero univariate polynomials, and the Simplex Algorithm coefficient in the expansion of f. We write the terms for linear programming; see [3]. For example, the of f in ≺-decreasing order, and we often underline input for Gaussian elimination is a collection of the initial term. For instance, a quadratic polyno- linear forms such as mial is written F − − 2 2 = 2x +3y +4z 5, 3x +4y +5z 2 , f =3x2 +5x1x2 +7x1 +11x1 +13x2 +17. and the algorithm transforms F into the Gröbner Suppose now that I is an ideal in K[x1,...,xn] . basis Then its initial ideal in≺(I) is the ideal generated G = x − z +14,y+2z − 11 . by the initial terms of all the polynomials in I: in≺(I)= in≺(f ): f ∈ I. Let K be any field, such as the real numbers G K = R, the complex numbers K = C, the rational A finite subset of I is a Gröbner basis with re- spect to the term order ≺ if the initial terms of the numbers K = Q, or a finite field K = Fp . We write elements in G suffice to generate the initial ideal: K[x1,...,xn] for the ring of polynomials in n vari- ables xi with coefficients in the field K. If F is any in≺(I)= in≺(g):g ∈G. set of polynomials, then the ideal generated by F There is no minimality requirement for being a is the set F consisting of all polynomial linear Gröbner basis. If G is a Gröbner basis for I, then combinations: any finite subset of I that contains G is also a Gröb- F = p1f1 + ···+ pr fr : f1,...,fr ∈F ner basis. To remedy this nonminimality, we say that G is a reduced Gröbner basis if and p1,...,pr ∈ K[x1,...,xn] . (1) for each g ∈G, the coefficient of in≺(g) in g is 1, In our example the set F and its Gröbner basis G (2) the set {in≺(g): g ∈G}minimally generates generate the same ideal: G = F. By Hilbert’s in≺(I), and Basis Theorem, every ideal I in K[x1,...,xn] has the (3) no trailing term of any g ∈Glies in in≺(I). form I = F; i.e., it is generated by some finite set With this definition, we have the following theorem: F of polynomials. If the term order ≺ is fixed, then every ideal I in A term order on K[x ,...,x ] is a total order ≺ 1 n K[x ,...,x ] has a unique reduced Gröbner basis. on the set of all monomials xa = xa1 ···xan which 1 n 1 n The reduced Gröbner basis G can be computed has the following two properties: from any generating set of I by a method that was (1) It is multiplicative; i.e., xa ≺ xb implies introduced in Bruno Buchberger’s 1965 dissertation. xa+c ≺ xb+c for all a, b, c ∈ Nn. Buchberger named his method after his advisor, (2) The constant monomial is the smallest; i.e., Wolfgang Gröbner. With hindsight, the idea of Gröb- 1 ≺ xa for all a ∈ Nn\{0}. ner bases can be traced back to earlier sources, in- Bernd Sturmfels is a professor of mathematics and com- cluding a paper written in 1900 by the invariant the- puter science at the University of California at Berkeley. orist Paul Gordan. But Buchberger was the first to His email address is [email protected]. give an algorithm for computing Gröbner bases. 2NOTICES OF THE AMS VOLUME 52, NUMBER 10 Gröbner bases are very useful for solving sys- form is the division algorithm. In the familar tems of polynomial equations. Suppose K ⊆ C, and case of only one variable x, where I = f and f let F be a finite set of polynomials in K[x1,...,xn] . has degree d, the division algorithm writes any The variety of F is the set of all common complex polynomial p ∈ K[x] as a K-linear combination of zeros: 2 d−1 1,x,x ,...,x . But the division algorithm works n G V (F)= (z1,...,zn) ∈ C : f (z1,...,zn)=0 relative to any Gröbner basis in any number of variables. ∈F for all f . How can we test whether a given set of polyno- The variety does not change if we replace F by an- mials G is a Gröbner basis or not? Consider any two other set of polynomials that generates the same polynomials g and g in G, and form their S-poly- − ideal in K[x1,...,xn] . In particular, the reduced nomial m g mg . Here m and m are monomials Gröbner basis G for the ideal F specifies the of smallest possible degree such that m ·in≺(g)= same variety: m·in≺(g ). The S-polynomial m g − mg lies in the V (F)=V (F)=V (G)=V (G). ideal G. We apply the division algorithm with re- spect to the tentative Gröbner basis G to mg − mg. The advantage of G is that it reveals geometric The resulting normal form is a K-linear combina- properties of the variety that are not visible from tion of monomials none of which is divisible by an F . The first question that one might ask about a initial monomial from G. A necessary condition V F variety ( ) is whether it is empty. Hilbert’s Null- for G to be a Gröbner basis is stellensatz implies that normalformG(m g − mg )=0 for all g,g ∈G. the variety V (F)isempty if and only if G equals {1}. Buchberger’s Criterion states that this necessary condition is sufficient: a set G of polynomials is a How can one count the number of zeros of a Gröbner basis if and only if all its S-polynomials given system of equations? To answer this, we have normal form zero. From this criterion, one need one more definition. Given a fixed ideal I in derives Buchberger’s Algorithm [1] for computing K[x ,...,x ] and a term order ≺ , a monomial 1 n the reduced Gröbner basis G from any given input xa = xa1 ···xan is called standard if it is not in the 1 n set F. initial ideal in≺(I). The number of standard mono- In summary, Gröbner bases and the Buchberger mials is finite if and only if every variable xi appears to some power in the initial ideal. For example, if Algorithm for finding them are fundamental no- 3 4 5 tions in algebra. They furnish the engine for more in≺(I)= x1,x2,x3 , then there are sixty standard 3 4 4 advanced computations in algebraic geometry, monomials, but if in≺(I)= x1,x2,x1x3 , then the set of standard monomials is infinite. such as elimination theory, computing cohomology, The variety V (I) is finite if and only if the set resolving singularities, etc. Given that polynomial of standard monomials is finite, and the number models are ubiquitous across the sciences and en- of standard monomials equals the cardinality of gineering, Gröbner bases have been used by re- V (I), when zeros are counted with multiplicity. searchers in optimization, coding, robotics, control For n =1this is the Fundamental Theorem of Al- theory, statistics, molecular biology, and many gebra, which states that the variety V (f ) of a uni- other fields. We invite the reader to experiment with variate polynomial f ∈ K[x] of degree d consists of one of the many implementations of Buchberger’s { } d complex numbers. Here the singleton f is a algorithm (e.g., in CoCoA, Macaulay2, Magma, Maple, Gröbner basis, and the standard monomials are Mathematica, or Singular). 1,x,x2,...,xd−1. Our criterion for deciding whether a variety is References finite generalizes to the following formula for the [1] DAVID COX, JOHN LITTLE, and DONAL O’ SHEA, Ideals, Va- dimension of a variety. Consider a subset S of the rieties and Algorithms. An Introduction to Computa- { } variables x1,...,xn such that no monomial in the tional Algebraic Geometry and Commutative Algebra, variables in S appears in in≺(I), and suppose that second ed., Undergraduate Texts in Mathematics, S has maximal cardinality among all subsets with Springer-Verlag, New York, 1997. | | this property. That maximal cardinality S equals [2] NIELS LAURITZEN, Concrete Abstract Algebra: From Num- the dimension of V (I). bers to Gröbner Bases, Cambridge University Press, The set of standard monomials is a K-vector- 2003. space basis for the residue ring K[x1,...,xn]/I. [3] BERND STURMFELS, Two Lectures on Gröbner Bases, New The image of a polynomial p modulo I can be Horizons in Undergraduate Mathematics, VMath Lec- expressed uniquely as a K-linear combination of ture Series, Mathematical Sciences Research Institute, standard monomials. This expression is the normal Berkeley, California, 2005, http://www.msri.org/ form of p. The process of computing the normal communications/vmath/special_productions/. NOVEMBER 2005 NOTICES OF THE AMS 3.
Recommended publications
  • A Review of Some Basic Mathematical Concepts and Differential Calculus
    A Review of Some Basic Mathematical Concepts and Differential Calculus Kevin Quinn Assistant Professor Department of Political Science and The Center for Statistics and the Social Sciences Box 354320, Padelford Hall University of Washington Seattle, WA 98195-4320 October 11, 2002 1 Introduction These notes are written to give students in CSSS/SOC/STAT 536 a quick review of some of the basic mathematical concepts they will come across during this course. These notes are not meant to be comprehensive but rather to be a succinct treatment of some of the key ideas. The notes draw heavily from Apostol (1967) and Simon and Blume (1994). Students looking for a more detailed presentation are advised to see either of these sources. 2 Preliminaries 2.1 Notation 1 1 R or equivalently R denotes the real number line. R is sometimes referred to as 1-dimensional 2 Euclidean space. 2-dimensional Euclidean space is represented by R , 3-dimensional space is rep- 3 k resented by R , and more generally, k-dimensional Euclidean space is represented by R . 1 1 Suppose a ∈ R and b ∈ R with a < b. 1 A closed interval [a, b] is the subset of R whose elements are greater than or equal to a and less than or equal to b. 1 An open interval (a, b) is the subset of R whose elements are greater than a and less than b. 1 A half open interval [a, b) is the subset of R whose elements are greater than or equal to a and less than b.
    [Show full text]
  • Linear Gaps Between Degrees for the Polynomial Calculus Modulo Distinct Primes
    Linear Gaps Between Degrees for the Polynomial Calculus Modulo Distinct Primes Sam Buss1;2 Dima Grigoriev Department of Mathematics Computer Science and Engineering Univ. of Calif., San Diego Pennsylvania State University La Jolla, CA 92093-0112 University Park, PA 16802-6106 [email protected] [email protected] Russell Impagliazzo1;3 Toniann Pitassi1;4 Computer Science and Engineering Computer Science Univ. of Calif., San Diego University of Arizona La Jolla, CA 92093-0114 Tucson, AZ 85721-0077 [email protected] [email protected] Abstract e±cient search algorithms and in part by the desire to extend lower bounds on proposition proof complexity This paper gives nearly optimal lower bounds on the to stronger proof systems. minimum degree of polynomial calculus refutations of The Nullstellensatz proof system is a propositional Tseitin's graph tautologies and the mod p counting proof system based on Hilbert's Nullstellensatz and principles, p 2. The lower bounds apply to the was introduced in [1]. The polynomial calculus (PC) ¸ polynomial calculus over ¯elds or rings. These are is a stronger propositional proof system introduced the ¯rst linear lower bounds for polynomial calculus; ¯rst by [4]. (See [8] and [3] for subsequent, more moreover, they distinguish linearly between proofs over general treatments of algebraic proof systems.) In the ¯elds of characteristic q and r, q = r, and more polynomial calculus, one begins with an initial set of 6 generally distinguish linearly the rings Zq and Zr where polynomials and the goal is to prove that they cannot q and r do not have the identical prime factors.
    [Show full text]
  • Gröbner Bases Tutorial
    Gröbner Bases Tutorial David A. Cox Gröbner Basics Gröbner Bases Tutorial Notation and Definitions Gröbner Bases Part I: Gröbner Bases and the Geometry of Elimination The Consistency and Finiteness Theorems Elimination Theory The Elimination Theorem David A. Cox The Extension and Closure Theorems Department of Mathematics and Computer Science Prove Extension and Amherst College Closure ¡ ¢ £ ¢ ¤ ¥ ¡ ¦ § ¨ © ¤ ¥ ¨ Theorems The Extension Theorem ISSAC 2007 Tutorial The Closure Theorem An Example Constructible Sets References Outline Gröbner Bases Tutorial 1 Gröbner Basics David A. Cox Notation and Definitions Gröbner Gröbner Bases Basics Notation and The Consistency and Finiteness Theorems Definitions Gröbner Bases The Consistency and 2 Finiteness Theorems Elimination Theory Elimination The Elimination Theorem Theory The Elimination The Extension and Closure Theorems Theorem The Extension and Closure Theorems 3 Prove Extension and Closure Theorems Prove The Extension Theorem Extension and Closure The Closure Theorem Theorems The Extension Theorem An Example The Closure Theorem Constructible Sets An Example Constructible Sets 4 References References Begin Gröbner Basics Gröbner Bases Tutorial David A. Cox k – field (often algebraically closed) Gröbner α α α Basics x = x 1 x n – monomial in x ,...,x Notation and 1 n 1 n Definitions α ··· Gröbner Bases c x , c k – term in x1,...,xn The Consistency and Finiteness Theorems ∈ k[x]= k[x1,...,xn] – polynomial ring in n variables Elimination Theory An = An(k) – n-dimensional affine space over k The Elimination Theorem n The Extension and V(I)= V(f1,...,fs) A – variety of I = f1,...,fs Closure Theorems ⊆ nh i Prove I(V ) k[x] – ideal of the variety V A Extension and ⊆ ⊆ Closure √I = f k[x] m f m I – the radical of I Theorems { ∈ |∃ ∈ } The Extension Theorem The Closure Theorem Recall that I is a radical ideal if I = √I.
    [Show full text]
  • Monomial Orderings, Rewriting Systems, and Gröbner Bases for The
    Monomial orderings, rewriting systems, and Gr¨obner bases for the commutator ideal of a free algebra Susan M. Hermiller Department of Mathematics and Statistics University of Nebraska-Lincoln Lincoln, NE 68588 [email protected] Xenia H. Kramer Department of Mathematics Virginia Polytechnic Institute and State University Blacksburg, VA 24061 [email protected] Reinhard C. Laubenbacher Department of Mathematics New Mexico State University Las Cruces, NM 88003 [email protected] 0Key words and phrases. non-commutative Gr¨obner bases, rewriting systems, term orderings. 1991 Mathematics Subject Classification. 13P10, 16D70, 20M05, 68Q42 The authors thank Derek Holt for helpful suggestions. The first author also wishes to thank the National Science Foundation for partial support. 1 Abstract In this paper we consider a free associative algebra on three gen- erators over an arbitrary field K. Given a term ordering on the com- mutative polynomial ring on three variables over K, we construct un- countably many liftings of this term ordering to a monomial ordering on the free associative algebra. These monomial orderings are total well orderings on the set of monomials, resulting in a set of normal forms. Then we show that the commutator ideal has an infinite re- duced Gr¨obner basis with respect to these monomial orderings, and all initial ideals are distinct. Hence, the commutator ideal has at least uncountably many distinct reduced Gr¨obner bases. A Gr¨obner basis of the commutator ideal corresponds to a complete rewriting system for the free commutative monoid on three generators; our result also shows that this monoid has at least uncountably many distinct mini- mal complete rewriting systems.
    [Show full text]
  • Polynomials Remember from 7-1: a Monomial Is a Number, a Variable, Or a Product of Numbers and Variables with Whole-Number Exponents
    Notes 7-3: Polynomials Remember from 7-1: A monomial is a number, a variable, or a product of numbers and variables with whole-number exponents. A monomial may be a constant or a single variable. I. Identifying Polynomials A polynomial is a monomial or a sum or difference of monomials. Some polynomials have special names. A binomial is the sum of two monomials. A trinomial is the sum of three monomials. • Example: State whether the expression is a polynomial. If it is a polynomial, identify it as a monomial, binomial, or trinomial. Expression Polynomial? Monomial, Binomial, or Trinomial? 2x - 3yz Yes, 2x - 3yz = 2x + (-3yz), the binomial sum of two monomials 8n3+5n-2 No, 5n-2 has a negative None of these exponent, so it is not a monomial -8 Yes, -8 is a real number Monomial 4a2 + 5a + a + 9 Yes, the expression simplifies Monomial to 4a2 + 6a + 9, so it is the sum of three monomials II. Degrees and Leading Coefficients The terms of a polynomial are the monomials that are being added or subtracted. The degree of a polynomial is the degree of the term with the greatest degree. The leading coefficient is the coefficient of the variable with the highest degree. Find the degree and leading coefficient of each polynomial Polynomial Terms Degree Leading Coefficient 5n2 5n 2 2 5 -4x3 + 3x2 + 5 -4x2, 3x2, 3 -4 5 -a4-1 -a4, -1 4 -1 III. Ordering the terms of a polynomial The terms of a polynomial may be written in any order. However, the terms of a polynomial are usually arranged so that the powers of one variable are in descending (decreasing, large to small) order.
    [Show full text]
  • Discriminants, Resultants, and Their Tropicalization
    Discriminants, resultants, and their tropicalization Course by Bernd Sturmfels - Notes by Silvia Adduci 2006 Contents 1 Introduction 3 2 Newton polytopes and tropical varieties 3 2.1 Polytopes . 3 2.2 Newton polytope . 6 2.3 Term orders and initial monomials . 8 2.4 Tropical hypersurfaces and tropical varieties . 9 2.5 Computing tropical varieties . 12 2.5.1 Implementation in GFan ..................... 12 2.6 Valuations and Connectivity . 12 2.7 Tropicalization of linear spaces . 13 3 Discriminants & Resultants 14 3.1 Introduction . 14 3.2 The A-Discriminant . 16 3.3 Computing the A-discriminant . 17 3.4 Determinantal Varieties . 18 3.5 Elliptic Curves . 19 3.6 2 × 2 × 2-Hyperdeterminant . 20 3.7 2 × 2 × 2 × 2-Hyperdeterminant . 21 3.8 Ge’lfand, Kapranov, Zelevinsky . 21 1 4 Tropical Discriminants 22 4.1 Elliptic curves revisited . 23 4.2 Tropical Horn uniformization . 24 4.3 Recovering the Newton polytope . 25 4.4 Horn uniformization . 29 5 Tropical Implicitization 30 5.1 The problem of implicitization . 30 5.2 Tropical implicitization . 31 5.3 A simple test case: tropical implicitization of curves . 32 5.4 How about for d ≥ 2 unknowns? . 33 5.5 Tropical implicitization of plane curves . 34 6 References 35 2 1 Introduction The aim of this course is to introduce discriminants and resultants, in the sense of Gel’fand, Kapranov and Zelevinsky [6], with emphasis on the tropical approach which was developed by Dickenstein, Feichtner, and the lecturer [3]. This tropical approach in mathematics has gotten a lot of attention recently in combinatorics, algebraic geometry and related fields.
    [Show full text]
  • Florida Math 0028 Correlation of the ALEKS Course Florida
    Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials = ALEKS course topic that addresses the standard MDECU1: Applies the order of operations to evaluate algebraic expressions, including those with parentheses and exponents Order of operations with whole numbers Order of operations with whole numbers and grouping symbols Order of operations with whole numbers and exponents: Basic Order of operations with whole numbers and exponents: Advanced Evaluating an algebraic expression: Whole number operations and exponents Absolute value of a number Operations with absolute value Exponents and integers: Problem type 1 Exponents and integers: Problem type 2 Exponents and signed fractions Order of operations with integers and exponents Evaluating a linear expression: Integer multiplication with addition or subtraction Evaluating a quadratic expression: Integers Evaluating a linear expression: Signed fraction multiplication with addition or subtraction Evaluating a linear expression: Signed decimal addition and subtraction Evaluating a linear expression: Signed decimal multiplication with addition or subtraction Combining like terms: Whole number coefficients Combining like terms: Integer coefficients Multiplying a constant and a linear monomial Distributive property: Whole number coefficients Distributive property: Integer coefficients Using distribution and combining like terms to simplify: Univariate Using distribution with double negation and combining like terms to simplify: Multivariate Combining like terms in a quadratic expression MDECU2: Simplifies an expression with integer exponents Understanding the product rule of exponents Introduction to the product rule of exponents Product rule with positive exponents: Univariate Product rule with positive exponents: Multivariate Understanding the power rules of exponents (FF4)Copyright © 2014 UC Regents and ALEKS Corporation.
    [Show full text]
  • Gröbner Bases Victor Adamchik Carnegie Mellon University
    15-355: Modern Computer Algebra 1 Gröbner Bases Victor Adamchik Carnegie Mellon University à The main idea Given a system of polynomial equations f1 = 0 ... fs = 0 It forms an ideal I = < f1, ..., fs > for which we cannot solve a membership problem It's better to choose a monomial ideal But how would you build a monomial ideal out of a given set of polynomials? Monomial Ideal à Understanding the structure Definition: A monomial ideal I Ì R is an ideal generated by monomials in R. For example, I = < x2 y5, x4 y3, x5 y > a Such an ideal I consists of all polynomials which are finite sums of qa x , where qk Î R. We will a n write I = x , a Î A Ì Z³0 Example. Given Ú 8 < I = < x2, x y3, y4 z, x y z > Then f = 3 x7 + 7 x y3 z + 2 y4 z + x y2 z2 is in I, since x7 = x2 x5 x y3 z = x y3 z x y2 z2 =I xMyIz M y z I M H L H L H L 2 Groebner Bases x7 = x2 x5 8 x y3 z = x y3 z 7 x y2 z2 = x y z y z 6 I M I M Exercise. Given 5 I M H L 4 I = < x3, Hx2 y >L H L 3 Verify 2 4 2 3 1 f1 = 3 x + 5 x y is it in I? 2 3 4 5 4 6 2 7 8 f2 = 2 x y + 7 x is it in I? Lemma.
    [Show full text]
  • Discriminants, Symmetrized Graph Monomials, and Sums of Squares
    DISCRIMINANTS, SYMMETRIZED GRAPH MONOMIALS, AND SUMS OF SQUARES PER ALEXANDERSSON AND BORIS SHAPIRO Abstract. Motivated by the necessities of the invariant theory of binary forms J. J. Sylvester constructed in 1878 for each graph with possible mul- tiple edges but without loops its symmetrized graph monomial which is a polynomial in the vertex labels of the original graph. We pose the question for which graphs this polynomial is a non-negative resp. a sum of squares. This problem is motivated by a recent conjecture of F. Sottile and E. Mukhin on discriminant of the derivative of a univariate polynomial, and an interesting example of P. and A. Lax of a graph with 4 edges whose symmetrized graph monomial is non-negative but not a sum of squares. We present detailed in- formation about symmetrized graph monomials for graphs with four and six edges, obtained by computer calculations. 1. Introduction In what follows by a graph we will always mean a (directed or undirected) graph with (possibly) multiple edges but no loops. The classical construction of J. J. Sylvester and J. Petersen [8, 9] associates to an arbitrary directed loopless graph a symmetric polynomial as follows. Definition 1. Let g be a directed graph, with vertices x1; : : : ; xn and adjacency matrix (aij); where aij is the number of directed edges connecting xi and xj: Define its graph monomial Pg as Y aij Pg(x1; : : : ; xn) := (xi − xj) : 1≤i;j≤n The symmetrized graph monomial of g is defined as X g~(x) = Pg(σx); x = x1; : : : ; xn: σ2Sn Notice that if the original g is undirected one can still defineg ~ up to a sign by choosing an arbitrary orientation of its edges.
    [Show full text]
  • Determine Whether Each Expression Is a Polynomial
    8-1 Adding and Subtracting Polynomials Determine whether each expression is a polynomial. If it is a polynomial, find the degree and determine whether it is a monomial, binomial, or trinomial. 2 3 1. 7ab + 6b – 2a ANSWER: yes; 3; trinomial 2. 2y – 5 + 3y2 ANSWER: yes; 2; trinomial 2 3. 3x ANSWER: yes; 2; monomial 4. ANSWER: No; a monomial cannot have a variable in the denominator. 5. 5m2p 3 + 6 ANSWER: yes; 5; binomial –4 6. 5q + 6q ANSWER: No; , and a monomial cannot have a variable in the denominator. Write each polynomial in standard form. Identify the leading coefficient. 7. –4d4 + 1 – d2 ANSWER: 4 2 –4d – d + 1; –4 8. 2x5 – 12 + 3x ANSWER: 5 2x + 3x – 12 ; 2 9. 4z – 2z2 – 5z4 eSolutionsANSWER: Manual - Powered by Cognero Page 1 4 2 –5z – 2z + 4z; –5 10. 2a + 4a3 – 5a2 – 1 ANSWER: 3 2 4a – 5a + 2a – 1, 4 Find each sum or difference. 11. (6x3 − 4) + (−2x3 + 9) ANSWER: 3 4x + 5 12. (g3 − 2g2 + 5g + 6) − (g2 + 2g) ANSWER: 3 2 g − 3g + 3g + 6 13. (4 + 2a2 − 2a) − (3a2 − 8a + 7) ANSWER: 2 −a + 6a − 3 14. (8y − 4y2) + (3y − 9y2) ANSWER: 2 −13y + 11y 15. (−4z3 − 2z + 8) − (4z3 + 3z2 − 5) ANSWER: 3 2 −8z − 3z − 2z + 13 16. (−3d2 − 8 + 2d) + (4d − 12 + d2) ANSWER: 2 −2d + 6d − 20 17. (y + 5) + (2y + 4y2 – 2) ANSWER: 2 4y + 3y + 3 18. (3n3 − 5n + n2) − (−8n2 + 3n3) ANSWER: 2 9n − 5n 19. CCSS SENSE-MAKING The total number of students T who traveled for spring break consists of two groups: students who flew to their destinations F and students who drove to their destination D.
    [Show full text]
  • Lesson 7.1 – Factoring Polynomials I
    LESSON 7.1 – FACTORING POLYNOMIALS I LESSON 7.1 FACTORING POLYNOMIALS I 293 OVERVIEW Here’s what you’ll learn in this lesson: You have learned how to multiply polynomials. Now you will learn how to factor them. Greatest Common Factor When you factor a polynomial, you write it as the product of other polynomials. a. Finding the greatest common factor In this lesson you will learn several different techniques for factoring polynomials. (GCF) of a set of monomials b. Factoring a polynomial by finding the GCF when the GCF is a monomial Grouping a. Factoring a polynomial by finding the GCF when the GCF is a binomial b. Factoring a polynomial with four terms by grouping 294 TOPIC 7 FACTORING EXPLAIN GREATEST COMMON FACTOR Summary Factoring Polynomials You already know how to factor numbers by writing them as the product of other numbers. Now you will learn how to factor polynomials by writing them as the product of other polynomials. Finding the GCF of a Collection of Monomials To find the GCF of a collection of monomials: Remember that a monomial is a polynomial with only one term. For 1. Factor each monomial into its prime factors. example: 14x 5y 3, 32, 6x, and 9xyz are 2. List each common prime factor the smallest number of times it appears in monomials; but 12x 5y + 1 and 14y + 3x any factorization. are not monomials. 3. Multiply all the prime factors in the list. Before deciding if a polynomial is a monomial, binomial, etc., be sure you For example, to find the GCF of the monomials 16x 2y 2, 4x 3y 2, and 12xy 4 : first combine any like terms and apply 1.
    [Show full text]
  • Eight Lectures on Monomial Ideals Contents
    COCOA Summer School 1999 Eight Lectures on Monomial Ideals ezra miller david perkinson Contents Preface 2 Acknowledgments............................. 4 0 Basics 4 0.1 Zn-grading................................. 4 0.2 Monomialmatrices ............................ 5 0.3 Complexesandresolutions . 6 0.4 Hilbertseries ............................... 7 0.5 Simplicial complexes and homology . 8 0.6 Irreducibledecomposition . 10 1 Lecture I: Squarefree monomial ideals 11 1.1 Equivalent descriptions . 11 1.2 Hilbertseries ............................... 12 1.3 Freeresolutions .............................. 14 2 Lecture II: Borel-fixed monomial ideals 17 2.1 Groupactions............................... 17 2.2 Genericinitialideals ........................... 18 2.3 TheEliahou-Kervaireresolution . .. 18 2.4 Lex-segmentideals ............................ 21 3 Lecture III: Monomial ideals in three variables 21 3.1 Monomial ideals in two variables . 22 3.2 Buchberger’ssecondcriterion . 23 3.3 Resolution“bypicture” . .. .. 24 3.4 Planargraphs............................... 25 3.5 Reducing to the squarefree or Borel-fixed case . .... 27 4 Lecture IV: Generic monomial ideals 27 4.1 TheScarfcomplex ............................ 28 4.2 Deformationofexponents . 30 4.3 Triangulatingthesimplex . 31 1 5 Lecture V: Cellular Resolutions 33 5.1 Thebasicconstruction .......................... 33 5.2 Exactness of cellular complexes . 34 5.3 Examples of cellular resolutions . .. 36 5.4 Thehullresolution ............................ 37 6 Lecture VI: Alexander duality
    [Show full text]