Surface Characteristics of Rock Glaciers in the Jutulsessen, Dronning Maud Land, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Surface Characteristics of Rock Glaciers in the Jutulsessen, Dronning Maud Land, Antarctica Surface characteristics of rock glaciers in the Jutulsessen, Dronning Maud Land, Antarctica A thesis submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE in GEOGRAPHY by ELIZABETH MAGDALENA RUDOLPH to RHODES UNIVERSITY DECEMBER 2015 SUPERVISOR: PROF. K.I. MEIKLEJOHN (RHODES UNIVERSITY) CO-SUPERVISOR: PROF. A. BUMBY (UNIVERSITY OF PRETORIA) The financial assistance of the National Research Foundation (DAAD-NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are that of the author and are not necessarily to be attributed to the DAAD-NRF. ABSTRACT Rock glaciers are landforms that present downslope movement of debris under the influence of ice and gravity. These landforms can be used as paleo-climate indicators as well as proxies for climate change. Rock glaciers have been investigated in a variety of climates and landscapes, however continental Antarctica, Dronning Maud Land specifically, remains understudied. This thesis aimed to investigate and classify five rock glaciers observed in the Jutulsessen, Dronning Maud Land. The surface characteristics and geomorphology were assessed and used as generic classifiers. Size, shape and landscape association was established by field surveying and GIS, whilst sediment and clast characteristics were determined from sampling. A surface temperature profile was created from short-term high frequency temperature measurements. All of the rock glaciers exhibit either undulating surfaces or patterned ground, or both, which suggests active-layer related processes. Sediment particle size analysis is inconclusive. The 137Cs-content and fabric analysis suggest movement regimes similar to other rock glaciers with higher activity at the head, and variable movement directions at the toe. Relative “activeness” is inferred from morphology: Grjotlia, Grjotøyra and Vassdalen were classified as lobate, spatulate and tongue-shaped respectively with Grjotlia the most stable. A new morphological classification of ‘crown- shaped’ is suggested for Brugdedalen and Jutuldalen, and they also appear most active. The control of local climate on rock glacier mechanics is emphasised by the findings, and thus climatic interpolation from a single weather stations is not useful. Increased spatial and temporal coverage of sediment profiles, surface topography and active-layer characteristics could be used to elucidate the processes and controls of these landforms in the Antarctic. Keywords: rock glaciers, active-layer, Antarctica, Jutulsessen, Dronning Maud Land ii TABLE OF CONTENTS ABSTRACT ........................................................................................................................ ii LIST OF TABLES ............................................................................................................... v LIST OF FIGURES .............................................................................................................vi LIST OF TERMINOLOGY ...................................................................................................ix PREFACE ........................................................................................................................... x INTRODUCTION ................................................................................................................ 1 Background .................................................................................................................... 1 Rationale ........................................................................................................................ 2 Aims and Objectives ....................................................................................................... 4 Thesis Structure ............................................................................................................. 4 LITERATURE REVIEW ...................................................................................................... 5 Definition ........................................................................................................................ 5 Characterisation ............................................................................................................. 6 Morphology .............................................................................................................. 6 Internal Composition ................................................................................................ 7 Thermal State .......................................................................................................... 8 Movement: Rate and Process .................................................................................. 9 Origin and Age ........................................................................................................11 Classification .................................................................................................................13 STUDY AREA ....................................................................................................................16 Geography ....................................................................................................................16 Geology .........................................................................................................................17 Climate ..........................................................................................................................18 METHODS .........................................................................................................................19 Data Collection ..............................................................................................................19 Sampling Design ....................................................................................................19 Survey ....................................................................................................................20 Sediment Sampling .................................................................................................21 Clast Hardness and Form .......................................................................................23 Fabric Analysis .......................................................................................................23 Ground Surface Temperature Variability .................................................................23 Other: Topographical Features ...............................................................................24 Data Analysis ................................................................................................................25 Morphology .............................................................................................................25 Particle Size Analysis .............................................................................................26 iii Clast Hardness and Form .......................................................................................26 Fabric Analysis .......................................................................................................27 Ground Surface Temperature Variability .................................................................28 Caesium-137 ..........................................................................................................28 Patterned Ground Analysis .....................................................................................28 RESULTS AND DISCUSSION...........................................................................................30 Grjotøyra .......................................................................................................................30 Characterisation .....................................................................................................30 Classification ..........................................................................................................43 Vassdalen .....................................................................................................................44 Characterisation .....................................................................................................44 Classification ..........................................................................................................54 Brugdedalen ..................................................................................................................55 Characterisation .....................................................................................................55 Classification ..........................................................................................................57 Jutuldalen ......................................................................................................................57 Characterisation .....................................................................................................57 Classification ..........................................................................................................58 Grjotlia ...........................................................................................................................58 Characterisation .....................................................................................................58 Classification ..........................................................................................................60 Synthesis .......................................................................................................................60
Recommended publications
  • A NTARCTIC Southpole-Sium
    N ORWAY A N D THE A N TARCTIC SouthPole-sium v.3 Oslo, Norway • 12-14 May 2017 Compiled and produced by Robert B. Stephenson. E & TP-32 2 Norway and the Antarctic 3 This edition of 100 copies was issued by The Erebus & Terror Press, Jaffrey, New Hampshire, for those attending the SouthPole-sium v.3 Oslo, Norway 12-14 May 2017. Printed at Savron Graphics Jaffrey, New Hampshire May 2017 ❦ 4 Norway and the Antarctic A Timeline to 2006 • Late 18th Vessels from several nations explore around the unknown century continent in the south, and seal hunting began on the islands around the Antarctic. • 1820 Probably the first sighting of land in Antarctica. The British Williams exploration party led by Captain William Smith discovered the northwest coast of the Antarctic Peninsula. The Russian Vostok and Mirnyy expedition led by Thaddeus Thadevich Bellingshausen sighted parts of the continental coast (Dronning Maud Land) without recognizing what they had seen. They discovered Peter I Island in January of 1821. • 1841 James Clark Ross sailed with the Erebus and the Terror through the ice in the Ross Sea, and mapped 900 kilometres of the coast. He discovered Ross Island and Mount Erebus. • 1892-93 Financed by Chr. Christensen from Sandefjord, C. A. Larsen sailed the Jason in search of new whaling grounds. The first fossils in Antarctica were discovered on Seymour Island, and the eastern part of the Antarctic Peninsula was explored to 68° 10’ S. Large stocks of whale were reported in the Antarctic and near South Georgia, and this discovery paved the way for the large-scale whaling industry and activity in the south.
    [Show full text]
  • Glacier Mass Balance Bulletin No. 11 (2008–2009)
    GLACIER MASS BALANCE BULLETIN Bulletin No. 11 (2008–2009) A contribution to the Global Terrestrial Network for Glaciers (GTN-G) as part of the Global Terrestrial/Climate Observing System (GTOS/GCOS), the Division of Early Warning and Assessment and the Global Environment Outlook as part of the United Nations Environment Programme (DEWA and GEO, UNEP) and the International Hydrological Programme (IHP, UNESCO) Compiled by the World Glacier Monitoring Service (WGMS) ICSU (WDS) – IUGG (IACS) – UNEP – UNESCO – WMO 2011 GLACIER MASS BALANCE BULLETIN Bulletin No. 11 (2008–2009) A contribution to the Global Terrestrial Network for Glaciers (GTN-G) as part of the Global Terrestrial/Climate Observing System (GTOS/GCOS), the Division of Early Warning and Assessment and the Global Environment Outlook as part of the United Nations Environment Programme (DEWA and GEO, UNEP) and the International Hydrological Programme (IHP, UNESCO) Compiled by the World Glacier Monitoring Service (WGMS) Edited by Michael Zemp, Samuel U. Nussbaumer, Isabelle Gärtner-Roer, Martin Hoelzle, Frank Paul, Wilfried Haeberli World Glacier Monitoring Service Department of Geography University of Zurich Switzerland ICSU (WDS) – IUGG (IACS) – UNEP – UNESCO – WMO 2011 Imprint World Glacier Monitoring Service c/o Department of Geography University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland http://www.wgms.ch [email protected] Editorial Board Michael Zemp Department of Geography, University of Zurich Samuel U. Nussbaumer Department of Geography, University of Zurich
    [Show full text]
  • Fluctuations of Tidewater Glaciers in Hornsund Fjord (Southern Svalbard) Since the Beginning of the 20Th Century
    Title: Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century Author: Małgorzata Błaszczyk, Jacek A. Jania, Leszek Kolondra Citation style: Błaszczyk Małgorzata, Jania Jacek A., Kolondra Leszek. (2013). Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century. “Polish Polar Research” (vol. 34, no. 4 (2013), s. 327-352), doi 10.2478/popore-2013-0024 vol. 34, no. 4, pp. 327–352, 2013 doi: 10.2478/popore−2013−0024 Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century Małgorzata BŁASZCZYK, Jacek A. JANIA and Leszek KOLONDRA Wydział Nauk o Ziemi, Uniwersytet Śląski, ul. Będzińska 60, 41−200 Sosnowiec, Poland <[email protected]> <[email protected]> <[email protected]> Abstract: Significant retreat of glaciers terminating in Hornsund Fjord (Southern Spits− bergen, Svalbard) has been observed during the 20th century and in the first decade of the 21st century. The objective of this paper is to present, as complete as possible, a record of front positions changes of 14 tidewater glaciers during this period and to distinguish the main factors influencing their fluctuations. Results are based on a GIS analysis of archival maps, field measurements, and aerial and satellite images. Accuracy was based on an as− sessment of seasonal fluctuations of a glacier’s ice cliff position with respect to its mini− mum length in winter (November–December) and its maximum advance position in June or July. Morphometric features and the environmental setting of each glacier are also pre− sented.
    [Show full text]
  • Chapter 11. Glacial Lithofacies and Stratigraphy
    CHAPTER GLACIAL LITHOFACIES AND STRATIGRAPHY 11 J. Lee British Geological Survey, Nottingham, United Kingdom 11.1 INTRODUCTION Reconstructing the environments, dynamics, and record of past glaciation requires a detailed knowl- edge of both the products of glaciation—effectively the sediments, landforms, and glacitectonic structures that we see in the geological record, and the genetic processes that formed them (Fig. 11.1). Such an understanding of glacial deposits, landforms, and processes underpins our understanding of glacier behaviour, the links between ice masses, climate change, and other feed- back mechanisms, and the applied significance of glaciated terrains from the perspective of resources and geohazards (Fig. 11.1). Building all of this knowledge into a robust geological model requires the employment of a systematic methodology for describing, recording, and interpreting geological evidence. For glacial sediments the principal method, and one routinely employed elsewhere in sedimentology, is the hierarchical lithofacies approach. In turn, understanding how these lithofacies and other glacial features (e.g., landforms and glacitectonic structures) fit together and correlate in both time and space is called stratigraphy. Stratigraphy is a key concept within geology. It enables the development of a framework of events and features that describe both the evolution of a geological succession and how that succession fits into the wider palaeoenvironmental picture or Earth system. Within the context of glacial geology, e.g., a succession of glacigenic sediments and landforms in the Great Lakes region of Canada might document the repeated glaciation of the area. Studying the sediments (lithofacies) and landforms plus their temporal and spatial relationships (stratigraphy), would enable the number of ice advances, their flow directions, and associated geological processes to be reconstructed.
    [Show full text]
  • Geosciences Research in East Antarctica (088888E–6088888E): Present Status and Future Perspectives
    Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 Geosciences research in East Antarctica (088888E–6088888E): present status and future perspectives M. SATISH-KUMAR1, T. HOKADA2, T. KAWAKAMI3 & DANIEL J. DUNKLEY2 1Institute of Geosciences, Shizuoka University, Oya 836, Suruga-ku, Shizuoka 422-8529, Japan (e-mail: [email protected]) 2National Institute of Polar Research, Kaga, Itabashi-ku, Tokyo 173-8515, Japan 3Department of Geology and Mineralogy, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan Abstract: In both palaeoenvironmental and palaeogeographical studies, Antarctica plays a unique role in our understanding of the history of the Earth. It has maintained a unique geographical position at the South Pole for long periods. As the only unpopulated continent, the absence of political barriers or short-term economic interests has allowed international collaborative science to flour- ish. Although 98% of its area is covered by ice, the coastal Antarctic region is one of the well- studied regions in the world. The integrity and success of geological studies lies in the fact that exposed outcrops are well preserved in the low-latitude climate. The continuing programme of the Japanese Antarctic Research Expedition focuses on the geology of East Antarctica, especially in the Dronning Maud Land and Enderby Land regions. Enderby Land preserves some of the oldest Archaean rocks on Earth, and the Mesoproterozoic to Palaeozoic history of Dronning Maud Land is extremely important in understanding the formation and dispersion of Rodinia and subsequent assembly of Gondwana. The geological features in this region have great signifi- cance in defining the temporal and spatial extension of orogenic belts formed by the collision of proto-continents.
    [Show full text]
  • Initial Environmental Evaluation
    Initial Environmental Evaluation Construction and operation of Troll Runway Norwegian Polar Institute November 2002 Table of Contents 1 Summary ........................................................................................3 2 Introduction....................................................................................4 2.1 BACKGROUND............................................................................................................. 4 2.2 PURPOSE AND NEED ..................................................................................................... 5 3 Description of activity (including alternatives)...............................7 3.1 LOCATION AND LAYOUT OF RUNWAY.......................................................................... 7 3.2 PREPARATION AND MAINTENANCE OF THE RUNWAY................................................. 11 3.3 OPERATION OF THE RUNWAY.................................................................................... 12 3.4 RUNWAY FACILITIES ................................................................................................. 14 3.5 ASSOCIATED ACTIVITIES........................................................................................... 14 3.6 TIMEFRAME............................................................................................................... 16 4 Description of the environment ....................................................17 4.1 THE ENVIRONMENT AT THE SITE...............................................................................
    [Show full text]
  • Tongue-Shaped Lobes on Mars: Morphology, Nomenclature, and Relation to Rock Glacier Deposits
    Sixth International Conference on Mars (2003) 3091.pdf TONGUE-SHAPED LOBES ON MARS: MORPHOLOGY, NOMENCLATURE, AND RELATION TO ROCK GLACIER DEPOSITS. D. R. Marchant1 and J. W. Head2, 1Department of Earth Sciences, Boston University, Boston, MA 02215 [email protected], 2Department of Geological Sciences, Brown University, Providence, RI 02912. Introduction: Recent work based upon Mars Global Different processes and environments could produce Surveyor (MGS) data [1,2], in conjunction with previous similar or gradational landforms and thus the landforms analyses of Viking data [3], suggests that rock glaciers, simi- themselves might not be unequivocal indicators of a specific lar in form to those found in polar climates on Earth, have origin. Thus, we follow Whalley and Azizi [1] and suggest been an active erosional feature in the recent geologic history that non-genetic descriptive terms be used for the martian of Mars. A wide range of literature exists describing rock features. glacier characteristics, form, and distribution, but diversity of Martian Features: We have developed a descriptive, opinion exists on rock glacier nomenclature and genesis. non-genetic nomenclature for the topography, features and In this contribution we outline the two-fold genetic clas- deposits associated with these structures. sification of Benn and Evans [4] for terrestrial rock glaciers, We call on established anatomical morphology for no- and then propose a non-genetic descriptive set of terms to be menclature. The tongue-shaped lobe can be divided into the applied to martian features. tip, or apex, the blade (the flat surface just behind the tip), Terrestrial Classification: Benn and Evans [4] applied the body and its rear part (the dorsum), and the tongue root.
    [Show full text]
  • Inventory of Rock Glaciers in the American West and Their Topography and Climate
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 12-30-2020 Inventory of Rock Glaciers in the American West and Their Topography and Climate Allison Reese Trcka Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Geomorphology Commons Let us know how access to this document benefits ou.y Recommended Citation Trcka, Allison Reese, "Inventory of Rock Glaciers in the American West and Their Topography and Climate" (2020). Dissertations and Theses. Paper 5637. https://doi.org/10.15760/etd.7509 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Inventory of Rock Glaciers in the American West and Their Topography and Climate by Allison Reese Trcka A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Thesis Committee: Andrew G. Fountain Chair Adam Booth Martin Lafrenz Portland State University 2020 Abstract Rock glaciers are flowing geomorphic landforms composed of an ice/debris mixture. A uniform rock glacier classification scheme was created for the western continental US, based on internationally recognized criteria, to merge the various regional published inventories. A total of 2249 rock glaciers (1564 active, 685 inactive) and 7852 features of interest were identified in 10 states (WA, OR, CA, ID, NV, UT, ID, MT, WY, CO, NM). Sulfur Creek rock glacier in Wyoming is the largest active rock glacier (2.39 km2).
    [Show full text]
  • A Debris-Covered Glacier at Kerguelen
    A debris-covered glacier at Kerguelen (49°S, 69°E) over the past 15 000 years Joanna Charton, Vincent Jomelli, Irene Schimmelpfennig, Deborah Verfaillie, Vincent Favier, Fatima Mokadem, Adrien Gilbert, Fanny Brun, Georges Aumaitre, Didier Bourlès, et al. To cite this version: Joanna Charton, Vincent Jomelli, Irene Schimmelpfennig, Deborah Verfaillie, Vincent Favier, et al.. A debris-covered glacier at Kerguelen (49°S, 69°E) over the past 15 000 years. Antarctic Science, Cam- bridge University Press (CUP), 2020, 33, pp.103-115. 10.1017/S0954102020000541. hal-02988434 HAL Id: hal-02988434 https://hal.archives-ouvertes.fr/hal-02988434 Submitted on 27 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A debris-covered glacier at Kerguelen (49°S, 69°E) over the past 15,000 years Joanna Chartona,b*, Vincent Jomellia,b, Irene Schimmelpfennigb, Deborah Verfailliec, Vincent Favierd, Fatima Mokadema, Adrien Gilbertd, Fanny Brund, Georges Aumaîtreb,**, Didier L. Bourlès b,** and Karim Keddadouche b,**. a Université Paris 1 Panthéon-Sorbonne, CNRS Laboratoire de Géographie Physique, 92195Meudon, France b Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, UM 34 CEREGE, 13545 Aix-en-Provence, France c Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium d Univ.
    [Show full text]
  • Geology of Gjelsvikfjella and Western Muhlig- Hofmannfjella, Dronning Maud Land, East Antarctica
    Geology of Gjelsvikfjella and western Muhlig- Hofmannfjella, Dronning Maud Land, east Antarctica Y. OHTA, B. 0. TBRUDBAKKEN AND K. SHIRAISHI Ohta, Y., Terudbakken, B. 0. & Shiraishi, K. 1990: Geology of Gjelsvikfjella and western Miihlig- Hofmannfjella, Dronning Maud Land, east Antarctica. Polar Research 8, 99-126. As a part of the Norwegian Antarctic Research Expedition 1984185, geological mapping was performed in Gjelsvikfjella and western Miihlig-Hofmannfjella, Dronning Maud Land. The northern part of Gjelsvikfjella is dominated by the Jutulsessen metasupracriistals which have been intruded by a major gabbroic body and several generations of dykcs. To the south the metasupracrustals gradually transform into the Risemedet migmatites. In western Miihlig-Hofmannfjella the bedrock is dominated by the large Svarthamaren Charnockite batholith. The batholith is bordered by the Sn0toa metamorphic complex outcropping to the south and west in Miihlig-Hofmannfjella and it is characterized by a high content of partly assimilated country rock inclusions. Mineral paragenesis and geothermometry/geobarometry suggest a two-stagc tectonothermal-igneous history with an initial intermediate pressure, upper amphibolite to granulite facics metamorphism followed by high temperature transformations related to the charnockite intrusion. Thc age of the initial tectonothcrmal event is probably about 1,100 Ma. Geochronological work in the present study (Rb/Sr whole rock) gave an age of 500 2 24 Ma for the Svarthamaren Charnockite, interpreted to record the age of crystallization. Late brittle faulting and undeformed dolerite dykes outcropping in Jutulscssen are believed to be related to Mesozoic crustal stretching in the Jutulstraumen- Pencksokket Rift Zone to the west. Y. Ohta, Norsk Polarinstitutt, P.0. Box 158, N-1330 Oslo Lufthaon, Norway; B.O.
    [Show full text]
  • Chapter 6. Supraglacial Environments
    CHAPTER SUPRAGLACIAL ENVIRONMENTS 6 A. Schomacker1 and I´.O¨ . Benediktsson2 1UiT The Arctic University of Norway, Tromsø, Norway, 2University of Iceland, Reykjav´ık, Iceland 6.1 INTRODUCTION The supraglacial environment comprises the surface of active glaciers and dead-ice (Fig. 6.1). It is directly accessible for observations of glacial processes, sediments, and landforms in contrast to the subglacial and englacial environments where direct assess is limited. A very wide range of glacial and sedimentary processes occur on the surface of glaciers and in dead-ice environments (e.g., Benn and Evans, 2010). On glacier surfaces, debris may experience entrainment, transport, and deposition. In sediment-covered dead-ice environments, the main process is resedimentation by gravitational, fluvial, and lacustrine processes before final melt-out and deposition (e.g., Eyles, 1979; Lawson, 1979; Schomacker, 2008; Schomacker and Kjær, 2007, 2008; Ewertowski and Tomczyk, 2015). The properties of supraglacial debris depend both on its source and the modification it has been exposed to on the ice surface. Six main processes cause sediment to accumulate on the surface of glaciers: (1) rockfall and avalanches (e.g., Andre,´ 1990; Hambrey et al., 1999; Glasser and Hambrey, 2002; Dunning et al., 2015), (2) thrusting or squeezing of subglacial material (e.g., Sharp, 1985; Huddart and Hambrey, 1996; Kru¨ger and Aber, 1999; Glasser and Hambrey, 2002; Benediksson et al., 2008; Schomacker and Kjær, 2008; Rea and Evans, 2011), (3) melt-out of eng- lacial debris
    [Show full text]
  • Assessing the Style of Advance and Retreat of the Des Moines Lobe Using Lidar Topographic Data Sarah Elizabeth Day Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Assessing the style of advance and retreat of the Des Moines Lobe using LiDAR topographic data Sarah Elizabeth Day Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Geology Commons, and the Geomorphology Commons Recommended Citation Day, Sarah Elizabeth, "Assessing the style of advance and retreat of the Des Moines Lobe using LiDAR topographic data" (2014). Graduate Theses and Dissertations. 13653. https://lib.dr.iastate.edu/etd/13653 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Assessing the style of advance and retreat of the Des Moines Lobe using LiDAR topographic data by Sarah Elizabeth Day A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Geology Program of Study Committee: Neal R. Iverson, Major Professor Chris Harding William W. Simpkins Iowa State University Ames, Iowa 2014 Copyright © Sarah Elizabeth Day, 2014. All rights reserved ii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ...................................................................................... iii ABSTRACT .............................................................................................................
    [Show full text]