The Cell Surface Phenotype of Human Dendritic Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Cell Surface Phenotype of Human Dendritic Cells Seminars in Cell & Developmental Biology 86 (2019) 3–14 Contents lists available at ScienceDirect Seminars in Cell & Developmental Biology j ournal homepage: www.elsevier.com/locate/semcdb Review The cell surface phenotype of human dendritic cells a,b,∗ a,b b,c a,b Georgina J. Clark , Pablo A. Silveira , P. Mark Hogarth , Derek N.J. Hart a Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia b Sydney Medical School, The University of Sydney, Sydney, NSW, Australia c Inflammation, Cancer and Infection, Burnet Institute, Melbourne, VIC, Australia a r t i c l e i n f o a b s t r a c t Article history: Dendritic cells (DC) are bone marrow derived leucocytes that are part of the mononuclear phagocytic Received 11 September 2017 system. These are surveillance cells found in all tissues and, as specialised antigen presenting cells, direct Received in revised form immune responses. Membrane molecules on the DC surface form a landscape that defines them as leu- 14 December 2017 cocytes and part of the mononuclear phagocytic system, interacts with their environment and directs Accepted 10 February 2018 interactions with other cells. This review describes the DC surface landscape, reflects on the differ- Available online 27 March 2018 ent molecules confirmed to be on their surface and how they provide the basis for manipulation and translation of the potent functions of these cells into new diagnostics and immune therapies for the Keywords: clinic. Cell surface molecules © 2018 Elsevier Ltd. All rights reserved. Monoclonal antibodies DC subsets DC phenotype CD molecules Contents 1. The history . 4 2. Molecules identifying human DC subsets. .4 2.1. Blood DC (BDC) . 4 2.1.1. cDC1 . 6 2.1.2. cDC2 . 6 2.1.3. pDC . 6 + 2.1.4. CD16 DC . 6 + + 2.1.5. AXL SIGLEC-6 (AS) DC. .6 2.2. Lymphoid tissue DC. .6 2.3. Tissue DC. .6 2.4. In vitro derived DC. .6 3. Differentiation . 7 4. Molecules common to all leucocytes . 7 5. Molecules common to the MPS . 7 6. Molecules involved in surveillance, antigen uptake, and presentation . 7 6.1. Pathogen Associated Molecular Pattern (PAMP) receptors . 7 6.2. Scavenger receptors . 7 6.3. Complement receptors . 7 6.4. Toll-like receptors . 8 Abbreviations: CD, cluster of differentiation; CTLD, C-type lectin-like domains; CLR, C-type lectin receptor; DC, dendritic cell(s); GVHD, graft versus host disease; HLA, human leucocyte antigen; HLDA, human leucocyte differentiation antigen; Ig-SF, Ig superfamily; ITIM, Immunoreceptor Tyrosine Inhibitory Motif; ITSM, Immunoreceptor Tyrosine based Switch Motif; LC, Langerhans cells; Ly, lymphocyte; mAb(s), Monoclonal antibody(ies); MHC, major histocompatibility complex; MLR, mixed leucocyte reaction; MPS, mononuclear phagocytic system; PAMP, Pathogen Associated Molecular Pattern; TLR, toll-like receptor. ∗ Corresponding author at: Dendritic Cell Research, ANZAC Research Institute, Gate 3 Hospital Road, Concord, NSW 2139, Australia. E-mail address: [email protected] (G.J. Clark). https://doi.org/10.1016/j.semcdb.2018.02.013 1084-9521/© 2018 Elsevier Ltd. All rights reserved. 4 G.J. Clark et al. / Seminars in Cell & Developmental Biology 86 (2019) 3–14 6.5. Immunogenic cell death receptors . 8 6.6. Dead cell receptors and phagocytic receptors . 8 6.7. Purine and pyrimidine receptors . 8 6.8. Fc receptors . 8 6.9. Adhesion molecules . 8 6.10. Migratory molecules . 8 6.11. Antigen presentation molecules: HLA class I and class II molecules . ..
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • North Fork of the St. Lucie River Floodplain Vegetation Technical Report
    NORTH FORK ST. LUCIE RIVER FLOODPLAIN VEGETATION TECHNICAL REPORT WR-2015-005 Coastal Ecosystem Section Applied Sciences Bureau Water Resources Division South Florida Water Management District Final Report July 2015 i Resources Division North Fork of the St. Lucie River Floodplain Vegetation Technical Report ACKNOWLEDGEMENTS This document is the result of a cooperative effort between the Coastal Ecosystems Section of South Florida Water Management District (SFWMD) and the Florida Department of Environmental Protection (FDEP), Florida Park Service (FPS) at the Savannas Preserve State Park in Jensen Beach, Florida and the Indian River Lagoon Aquatic Preserve Office in Fort Pierce, Florida. The principle author of this document was as follows: Marion Hedgepeth SFWMD The following staff contributed to the completion of this report: Cecilia Conrad SFWMD (retired) Jason Godin SFWMD Detong Sun SFWMD Yongshan Wan SFWMD We would like to acknowledge the contributions of Christine Lockhart of Habitat Specialist Inc. with regards to the pre-vegetation plant survey, reference collection established for this project, and for her assistance with plant identifications. We are especially grateful to Christopher Vandello of the Savannas Preserve State Park and Laura Herren and Brian Sharpe of the FDEP Indian River Lagoon Aquatic Preserves Office for their assistance in establishing the vegetation transects and conducting the field studies. And, we would like to recognize other field assistance from Mayra Ashton, Barbara Welch, and Caroline Hanes of SFWMD. Also, we would like to thank Kin Chuirazzi for performing a technical review of the document. ii North Fork of the St. Lucie River Floodplain Vegetation Technical Report TABLE OF CONTENTS Acknowledgements ..........................................................................................................................ii List of Tables ...............................................................................................................................
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Monoclonal Antibodies Against Cd30 Lacking In
    (19) TZZ_97688¥_T (11) EP 1 976 883 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07K 16/28 (2006.01) A61P 35/00 (2006.01) 03.10.2012 Bulletin 2012/40 A61P 37/00 (2006.01) (21) Application number: 07718000.8 (86) International application number: PCT/US2007/001451 (22) Date of filing: 17.01.2007 (87) International publication number: WO 2007/084672 (26.07.2007 Gazette 2007/30) (54) MONOCLONAL ANTIBODIES AGAINST CD30 LACKING IN FUCOSYL AND XYLOSYL RESIDUES MONOKLONALE ANTIKÖRPER GEGEN CD30 OHNE FUCOSYL- UND XYLOSYLRESTE ANTICORPS MONOCLONAUX ANTI-CD30 DEPOURVUS DE RESIDUS FUCOSYL ET XYLOSYL (84) Designated Contracting States: • WANG, Ming-Bo AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Canberra Australian Capital Territory 2617 (AU) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR (74) Representative: Tuxworth, Pamela M. Designated Extension States: J A Kemp RS 14 South Square Gray’s Inn (30) Priority: 17.01.2006 US 759298 P London WC1R 5JJ (GB) 07.04.2006 US 790373 P 11.04.2006 US 791178 P (56) References cited: 09.06.2006 US 812702 P WO-A-03/059282 US-A1- 2004 261 148 11.08.2006 US 837202 P 11.08.2006 US 836998 P • P. BORCHMANN ET AL.: "The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity (43) Date of publication of application: against malignant lymphoma." BLOOD, vol. 102, 08.10.2008 Bulletin 2008/41 no.
    [Show full text]
  • CD Markers Are Routinely Used for the Immunophenotyping of Cells
    ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.
    [Show full text]
  • Regulatory Mechanisms of Apoptosis in Regularly Dividing Cells
    Cell Health and Cytoskeleton Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Regulatory mechanisms of apoptosis in regularly dividing cells Ribal S Darwish Abstract: The balance between cell survival and death is essential for normal development and Department of Anesthesiology, homeostasis of organisms. Apoptosis is a distinct type of cell death with ultrastructural features Division of Critical Care Medicine, that are consistent with an active, inherently controlled process. Abnormalities and dysregulation University of Maryland Medical of apoptosis contribute to the pathophysiology of multiple disease processes. Apoptosis is strictly Center, Baltimore, Maryland, USA regulated by several positive and negative feedback mechanisms that regulate cell death and determine the final outcome after cell exposure to apoptotic stimuli. Mitochondria and caspases are central components of the regulatory mechanisms of apoptosis. Recently, noncaspase pathways of apoptosis have been explored through the studies of apoptosis-inducing factor and endonu- clease G. Multiple difficulties in the apoptosis research relate to apoptosis detection and imaging. For personal use only. This article reviews current understanding of the regulatory mechanisms of apoptosis. Keywords: caspases, apoptosis-inducing factor, apoptosis inhibitory proteins, cytochrome c, mitochondria Introduction Apoptosis is a distinct type of cell death with ultrastructural features that are con- sistent with an active, inherently controlled process, and it is a part of the necrobio- sis, a process that is essential in maintaining tissue homeostasis. The concept that cells must be lost from the normal tissues to balance their mitotic activity was first proposed by the German anatomist Ludwig Graper,1 who proposed that chromolysis must exist in the cells that will be eliminated.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,005,612 B2 Ledbetter Et Al
    US009005612B2 (12) United States Patent (10) Patent No.: US 9,005,612 B2 Ledbetter et al. (45) Date of Patent: *Apr. 14, 2015 (54) BINDING DOMAIN-IMMUNOGLOBULIN 5,455,030 A 10/1995 Ladner et al. FUSION PROTEINS $599. A 3: BestInsley et al. al. (75) Inventors: Jeffrey A. Ledbetter, Seattle, WA (US); 5,530,101 A 6/1996 Queen et al. Martha S. Hayden-Ledbetter, Seattle, 5,580,756. A 12/1996 Linsley et al. WA (US) 5,595,7215,585,089 A 1431/1997 SAS,Kaminski et al.1 (73) Assignee: Emergent Product Development 5,597,707 A 1/1997 Marken et al. Seattle, LLC, Seattle, WA (US) 3.W - A 3.87 EaCee ea. (*) Notice: Subject to any disclaimer, the term of this 5,645,835 A 7/1997 Fell, Jr. et al. patent is extended or adjusted under 35 $22.9 A ck 8. 3. Earl 530,387.1 U.S.C. 154(b) by 0 days. 5,693,762.w A 12/1997 QueenOCC et Cal. al. ............ This patent is Subject to a terminal dis- 5,709,859 A 1/1998 Aruffo et al. claimer 5,714,147 A 2, 1998 Capon et al. 5,721, 108 A 2f1998 Robinson et al. (21) Appl. No.: 13/451,641 5,736,137 A 4, 1998 Anderson et al. 5,770,197 A 6/1998 Linsley et al. (22) Filed: Apr. 20, 2012 5,773.253 A 6/1998 Linsley et al. O O 5,776.456 A 7/1998 Anderson et al. (65) Prior Publication Data 5,795,572 A 8/1998 Diegel et al.
    [Show full text]
  • Atpase, Na+/K+ Transporting, Alpha 3 Polypeptide Homologous to 3'UTR
    HUGO ID Name Nalm-6 TOM-1 Reh Karpas-422 DoHH -2 SU-DHL-5 Namalwa DG-75 Ramos Raji BEL EHEB BONNA-12 L-428 DEL BCP-1 BC-3 BCBL-1 JSC-1 PEL-SY HBL-6 DS-1 RPMI-8226 NCI-H929 L-363 SK-MM-2 ATP1A3 ATPase, Na+/K+ transporting, alpha 3 polypeptide CD24 homologous to 3'UTR of human CD24 gene ABCC5 multidrug resistance-associated protein (MRP5) CD72 CD72 antigen TCL1A Tcell leukemia/lymphoma 1 ITGB2 Integrin, beta 2 (antigen CD18 (p95)) ? nuclear ribonucleoprotein particle (hnRNP) SGT1 suppressor of G2 allele of skp1 homolog DNMT 1 DNA (cytosine-5-)-methyltransferase 1 GALE UDP-Galactose 4 epimerase (GALE) HADHSC L-3-hydroxyacyl-CoA dehydrogenase LIG4 DNA ligase IV LIG1 Ligase I, DNA, ATP-dependent CEBPG CCAA T/enhancer binding protein (C/EBP), gamma DCK Deoxycytidine kinase TCEA1 TRANSCRIPTION ELONGATION FACTOR S-II TCN 1 TRANSCOBALAMIN I PRECURSOR POLA2 DNA polymerase alpha subunit CCNG2 cyclin G2 RNPC1 Finkel-Biskis-Reilly murine sarcoma virus; Human seb4D RNPC1 Finkel-Biskis-Reilly murine sarcoma virus; Human seb4D DGKD Diacylglycerol kinase delta KIAA0220 Polycystic kidney disease protein 1 KIAA0220 calcium-dependent group X phospholipase A2 KIAA0220 calcium-dependent group X phospholipase A2 ALDH5A1 NAD+-dependent succinate-semialdehyde dehydrogenase CCNG2 Polycystic kidney disease 1 (autosomal dominant) PDCD4 nuclear antigen H731-like protein SSH3BP1 eps8 binding protein e3B1 MAP4K2 B lymphocyte serine/threonine protein kinase (GC kinase) MAPRE2 novel T-cell activation protein ZNFN1A Ikaros/LyF-1 homolog (hIk-1) FLJ22624 clone 23799 KIAA0355
    [Show full text]
  • US 2017/0020926 A1 Mata-Fink Et Al
    US 20170020926A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0020926 A1 Mata-Fink et al. (43) Pub. Date: Jan. 26, 2017 (54) METHODS AND COMPOSITIONS FOR 62/006,825, filed on Jun. 2, 2014, provisional appli MMUNOMODULATION cation No. 62/006,829, filed on Jun. 2, 2014, provi sional application No. 62/006,832, filed on Jun. 2, (71) Applicant: RUBIUS THERAPEUTICS, INC., 2014, provisional application No. 61/991.319, filed Cambridge, MA (US) on May 9, 2014, provisional application No. 61/973, 764, filed on Apr. 1, 2014, provisional application No. (72) Inventors: Jordi Mata-Fink, Somerville, MA 61/973,763, filed on Apr. 1, 2014. (US); John Round, Cambridge, MA (US); Noubar B. Afeyan, Lexington, (30) Foreign Application Priority Data MA (US); Avak Kahvejian, Arlington, MA (US) Nov. 12, 2014 (US) ................. PCT/US2O14/0653O4 (21) Appl. No.: 15/301,046 Publication Classification (22) PCT Fed: Mar. 13, 2015 (51) Int. Cl. A6II 35/28 (2006.01) (86) PCT No.: PCT/US2O15/02O614 CI2N 5/078 (2006.01) (52) U.S. Cl. S 371 (c)(1), CPC ............. A61K 35/28 (2013.01); C12N5/0641 (2) Date: Sep. 30, 2016 (2013.01): CI2N 5/0644 (2013.01); A61 K Related U.S. Application Data 2035/122 (2013.01) (60) Provisional application No. 62/059,100, filed on Oct. (57) ABSTRACT 2, 2014, provisional application No. 62/025,367, filed on Jul. 16, 2014, provisional application No. 62/006, Provided are cells containing exogenous antigen and uses 828, filed on Jun. 2, 2014, provisional application No.
    [Show full text]
  • Modulators of the Function of FAS Receptors and Other Proteins
    (19) *EP002042509A1* (11) EP 2 042 509 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 01.04.2009 Bulletin 2009/14 C07H 21/04 (2006.01) C12N 15/63 (2006.01) C12N 15/85 (2006.01) C12N 15/86 (2006.01) (2006.01) (2006.01) (21) Application number: 08018971.5 C07K 14/00 A61K 39/395 (22) Date of filing: 14.06.1996 (84) Designated Contracting States: (72) Inventors: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC • Wallach, David NL PT SE 76406 Rehovot (IL) Designated Extension States: • Boldin, Mark AL LT LV SI 76000 Rehovot (IL) • Goncharov, Tanya (30) Priority: 16.07.1995 IL 11461595 76000 Rehovot (IL) 17.08.1995 IL 11498695 • Goltsev, Yury 14.09.1995 IL 11531995 76000 Rehovot (IL) 27.12.1995 IL 11658895 16.04.1996 IL 11793296 (74) Representative: Vossius & Partner Siebertstraße 4 (62) Document number(s) of the earlier application(s) in 81675 München (DE) accordance with Art. 76 EPC: 96919472.9 / 0 914 325 Remarks: This application was filed on 30-10-2008 as a (71) Applicant: YEDA RESEARCH AND divisional application to the application mentioned DEVELOPMENT COMPANY, LTD. under INID code 62. 76 100 Rehovot (IL) (54) Modulators of the function of FAS receptors and other proteins (57) The present invention provides proteins capable ceptor. In addition, peptide inhibitors which interfere with of modulating or mediating the FAS receptor ligand or the proteolytic activity of MORT-1-binding proteins hav- TNF effect on cells carrying FAS receptor or p55 receptor ing proteolytic activity are provided as well as a method by binding or interacting with MORT-1 protein, which in of designing them.
    [Show full text]
  • 1 Women for Sobriety Combined Bibliographies
    Women for Sobriety Combined Bibliographies (June 2016) Compiled by Rita A. Chaney, MS Women for Sobriety Professional Bibliography Abbott, A. A., & Olson, M. (1994). A feminist approach to substance abuse treatment and service delivery. Women’s Health & Social Work, 67-83. Angove, R., & Fothergill, A. (2003, April). Women and alcohol: Misrepresented and misunderstood. Journal of Psychiatric & Mental Health Nursing, 10(2), 213-219. doi: 10.1046/j.1365-2850.2003.00587.x. Atkins, Jr., J. R, & Hawdon, J. E. (2007). Religiosity and participation in mutual-aid support groups for addiction. Journal of Substance Abuse Treatment, 33(3), 321-331. Berenson, D. (1992). Powerlessness—Liberating or enslaving? Responding to the feminist critique of the Twelve Steps. Journal of Feminist Family Therapy, 3(3), 67-84. Bogart, C. J., & Pearce, C. E. (2003). “13th-Stepping:” Why Alcoholics Anonymous is not always a safe place for women. Journal of Addictions Nursing, 14, 43-47. Bond, L. M., & Csordas, T. J. (2014). The paradox of powerlessness. Alcoholism Treatment Quarterly, 32(2-3), 141-156. Chaney, R., & White, W. L. (1992). Metaphors of transformation: Feminine and masculine. Bloomington, IL: Lighthouse Training Institute. Fenner, R.M., & Gifford, M.H. (2012). Women for Sobriety: 35 years of challenges, changes, and continuity. Journal of Groups in Addiction and Recovery, 7(2-4), 142-170. Fenner, R.M., & Gifford, M.H. (2015). Women for Sobriety: An alternative recovery choice. Counselor, 16(4), 18-21. Hafner, S. (1992). Nice girls don’t drink: Stories of recovery. New York, NY: Bergin & Garvey. [An interview of Kirkpatrick]. Hall, M. J., & Tidwell, W.
    [Show full text]
  • C07k - 2021.08
    CPC - C07K - 2021.08 C07K PEPTIDES (peptides in foodstuffs A23; obtaining protein compositions for foodstuffs, working-up proteins for foodstuffs A23J; preparations for medicinal purposes A61K; peptides containing beta-lactam rings C07D; cyclic dipeptides not having in their molecule any other peptide link than those which form their ring, e.g. piperazine-2,5-diones, C07D; ergot alkaloids of the cyclic peptide type C07D 519/02; macromolecular compounds having statistically distributed amino acid units in their molecules, i.e. when the preparation does not provide for a specific; but for a random sequence of the amino acid units, homopolyamides and block copolyamides derived from amino acids C08G 69/00; macromolecular products derived from proteins C08H 1/00; preparation of glue or gelatine C09H; single cell proteins, enzymes C12N; genetic engineering processes for obtaining peptides C12N 15/00; compositions for measuring or testing processes involving enzymes C12Q; investigation or analysis of biological material G01N 33/00) Relationships with other classification places An amino acid per se is classified in C07D while peptides (starting from dipeptides) are classified in C07K. Subclass C07K is a function oriented entry for the compounds themselves and does not cover the application or use of the compounds under the subclass definition. For classifying such information other entries exist, for example: preservation of bodies of humans or animals or plants or parts thereof; Biocides, e.g. as disinfectants, as pesticides, as herbicides; pest repellants or attractants; plant growth regulators are classified in A01N. Preparations for medical, dental, or toilet purposes are classified in A61K. Amino acids or derivatives thereof are classified in C07C or C07D.
    [Show full text]