International 300 N

Total Page:16

File Type:pdf, Size:1020Kb

International 300 N INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. University Microfilms International 300 N. Zeeb Road Ann Arbor, Ml 48106 8510632 Schmidt, Thomas Mitchell INTERACTIONS AMONG THE SULFUR, HYDROGEN, AND CARBON METABOLISMS OF BEGGIATOA ALBA AND A COMPARISON TO THIOTHRIX NIVEA The Ohio State University Ph.D. 1985 University Microfilms International300 N. Zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a checkV . mark 1. Glossy photographs or pages^ 2. Colored illustrations, paper or ______print 3. Photographs with dark backgroundy / ' 4. Illustrations are poor copy_______ 5 . Pages with black marks, not original _______copy 6. Print shows through as there is text on both sides_______ of page 7. Indistinct, broken or small print on several pages ^ 8. Print exceeds margin requirements______ 9. Tightly bound copy with print lost_______ in spine 10. Computer printout pages with indistinct_______ print 11. P a g e (s)_____________ lacking when material received, and not available from school or author. 12. P a g e (s)_____________ seem to be missing in numbering only as text follows. 13. Two pages n u m b ered____________ . Text follows. 14. Curling and wrinkled pages_______ 15. O ther___________________________________________________________________ _ University Microfilms International INTERACTIONS AMONG THE SULFUR, HYDROGEN, AND CARBON METABOLISMS OF BEGGIATOA ALBA AND A COMPARISON TO THIOTHRIX NIVEA A DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of the Ohio State University by Thomas Mitchell Schmidt, B.S., M.S. The Ohio State University 1985 Reading Committee: Approved by: Dr. Patrick R. Dugan Dr. Kathleen E. Kendrick Dr. William R. Strohl Dr. Robert M. Pfister Adviser ACKNOWLEDGMENTS Learning is a tremendous experience. Unfortunately, few people have the luxury of pursuing it full time. I would like to acknowledge some of the people and organizations that have given me such an opportunity. Thanks are due to my adviser, Dr. William R. Strohl, for his encouragement and flexibility throughout my doctoral studies. I thank The Department of Microbiology, especially its chairman, Dr. Robert M. Pfister, and The Program of Environmental Biology for financial support throughout my years in graduate school. Research and study funds were also obtained from grants from The National Science Foundation, The Marine Biological Laboratory in Woods Hole, Massachusetts, and The NASA Microbial Ecology Program. Parts of this work were performed in the laboratories of Dr. Yehud Cohen and Dr. Etana Padan of the Hebrew University. Their work continues to provide me with an example of excellent research. Thanks are also due to Dr. Riccardo Guerrero for his help with the work on Chromatium, and Mr. Jim Porter for his able assistance with the respirometry. I am grateful to Dr. Patrick R. Dugan, Dr. Kathleen E. Kendrick, Dr. Nelson H. Lawry, and Dr. Robert M. Pfister for their critical review of this dissertation. Their questions and comments have surely improved the quality of this document. Without my wife Susan, the completion of this dissertation would have been much less enjoyable; her patience and sense of humor were a welcome refuge during the past three years. Finally, I thank my parents, Phyllis and Eddie, for teaching me that anything is possible. iii VITA NAME: Thomas Mitchell Schmidt SOCIAL SECURITY NUMBER: 278-46-6031 DATE AND PLACE OF BIRTH: January 16, 1956. Lorain, Ohio EDUCATION: M.S. Environmental Biology, 1981; The Ohio State University, Columbus, Ohio. B.S. Biology, 1978; The University of Michigan, Ann Arbor, Michigan. AREAS OF SPECIAL INTEREST: Microbial Physiology and Ecology Sulfur and Hydrogen Metabolism Bacterial Energetics GRANTS AND AWARDS: July 1984 - August 1984. Participant in NASA sponsored research program, "Microbes and the Global Sulfur Cycle," San Jose, California. September 1983 - December 1983. Invited Researcher, The Hebrew University of Israel, Jerusalem, Israel. June 1982 - August 1982. Participant in Woods Hole Microbial Ecology Course. Recipient of stipend for research, Marine Biological Laboratory, Woods Hole, Massachusetts. June 1980 - June 1981. Recipient of Sigma Xi Grant for study on the effects of Ixtoc oil on the sea grass ecology of the Gulf of Mexico. June 1980 - September 1980. Recipient of Explorers Club Grant for on-site research in the Gulf of Mexico. iv INVITED SEMINARS, LECTURES, AND SYMPOSIA: Metabolic Diversity in the Family Beggiatoaceae. The Ohio State University. Columbus, Ohio. October, 1984. Sulfide oxidation by the colorless, filamentous, sulfur bacteria. The Hebrew University of Israel, Jerusalem. November, 1983. Structures of Filamentous Sulfur Bacteria. NASA research program. San Jose, California. July, 1984. PUBLICATIONS and CONTRIBUTIONS IN BOOKS: Strohl, W. R., and Schmidt, T. M. 1984. Mixotrophy of the colorless, sulfide-oxidizing, gliding bacteria Beggiatoa and Thiothrix. In Microbial Chemoautotrophy, W. R. Strohl and 0. H. Tuovinen, (eds). The Ohio State University Press, Columbus, Ohio. Baca, B. J.f Schmidt, T. M., and Tunnel, J. W. 1982. Ixtoc oil in seagrass beds surrounding Isla de Media. In Proceedings of the International Symposium on Ixtoc 1. In press. Schmidt, T. M. 1981. The uptake of petroleum-derived hydrocarbons by the sea grass Thalassia testudinum (Hydrocharitacea). M.S. Thesis, The Ohio State University, Columbus, Ohio. PUBLISHED ABSTRACTS: Sprouse, M. L., Schmidt, T. M., and Strohl, W. R. 1984. Sulfide induced appearance of plasmids in Beggiatoa. Abstract; Annual Meeting of the American Society for Microbiology. H 53, p 101. Vinci, V. A., Schmidt, T. M., and Strohl, W. R. 1983. Protein synthesis by Beggiatoa alba. Abstract; Annual Meeting of the American Society for Microbiology I< 191, p 208. Schmidt, T. M., and Castenholz, R. W. 1982. The effects of sulfide on cyanobacterial photosynthesis in marine microbial mats. Biological Bulletin, October. ASSISTANTSHIPS: June 1983 - present. Graduate Research Associate, Deptartment of Microbiology, Ohio State University. January 1981 - June 1983. Graduate Teaching Associate, Department of Microbiology, Ohio State University. September 1980 - December 1980. Research Associate, Program of Environmental Biology, Ohio State University. September 1979 - June 1980. Graduate Teaching Associate, Program of Environmental Biology, Ohio State University. June 1979 - September 1979. Research Associate at Stone Laboratory, Freshwater Biological Station on Lake Erie, Ohio State University. TABLE OF CONTENTS Page ACKNOWLEDGMENTS ........................................ ii VITA ..................................................... iv TABLE OF C O N T E N T S ...................................... vii LIST OF TABLES .......................................... ix LIST OF FIGURES ........................................ x LIST OF ABBREVIATIONS.................................. xiii CHAPTER I. Introduction ..................................... 1 II. Sulfide and Acetate Oxidation by Beggiatoa alba B 1 8 L D ........................ 12 Introduction ................................ 12 Materials and Methods ....................... 13 R e s u l t s ..................................... 18 Discussion .......... 32 III. A comparison of the sulfur metabolisms of Thiothrix nivea JP3 and Beggiatoa alba B18LD. 41 Introduction ................................ 41 Materials and Methods ....................... 42 R e s u l t s ....................................
Recommended publications
  • High Density of Diploria Strigosa Increases
    HIGH DENSITY OF DIPLORIA STRIGOSA INCREASES PREVALENCE OF BLACK BAND DISEASE IN CORAL REEFS OF NORTHERN BERMUDA Sarah Carpenter Department of Biology, Clark University, Worcester, MA 01610 ([email protected]) Abstract Black Band Disease (BBD) is one of the most widespread and destructive coral infectious diseases. The disease moves down the infected coral leaving complete coral tissue degradation in its wake. This coral disease is caused by a group of coexisting bacteria; however, the main causative agent is Phormidium corallyticum. The objective of this study was to determine how BBD prominence is affected by the density of D. strigosa, a common reef building coral found along Bermuda coasts. Quadrats were randomly placed on the reefs at Whalebone Bay and Tobacco Bay and then density and percent infection were recorded and calculated. The results from the observations showed a significant, positive correlation between coral density and percent infection by BBD. This provides evidence that BBD is a water borne infection and that transmission can occur at distances up to 1m. Information about BBD is still scant, but in order to prevent future damage, details pertaining to transmission methods and patterns will be necessary. Key Words: Black Band Disease, Diploria strigosa, density Introduction Coral pathogens are a relatively new area of study, with the first reports and descriptions made in the 1970’s. Today, more than thirty coral diseases have been reported, each threatening the resilience of coral communities (Green and Bruckner 2000). The earliest identified infection was characterized by a dark band, which separated the healthy coral from the dead coral.
    [Show full text]
  • Bhattacharya.1999.Thermophiles.Pdf
    THE PHYLOGENY OF THERMOPHILES AND HYPERTHERMOPHILES AND THE THREE DOMAINS OF LIFE The Phylogeny of Thermophiles DEBASHISH BHATTACHARYA University of Iowa Department of Biological Sciences Biology Building, Iowa City, Iowa 52242-1324 United States THOMAS FRIEDL Department of Biology, General Botany University of Kaiserslautern P.O. Box 3049, D-67653 Kaiserslautern, Germany HEIKO SCHMIDT Deutsches Krebsforschungszentrum Theoretische Bioinformatik Im Neuenheimer Feld 280 , D-69120 Heidelberg, Germany 1. Introduction The nature of the first cells and the environment in which they lived are two of the most interesting problems in evolutionary biology. All living things are descendents of these primordial cells and are divided into three fundamental lineages or domains, Archaea (formerly known as Archaebacteria), Bacteria (formerly known as Eubacteria), and the Eucarya (formerly known as Eukaryotes, Woese et al. 1990). The Archaea and Bacteria are prokaryotic domains whereas the Eucarya includes all other living things that have a nucleus (i.e., the genetic material is separated from the cytoplasm by a nuclear envelope). The observation of the three primary domains, first made on the basis of small subunit (i.e., 16S, 18S) ribosomal DNA (rDNA) sequence comparisons (Woese 1987), has created a framework with which the nature of the last common ancestor (LCA) can be addressed. In this review we present phylogenies of the prokaryotic domains to understand the origin and distribution of the thermophiles (organisms able to grow in temperatures > 45°C) and the hyperthermophiles (organisms able to grow in temperatures > 80°C). Hyperthermophiles are limited to the Archaea and Bacteria. In addition, we inspect the distribution of extremophiles within the cyanobacteria.
    [Show full text]
  • Versatile Cyanobacteria Control the Timing and Extent of Sulfide
    The ISME Journal (2020) 14:3024–3037 https://doi.org/10.1038/s41396-020-0734-z ARTICLE Versatile cyanobacteria control the timing and extent of sulfide production in a Proterozoic analog microbial mat 1 2,9 1,10 2 3 Judith M. Klatt ● Gonzalo V. Gomez-Saez ● Steffi Meyer ● Petra Pop Ristova ● Pelin Yilmaz ● 4,5,11 6 7 1,8 2 Michael S. Granitsiotis ● Jennifer L. Macalady ● Gaute Lavik ● Lubos Polerecky ● Solveig I. Bühring Received: 28 February 2020 / Revised: 16 July 2020 / Accepted: 28 July 2020 / Published online: 7 August 2020 © The Author(s) 2020. This article is published with open access Abstract Cyanobacterial mats were hotspots of biogeochemical cycling during the Precambrian. However, mechanisms that controlled O2 release by these ecosystems are poorly understood. In an analog to Proterozoic coastal ecosystems, the Frasassi sulfidic springs mats, we studied the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis (OP and AP) in versatile cyanobacteria, and interactions with sulfur reducing bacteria (SRB). Using microsensors and stable isotope probing we found that dissolved organic carbon (DOC) released by OP fuels sulfide production, likely by a specialized SRB population. Increased sulfide fluxes were only stimulated after the cyanobacteria switched from AP to OP. O2 production 1234567890();,: 1234567890();,: triggered migration of large sulfur-oxidizing bacteria from the surface to underneath the cyanobacterial layer. The resultant sulfide shield tempered AP and allowed OP to occur for a longer duration over a diel cycle. The lack of cyanobacterial DOC supply to SRB during AP therefore maximized O2 export. This mechanism is unique to benthic ecosystems because transitions between metabolisms occur on the same time scale as solute transport to functionally distinct layers, with the rearrangement of the system by migration of microorganisms exaggerating the effect.
    [Show full text]
  • Motility of the Giant Sulfur Bacteria Beggiatoa in the Marine Environment
    Motility of the giant sulfur bacteria Beggiatoa in the marine environment Dissertation Rita Dunker Oktober 2010 Motility of the giant sulfur bacteria Beggiatoa in the marine environment Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften Dr. rer. nat. von Rita Dunker, Master of Science (MSc) geboren am 22. August 1975 in Köln Fachbereich Biologie/Chemie der Universität Bremen Gutachter: Prof. Dr. Bo Barker Jørgensen Prof. Dr. Ulrich Fischer Datum des Promotionskolloquiums: 15. Dezember 2010 Table of contents Summary 5 Zusammenfassung 7 Chapter 1 General Introduction 9 1.1 Characteristics of Beggiatoa 1.2 Beggiatoa in their environment 1.3 Temperature response in Beggiatoa 1.4 Gliding motility in Beggiatoa 1.5 Chemotactic responses Chapter 2 Results 2.1 Mansucript 1: Temperature regulation of gliding 49 motility in filamentous sulfur bacteria, Beggiatoa spp. 2.2 Mansucript 2: Filamentous sulfur bacteria, Beggiatoa 71 spp. in arctic, marine sediments (Svalbard, 79° N) 2.3. Manuscript 3: Motility patterns of filamentous sulfur 101 bacteria, Beggiatoa spp. 2.4. A new approach to Beggiatoa spp. behavior in an 123 oxygen gradient Chapter 3 Conclusions and Outlook 129 Contribution to manuscripts 137 Danksagung 139 Erklärung 141 Summary Summary This thesis deals with aspects of motility in the marine filamentous sulfur bacteria Beggiatoa and thus aims for a better understanding of Beggiatoa in their environment. Beggiatoa inhabit the microoxic zone in sediments. They oxidize reduced sulfur compounds such as sulfide with oxygen or nitrate. Beggiatoa move by gliding and respond to stimuli like oxygen, light and presumably sulfide. Using these substances for orientation, they can form dense mats on the sediment surface.
    [Show full text]
  • A Model Study of the Effects of Sulfide-Oxidizing Bacteria
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Boreal environment research 16: 167–184 © 2011 issn 1239-6095 (print) issn 1797-2469 (online) helsinki 30 June 2011 a model study of the effects of sulfide-oxidizing bacteria (Beggiatoa spp.) on phosphorus retention processes in hypoxic sediments: implications for phosphorus management in the Baltic sea sepehr shakeri Yekta* and lars rahm Department of Thematic Studies — Water and Environmental Studies, Linköping University, SE-581 83 Linköping, Sweden (corresponding author’s e-mail: [email protected]) Received 14 June 2010, accepted 23 Nov. 2010 (Editor in charge of this article: Heikki Seppä) Yekta, s. s. & rahm, l. 2011: a model study of the effects of sulfide-oxidizing bacteria (Beggiatoa spp.) on phosphorus retention processes in hypoxic sediments: implications for phosphorus management in the Baltic sea. Boreal Env. Res. 16: 167–184. Ongoing eutrophication increases phosphorus storage in surficial sediments of the Baltic Sea which can then be released during hypoxic/anoxic events. Such sediments are suit- able habitats for sulfide-oxidizing bacteria,Beggiatoa spp. The objective of this paper is to investigate the effects of these bacteria on the P retention processes in hypoxic sediments using a diagenetic model. This model simulates interactions of the processes controlling P mobility in the sediments with redox reactions from the Beggiatoa metabolism. Modeling results demonstrate that P retention capability is limited when dissolved iron is mineralized as iron sulfides in the sediments. In this regard, sulfide consumption by Beggiatoa spp. potentially decreases the rate of iron sulfide formation and consequently increases the P retention capability in local-scale sediment.
    [Show full text]
  • Physico-Chemical and Biological Factors in the Distribution of Cyanobacteria Population in Three Different Sampling Sites of South India
    Vol. 7(25), pp. 3240-3247, 18 June, 2013 DOI: 10.5897/AJMR12.1408 ISSN 1996-0808 ©2013 Academic Journals African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper Physico-chemical and biological factors in the distribution of cyanobacteria population in three different sampling sites of South India K. Jeyachitra1, A. Panneerselvam1, R. Rajendran2, M. Mahalakshmi3, and S. Karthik Sundaram2* 1PG and Research Department of Botany and Microbiology, A.V. V. M. Sri Pushpam College (Aut), Poondi, - 613 503, Thanjavur district, India. 2PG and Research Department of Microbiology, PSG College of Arts and Science, Coimbatore-14, India. 3RndBio-The Biosolutions Company, SF No. 274/4, Anna Private Industrial Estate, Vilankuruchi Road, Peelamedu Post, Coimbatore – 35, India. Accepted 12 June, 2013 The current work was involved in the distributional analysis of the cyanobacteria strains present in the predominant water outlets present in the city, for analysing the types of strains found during the different seasonal interims. The cyanobacteria distribution in water from two different stations of Southern India were analysed at four months interval during the period of July 2002 to June 2004. The cyanobacteria population in the vicinity was analyzed using the physico-chemical factors like pH, temperature, electrical conductivity, carbonate, bicarbonate, chloride, calcium, magnesium, total phosphorus, inorganic phosphorus, sulphate, sulphite, ammoniacal nitrogen, nitrate, nitrite, silicate, iron, zinc, copper and manganese and algal flora (qualitative) were also studied and compared their variations among the three different freshwater bodies. In addition, biological parameters such as primary production gross primary productivity, net primary productivity and community respiration rate were also studied.
    [Show full text]
  • Breakthrough of Oscillatoria Limnetica and Microcystin Toxins Into Drinking Water Treatment Plants – Examples from the Nile River, Egypt
    Breakthrough of Oscillatoria limnetica and microcystin toxins into drinking water treatment plants – examples from the Nile River, Egypt Zakaria A Mohamed1* 1Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt ABSTRACT The presence of cyanobacteria and their toxins (cyanotoxins) in processed drinking water may pose a health risk to humans and animals. The efficiency of conventional drinking water treatment processes (coagulation, flocculation, rapid sand filtration and disinfection) in removing cyanobacteria and cyanotoxins varies across different countries and depends on the composition of cyanobacteria and cyanotoxins prevailing in the water source. Most treatment studies have primarily been on the removal efficiency for unicellularMicrocystis spp., with little information about the removal efficiency for filamentous cyanobacteria. This study investigates the efficiency of conventional drinking water treatment processes for the removal of the filamentous cyanobacterium,Oscillatoria limnetica, dominating the source water (Nile River) phytoplankton in seven Egyptian drinking water treatment plants (DWTPs). The study was conducted in May 2013. The filamentous O. limnetica was present at high cell densities (660–1 877 cells/mL) and produced microcystin (MC) cyanotoxin concentrations of up to 877 µg∙g-1, as determined by enzyme-linked immunosorbent assay (ELISA). Results also showed that conventional treatment methods removed most phytoplankton cells, but were ineffective for complete removal ofO. limnetica. Furthermore, coagulation led to cell lysis and subsequent microcystin release. Microcystins were not effectively removed and remained at high concentrations (0.37–3.8 µg∙L -1) in final treated water, exceeding the WHO limit of 1 µg∙L-1. This study recommends regular monitoring and proper treatment optimization for removing cyanobacteria and their cyanotoxins in DWTPs using conventional methods.
    [Show full text]
  • Filling the Gaps in the Cyanobacterial Tree of Life—Metagenome Analysis
    G C A T T A C G G C A T genes Article Filling the Gaps in the Cyanobacterial Tree of Life—Metagenome Analysis of Stigonema ocellatum DSM 106950, Chlorogloea purpurea SAG 13.99 and Gomphosphaeria aponina DSM 107014 Pia Marter 1,†, Sixing Huang 1,†, Henner Brinkmann 1, Silke Pradella 1, Michael Jarek 2, Manfred Rohde 2, Boyke Bunk 1 and Jörn Petersen 1,* 1 Leibniz-Institut DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen, 38124 Braunschweig, Germany; [email protected] (P.M.); [email protected] (S.H.); [email protected] (H.B.); [email protected] (S.P.); [email protected] (B.B.) 2 Helmholtz-Zentrum für Infektionsforschung, 38124 Braunschweig, Germany; [email protected] (M.J.); [email protected] (M.R.) * Correspondence: [email protected]; Tel.: +49-531-2616-209; Fax: +49-531-2616-418 † These authors contributed equally to this work. Abstract: Cyanobacteria represent one of the most important and diverse lineages of prokaryotes with an unparalleled morphological diversity ranging from unicellular cocci and characteristic colony-formers to multicellular filamentous strains with different cell types. Sequencing of more than Citation: Marter, P.; Huang, S.; 1200 available reference genomes was mainly driven by their ecological relevance (Prochlorococcus, Brinkmann, H.; Pradella, S.; Jarek, M.; Synechococcus), toxicity (Microcystis) and the availability of axenic strains. In the current study three Rohde, M.; Bunk, B.; Petersen, J. slowly growing non-axenic cyanobacteria with a distant phylogenetic positioning were selected for Filling the Gaps in the Cyanobacterial metagenome sequencing in order to (i) investigate their genomes and to (ii) uncover the diversity Tree of Life—Metagenome Analysis of associated heterotrophs.
    [Show full text]
  • Trophic Role of Large Benthic Sulfur Bacteria in Mangrove Sediment
    Vol. 516: 127–138, 2014 MARINE ECOLOGY PROGRESS SERIES Published December 3 doi: 10.3354/meps11035 Mar Ecol Prog Ser Trophic role of large benthic sulfur bacteria in mangrove sediment Pierre-Yves Pascal1,*, Stanislas Dubois2, Henricus T. S. Boschker3, Olivier Gros1 1Département de Biologie, Université des Antilles et de la Guyane, UMR 7138 UPMC-CNRS-MNHN-IRD, Equipe ‘biologie de la mangrove’, UFR des Sciences Exactes et Naturelles, BP 592, 97159 Pointe-à-Pitre, Guadeloupe, France 2IFREMER, DYNECO Laboratoire d’Ecologie Benthique,29280 Plouzané, France 3Royal Netherlands Institute of Sea Research (NIOZ), PO Box 140, 4400 AC Yerseke, The Netherlands ABSTRACT: Large filamentous sulfur-oxidizing bacteria belonging to the Beggiatoacae family can cover large portions of shallow marine sediments surrounding mangroves in Guadeloupe (French West Indies). In order to assess the importance of Beggiatoa mats as an infaunal food source, observations were conducted of the area within mats and at increasing distances from mats. We used natural isotopic compositions and a 13C enrichment study. Both revealed an inges- tion of bacterial mats by associated meiofauna, dominated by rotifers and to a smaller extent by small polychaetes and nematodes. Compared to adjacent sites, sediment covered by bacterial mats presented a higher abundance of diatoms, whereas the total biomass of bacteria did not vary. This constant bacterial abundance suggests that the proportion of organic matter represented by sulfur bacteria is limited compared to the fraction of total bacteria. There was no significant differ- ence in infaunal abundance in mats, suggesting that the availability of this chemosynthetic food resource had a limited local effect.
    [Show full text]
  • Plasmids in Two Cyanobacterial Strains 1 .S
    Volume 107, number 1 FEBSLETTERS November 1979 PLASMIDS IN TWO CYANOBACTERIAL STRAINS Devorah FRIEDBERG and Julie SEIJFFERS Department of Microbiological Chemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel Received 5 August 1979 1. Introduction graphs. The Anacystis plasmid is further characterized by restriction endonuclease analysis. The cyanobacteria are an heterogenous group of photosynthetic prokaryotes [I]. An extremely wide variation of DNA base composition and genome size 2. Materials and methods was shown among cyanobacteria of different sub- groups or within the same subgroup [2-41. The Anacystis sp. 6311 (Department of Bacteriology presence of extrachromosomal DNA elements may and Immunology, University of California at Berkeley) contribute even more to this divergence. was maintained and grown in a Chu 11 mineral salt Although such DNA elements have been encoun- medium [ 1 l] with NaNOs concentration modified to tered in several cyanobacteria [S-7], until recently, 1 .S g/l. Oscillatoria limnetica was grown aerobically only in the case of cyanobacteria Agmenellum photoautotrophically as in [ 121. quadruplicatum, these elements were shown to be The CCC DNA was isolated, using the sodium covalently closed circular (CCC) DNA (plasmids) [6]. dodecyl sulphate (SDS) NaCl lysis procedure [ 131, While the present study was in progress, the presence with modified incubation conditions for lysozyme: of two different plasmids in several closely related 2.5 mg/ml for 3 h at 37’C. Further steps for its cyanobacteria species was reported [8]. purification are as follows: KC1 was added to 0.5 M Characterization of the cyanobacterial plasmids final cont. and the mixture was incubated at 68°C may provide useful information regarding: for 10 min, cooled to 4°C and spun at 12 000 X g (a) The heterogeneity between and within the sub- for 2 min.
    [Show full text]
  • New Record of Cyanoprokaryotes from West Bengal in Maldah District
    ISSN (E): 2349 – 1183 ISSN (P): 2349 – 9265 4(3): 421–432, 2017 DOI: 10.22271/tpr.201 7.v4.i3 .056 Research article New record of Cyanoprokaryotes from West Bengal in Maldah district Pratibha Gupta Botanical Survey of India, Ministry of Environment Forests & Climate Change, Government of India, AJCBIBG, CNH Building, Botanic Garden, Howrah-711103, India *Corresponding Author: [email protected] [Accepted: 22 November 2017] Abstract: Systematic survey and collection of Cyanoprokaryotes were carried out from different water bodies of Maldah District, West Bengal. During survey samples were sampled from 55 different water bodies of this area comprising 05 sites in rivers, 32 bils, 07 dighis, 02 Jheels, 09 ponds for which surveyed all administrative blocks of Maldah District namely Ratua I, Ratua II, Harishchandrapur I, Harishchandrapur II, Chanchal I, Chanchal II, Manikchak, Gazol, Habibpur, Bamangola, Old Maldah, English Bazar and Kaliachak. During the study, altogether 22 genera and 105 species (comprising 93 species, 09 varieties and 03 forms) were identified from different types of water bodies of Maldah District. Out of these 105, 27 species have been recorded from West Bengal. These species have been described here along with nomenclature and distribution. Keywords: Cyanoprokaryotes - New Record - Maldah District - West Bengal. [Cite as: Gupta P (2017) New record of Cyanoprokaryotes from West Bengal in Maldah district. Tropical Plant Research 4(3): 421–432] INTRODUCTION Maldah district is one of important district among 19 districts of West Bengal. The major river the Ganges flows along south-western boundary of the district followed by another major rivers like Mahananda, Fulhar and Kalindri.
    [Show full text]
  • Insights Into Marine Microbial Communities That Couple Anaerobic
    Goldschmidt Conference Abstracts 919 Insights into marine microbial Aerobic hydrogen oxidation by a communities that couple anaerobic chemolithotrophic Beggiatoa strain biogeochemical cycles to remote A.-C. GIRNTH* AND H.N. SCHULZ-VOGT oxidants Max Planck Institut for Marine Microbiology, Celsiusstraße 1, 1 2 28357 Bremen, Germany PETER R. GIRGUIS *, PENGFEI SONG AND 2 (*correspondence: [email protected]) MARK NIELSEN 1Harvard University, 16 Divinity Avenue Room 3085, Hydrogen oxidation in oxic/anoxic gradients Cambridge, MA 02138 (* correspondence: Transition zones between oxic and anoxic environments [email protected]) are primary habitats for aerobic hydrogen oxidizers. In sulfidic 2Harvard University, 16 Divinity Avenue Room 3092, sediments, filamentous bacteria of the genus Beggiatoa thrive Cambridge, MA 02138 within this narrow horizon and feature fine-tuned chemotactic responses to keep track of the interface. So far, only anaerobic hydrogen oxidation coupled to reduction of stored sulfur has Extracellular electron transfer (EET) is a process whereby been shown for a heterotrophic Beggiatoa strain [1]. Here we microbes shuttle electrons outside the cell, and access solid- demonstrate aerobic hydrogen oxidation by the phase oxidants as well as spatially remote oxidants. EET has chemolithoautotrophic strain Beggiatoa 35Flor grown in a been well-studied in cultivated microbes, e.g., heterotrophic mineral medium featuring artificial oxygen, sulfide and iron-reducing "-proteobacteria. The relevance of EET in hydrogen gradients. nature, however, and its impact on biogeochemical cycles remains poorly constrained. Anaerobic marine sediments host Beggiatoa 35Flor uses hydrogen as an accessory microbial communities that are involved in numerous electron donor biogeochemical cycles, and those capable of EET would have In the presence of hydrogen, Beggiatoa 35Flor mats access to solid-phase as well as remote oxidants.
    [Show full text]