A Theory of Pulse Dynamics and Disturbance in Ecology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Human Disturbance on Terrestrial Apex Predators
diversity Review Effects of Human Disturbance on Terrestrial Apex Predators Andrés Ordiz 1,2,* , Malin Aronsson 1,3, Jens Persson 1 , Ole-Gunnar Støen 4, Jon E. Swenson 2 and Jonas Kindberg 4,5 1 Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91 Riddarhyttan, Sweden; [email protected] (M.A.); [email protected] (J.P.) 2 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, NO-1432 Ås, Norway; [email protected] 3 Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden 4 Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway; [email protected] (O.-G.S.); [email protected] (J.K.) 5 Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden * Correspondence: [email protected] Abstract: The effects of human disturbance spread over virtually all ecosystems and ecological communities on Earth. In this review, we focus on the effects of human disturbance on terrestrial apex predators. We summarize their ecological role in nature and how they respond to different sources of human disturbance. Apex predators control their prey and smaller predators numerically and via behavioral changes to avoid predation risk, which in turn can affect lower trophic levels. Crucially, reducing population numbers and triggering behavioral responses are also the effects that human disturbance causes to apex predators, which may in turn influence their ecological role. Some populations continue to be at the brink of extinction, but others are partially recovering former ranges, via natural recolonization and through reintroductions. -
Range and Variation in Landscape Patch Dynamics: Implications for Ecosystem Management
Range and Variation in Landscape Patch Dynamics: Implications for Ecosystem Management Robert E. Keane Janice L. Garner Casey Teske Cathy Stewart Paul Hessburg Abstract—Northern Rocky Mountain landscape patterns are shaped example, the range of patch sizes on a landscape over time primarily by fire and succession, and conversely, these vegetation could be used to design the size of a prescribed fire so that it patterns influence burning patterns and plant colonization pro- is not bigger, or smaller, than what would have occurred cesses. Historical range and variability (HRV) of landscape pattern historically (Cissel and others 1999; Swetnam and others can be quantified from three sources: (1) historical chronosequences, 1999; Mladenoff and others 1993). Current landscape condi- (2) spatial series, and (3) simulated chronosequences. The last two tions could also be compared with summarized historical sources were used to compute HRV for this study. Spatial series landscape conditions to detect ecologically significant change, were characterized from aerial photographs of 10 similar land- such as that brought on by fire exclusion and timber harvest- scapes on the Bitterroot National Forest, Montana. The LANDSUM ing (Baker 1992, 1995; Cissel and others 1999; Hessburg and model was used to simulate landscape patterns for three landscapes others 1999b; Landres and others 1999). on the Flathead National Forest. Landscape metrics were computed Landscape structure and composition are usually charac- using FRAGSTATS. Results can be used (1) to describe landscape terized from the spatial distribution of patches—a term characteristics, (2) to develop baseline threshold values, and (3) to synonymous with stands or polygons. Many types of spatial design treatment guidelines for ecosystem management. -
Restoration of Heterogeneous Disturbance Regimes for the Preservation of Endangered Species Steven D
RESEARCH ARTICLE Restoration of Heterogeneous Disturbance Regimes for the Preservation of Endangered Species Steven D. Warren and Reiner Büttner ABSTRACT Disturbance is a natural component of ecosystems. All species, including threatened and endangered species, evolved in the presence of, and are adapted to natural disturbance regimes that vary in the kind, frequency, severity, and duration of disturbance. We investigated the relationship between the level of visible soil disturbance and the density of four endan- gered plant species on U.S. Army training lands in the German state of Bavaria. Two species, gray hairgrass (Corynephorus canescens) and mudwort (Limosella aquatica), showed marked affinity for or dependency on high levels of recent soil disturbance. The density of fringed gentian (Gentianella ciliata) and shepherd’s cress (Teesdalia nudicaulis) declined with recent disturbance, but appeared to favor older disturbance which could not be quantified by the methods employed in this study. The study illustrates the need to restore and maintain disturbance regimes that are heterogeneous in terms of the intensity of and time since disturbance. Such a restoration strategy has the potential to favor plant species along the entire spectrum of ecological succession, thereby maximizing plant biodiversity and ecosystem stability. Keywords: fringed gentian, gray hairgrass, heterogeneous disturbance hypothesis, mudwort, shepherd’s cress cosystems and the species that create and maintain conditions neces- When the European Commission Einhabit them typically evolve in sary for survival. issued Directive 92/43/EEC (Euro- the presence of quasi-stable distur- The grasslands of northern Europe pean Economic Community 1992) bance regimes which are characterized lie within what would be mostly forest requiring all European Union nations by general patterns of perturbation, in the absence of disturbance. -
Disturbance Processes and Ecosystem Management
Vegetation Management and Protection Research DISTURBANCE PROCESSES AND ECOSYSTEM MANAGEMENT The paper was chartered by the Directors of Forest Fire and Atmospheric Sciences Research, Fire and Aviation Management, Forest Pest Management, and Forest Insect and Disease Research in response to an action item identified in the National Action Plan for Implementing Ecosystem Management (February 24, 1994). The authors are: Robert D. Averill, Group Leader, Forest Health Management, Renewable Resources, USDA Forest Service Region 2, 740 Sims St., Lakewood, CO 80225 Louise Larson, Forest Fuels Management Specialist, USDA Forest Service Sierra National Forest, 1600 Tollhouse Road, Clovis, CA 93612 Jim Saveland, Fire Ecologist, USDA Forest Service Forest Fire & Atmospheric Sciences Research P.O. Box 96090, Washington, DC 20090 Philip Wargo, Principal Plant Pathologist, USDA Forest Service Northeastern Center for Forest Health Research, 51 Mill Pond Road, Hamden, CT 06514 Jerry Williams, Assistant Director, Fire Operations, USDA Forest Service Fire & Aviation Management Staff, P.O. Box 96090, Washington, DC 20090 Melvin Bellinger, retired, made significant contributions. Abstract This paper is intended to broaden awareness and help develop consensus among USDA Forest Service scientists and resource managers about the role and significance of disturbance in ecosystem dynamics and, hence, resource management. To have an effective ecosystem management policy, resource managers and the public must understand the nature of ecological resiliency and stability and the role of natural disturbance on sustainability. Disturbances are common and important in virtually all ecosystems. Executive Summary "Ecosystems are not defined so much by the objects they contain as by the processes that regulate them" -- Christensen and others 1989 Awareness and understanding of disturbance ecology and the role disturbance plays in ecosystem dynamics, and the ability to communicate that information, is essential in understanding ecosystem potentials and the consequences of management choices. -
1 Changing Disturbance Regimes, Ecological Memory, and Forest Resilience 2 3 4 Authors: Jill F
1 Changing disturbance regimes, ecological memory, and forest resilience 2 3 4 Authors: Jill F. Johnstone1*§, Craig D. Allen2, Jerry F. Franklin3, Lee E. Frelich4, Brian J. 5 Harvey5, Philip E. Higuera6, Michelle C. Mack7, Ross K. Meentemeyer8, Margaret R. Metz9, 6 George L. W. Perry10, Tania Schoennagel11, and Monica G. Turner12§ 7 8 Affiliations: 9 1. Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2 Canada 10 2. U.S. Geological Survey, Fort Collins Science Center, Jemez Mountains Field Station, Los 11 Alamos, NM 87544 USA 12 3. College of Forest Resources, University of Washington, Seattle, WA 98195 USA 13 4. Department of Forest Resources, University of Minnesota, St. Paul, MN 55108 USA 14 5. Department of Geography, University of Colorado-Boulder, Boulder, CO 80309 USA 15 6. Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 16 59812 USA 17 7. Center for Ecosystem Science and Society and Department of Biology, Northern Arizona 18 University, Flagstaff, AZ 86011 USA 19 8. Department of Forestry & Environmental Resources, North Carolina State University, 20 Raleigh, NC 27695 USA 21 9. Department of Biology, Lewis and Clark College, Portland, OR 97219 USA 22 10. School of Environment, University of Auckland, Private Bag 92019, Auckland, New Zealand 23 11. Department of Geography and INSTAAR, University of Colorado-Boulder, Boulder, CO 24 80309 USA 25 12. Department of Zoology, University of Wisconsin-Madison, Madison, WI 53717 26 27 * corresponding author: [email protected]; 28 § co-leaders of this manuscript 29 30 Running title: Changing disturbance and forest resilience 31 1 32 33 Abstract 34 Ecological memory is central to ecosystem response to disturbance. -
Natural Disturbance and Stand Development Principles for Ecological Forestry
United States Department of Agriculture Natural Disturbance and Forest Service Stand Development Principles Northern Research Station for Ecological Forestry General Technical Report NRS-19 Jerry F. Franklin Robert J. Mitchell Brian J. Palik Abstract Foresters use natural disturbances and stand development processes as models for silvicultural practices in broad conceptual ways. Incorporating an understanding of natural disturbance and stand development processes more fully into silvicultural practice is the basis for an ecological forestry approach. Such an approach must include 1) understanding the importance of biological legacies created by a tree regenerating disturbance and incorporating legacy management into harvesting prescriptions; 2) recognizing the role of stand development processes, particularly individual tree mortality, in generating structural and compositional heterogeneity in stands and implementing thinning prescriptions that enhance this heterogeneity; and 3) appreciating the role of recovery periods between disturbance events in the development of stand complexity. We label these concepts, when incorporated into a comprehensive silvicultural approach, the “three-legged stool” of ecological forestry. Our goal in this report is to review the scientific basis for the three-legged stool of ecological forestry to provide a conceptual foundation for its wide implementation. Manuscript received for publication 1 May 2007 Published by: For additional copies: USDA FOREST SERVICE USDA Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073-3294 359 Main Road Delaware, OH 43015-8640 November 2007 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ INTRODUCTION Foresters use natural disturbances and stand development processes as models for silvicultural practices in broad conceptual ways. -
Resistance and Resilience: a Conceptual Framework for Silviculture
For. Sci. 60(6):1205–1212 APPLIED RESEARCH http://dx.doi.org/10.5849/forsci.13-507 silviculture Resistance and Resilience: A Conceptual Framework for Silviculture Robert J. DeRose and James N. Long Increasingly, forest management goals include building or maintaining resistance and/or resilience to disturbances in the face of climate change. Although a multitude of descriptive definitions for resistance and resilience exist, to evaluate whether specific management activities (silviculture) are effective, prescriptive characterizations are necessary. We introduce a conceptual framework that explicitly differentiates resistance and resilience, denotes appropriate scales, and establishes the context for evaluation—structure and composition. Generally, resistance is characterized as the influence of structure and composition on disturbance, whereas resilience is characterized as the influence of disturbance on subsequent structure and composition. Silvicultural utility of the framework is demonstrated by describing disturbance-specific, time-bound structural and compositional objectives for building resistance and resilience to two fundamentally different disturbances: wildfires and spruce beetle outbreaks. The conceptual framework revealed the crucial insight that attempts to build stand or landscape resistance to spruce beetle outbreaks will ultimately be unsuccessful. This frees the silviculturist to focus on realistic goals associated with building resilience to likely inevitable outbreaks. Ultimately, because structure and composition, at appropriate scales, are presented as the standards for evaluation and manipulation, the framework is broadly applicable to many kinds of disturbance in various forest types. Keywords: adaptation, desired future conditions, forest management objectives, forest service, planning rule he terms resistance and resilience have been used in the explicitly differentiates resistance and resilience, delimits appropri- ecological literature for nearly 40 years (Holling 1973). -
Disturbance Versus Restoration
Disturbance and Restoration of Streams P. S. Lake Prelude “One of the penalties of an ecological education is that one lives alone in a world of wounds. Much of the damage inflicted on land is quite invisible to laymen.” Aldo Leopold “Round River. From the Journals of Aldo Leopold” ed., L. B. Leopold. Oxford U.P. 1953. Read: 1963. Lake George Mining Co., 1952, Captains Flat, N.S.W. Molonglo River. Heavy metals (Z+Cu) + AMD. Black (Lake 1963) clear (Norris 1985) ---Sloane & Norris (2002) Aberfoyle Tin NL, 1982. Rossarden, Tasmania. Tin and Tungsten (W). Cd, Zn. South Esk River, 1974 Lake Pedder, south west Tasmania. • Pristine, remote lake with a remarkable, glacial sand beach, endemic fish (Galaxias pedderensis) and ~5 spp., of invertebrates. • Flooded by two dams to produce hydro-electricity in 1973 • Sampled annually for 21 years. • Initial “trophic upsurge” then a steady decline to paucity. Ecological Disturbance • Interest triggered by Connell J.H (1978) Intermediate Disturbance Hypothesis • Disturbances are forces with the potential capability to disrupt populations, communities and ecosystems. Defined by their type, strength, duration and spatial extent---not by their impacts. • Pulse, Press (Bender et al., 1984) and Ramp disturbances (Lake 2000) and responses. Disturbances within Disturbances • Distinct disturbances nested within enveloping disturbances. – Droughts—ramps of water loss, high temperatures, low water quality, loss of connectivity etc. – Climate change with ramps (sea level rise, temperature increase, acidification). Compound Disturbances • Natural e.g. drought and fire – Effect on streams: recovery from catchment-riparian fire impact exacerbated by drought cf., fire alone. (Verkaik et al., 2015). – Sites: Idaho, Catalonia, Victoria, Australia. -
Equilibrium Theory of Island Biogeography: a Review
Equilibrium Theory of Island Biogeography: A Review Angela D. Yu Simon A. Lei Abstract—The topography, climatic pattern, location, and origin of relationship, dispersal mechanisms and their response to islands generate unique patterns of species distribution. The equi- isolation, and species turnover. Additionally, conservation librium theory of island biogeography creates a general framework of oceanic and continental (habitat) islands is examined in in which the study of taxon distribution and broad island trends relation to minimum viable populations and areas, may be conducted. Critical components of the equilibrium theory metapopulation dynamics, and continental reserve design. include the species-area relationship, island-mainland relation- Finally, adverse anthropogenic impacts on island ecosys- ship, dispersal mechanisms, and species turnover. Because of the tems are investigated, including overexploitation of re- theoretical similarities between islands and fragmented mainland sources, habitat destruction, and introduction of exotic spe- landscapes, reserve conservation efforts have attempted to apply cies and diseases (biological invasions). Throughout this the theory of island biogeography to improve continental reserve article, theories of many researchers are re-introduced and designs, and to provide insight into metapopulation dynamics and utilized in an analytical manner. The objective of this article the SLOSS debate. However, due to extensive negative anthropo- is to review previously published data, and to reveal if any genic activities, overexploitation of resources, habitat destruction, classical and emergent theories may be brought into the as well as introduction of exotic species and associated foreign study of island biogeography and its relevance to mainland diseases (biological invasions), island conservation has recently ecosystem patterns. become a pressing issue itself. -
High Dimensionality of the Stability of a Marine Benthic Ecosystem
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.21.349035; this version posted December 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 High dimensionality of the stability of a marine benthic ecosystem 2 3 Nelson Valdivia1, 2, *, Moisés A. Aguilera3, 4, Bernardo R. Broitman5 4 5 1Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de 6 Chile, Campus Isla Teja, Valdivia, Chile 7 2Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes 8 (IDEAL) 9 3Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del 10 Norte, Larrondo 1281, Coquimbo, Chile 11 4Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, 12 Ossandón 877, Coquimbo, Chile 13 5Departamento de Ciencias, Facultad de Artes Liberales & Bioengineering Innovation 14 Center, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 15 750, Viña del Mar, Chile 16 *Corresponding author Tel.: +56632221557, Fax: +56632221455, E-mail: 17 [email protected] 18 Nelson Valdivia ORCID ID: https://orcid.org/0000-0002-5394-2072 19 Bernardo R. Broitman ORCID ID: http://orcid.org/0000-0001-6582-3188 20 Moisés A. Aguilera ORCID ID: https://orcid.org/0000-0002-3517-6255 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.21.349035; this version posted December 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. -
Patch Dynamics and Metapopulation Theory: the Case of Successional Species
Journal of Theoretical Biology (2001) 209 (3): 333-344. http://dx.doi.org/10.1006/jtbi.2001.2269 Patch Dynamics and Metapopulation Theory: The Case of Successional Species a a,b Priyanga Amarasekare and Hugh Possingham a National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, 735 State Street, Suite 300, Santa Barbara, CA, 93101-5504, U.S.A. b Departments of Zoology and Mathematics, The University of Queensland, St Lucia, QLD 4072, Australia Abstract We present a mathematical framework that combines extinction–colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied–suitable, empty–suitable, occupied–unsuitable and empty– unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate, extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction–colonization dynamics influences long- term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required for viable management of such species in the Florida scrub ecosystem. -
The Effects of Disturbance and Succession on Wildlife Habitat And
This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. 11 The Effects of Disturbance K EVIN S. McKELVEY and Succession on Wildlife Habitat and Animal Communities his chapter discusses the study of disturbance and al l affect both the postdisturbance wildlife community Tsuccession as they relate to wildlife. As such, the and, more importantly, the trajectory of the postdistur discussion is confined to those disturbance processes bance community. Even for well-studied species, co that change the physical attributes of habitat, leading herent understandings of their relationships to distur to a postdisturbance trajectory. However, even with bance across time and space are therefore often vague. this narrowing of the scope of disturbances discussed, Commonly, we look at successional changes in habi there remain formidable obstacles prior to any co tat quality by using spatial samples of different ages as if herent discussion of disturbance. The first, and most they were a temporal series, which implies spatiotem fundamental, is definitional: what constitutes distur poral constancy in successional dynamics. This assump bance and succession, and what is habitat? The con tion has served wildlife research well, but in the face of cepts of disturbance, habitat, and succession are highly directional climate change and the nearly continuous scale-dependent; disturbances at one scale become addition of exotic species, this approach is becoming part of continuous processes at a larger scale, and ideas increasingly untenable. We need to embrace the idea associated with succession require assumptions of con that postdisturbance succession is increasingly unlikely stancy, which become highly problematic as spatiotem to produce communities similar to those that the dis poral scales increase.