December, 2014

Total Page:16

File Type:pdf, Size:1020Kb

December, 2014 Vol. 2, No. 3, October - December, 2014 www.aigmf.com Kanch | Vol 2 | No. 3 | October-December 2014 1 13 - 15 March 2015 4th International Exhibition for Glass Bombay Convention & Exhibition Centre Goregaon (East), Mumbai, India 2 Kanch | Vol 2 | No. 3 | October-December 2014 www.aigmf.com Achieve more with less Be cost effective while retaining high quality with the new 30-35 HRC nickel base powders from Höganäs. With our three new Surfit® powder grades it is possible to achieve the same coating properties, welding behaviour and machinability as with self-fluxing grades containing more than 85% nickel. The difference is the optimised nickel content of our powders which ensures a more stable material cost: a great opportunity to achieve more with less. Test our new powders today by contacting us today. Scan for product details in your mobile We push the limits of metal powder. www.hoganasthermalspray.com Kanch | Vol 2 | No. 3 | October-December 2014 1 WE ARE GLASS PEOPLE HEYE SPEEDLINE IS-MACHINES HIGH SPEED AT HIGH QUALITY PLUS SUPERIOR LIFETIME High safety and high usability to protect staff and equipment Clear interfaces for fast installation and exchange of parts Clean design to fulfil HACCP requirements Flexibility through modular design Same core – same variables www.heye-international.com 2 Kanch | Vol 2 | No. 3 | October-December 2014 RZ_HEY_HiP_Speedline_Schutzgitter_KANCH.indd 1 30.09.14 10:47 www.aigmf.com President SANJAY GANJOO Sr. Vice President ARUN KUMAR D Vice President RAJ KUMAR MITTAL Hon. General Secretary BHARAT SOMANY Hon. Treasurer SANJAY AGARWAL Member Editorial Board A K BANDYOPadhyay Quarterly Journal of THE ALL INDIA GLASS MANUFACTURERS’ FEDERATION Ex-Principal, Govt. College of Engineering & Ceramic Technology-GCECT, Kolkata DEVENDRA KUMAR Professor, Department of Ceramic, Indian Institute of Technology (Banaras Hindu University) Vol. 2, No. 3, October - December, 2014 K K SHARMA President, NIGMA and Plant Head, HNG Neemrana, Rajasthan MEMBER ASSOCIatIONS EASTERN INDIA GLASS MANUFACTURERS’ ASSOCIATION (EIGMA) c/o La Opala RG Ltd. Contents Chitrakoot, 10th Floor, 230 A, A.J.C. Bose Road Kolkata - 700 020 From President’s Desk 5 President - Sushil Jhunjhunwala NORTHERN INDIA GLASS MANUFACTURERS’ ASSOCIATION (NIGMA) c/o Hindustan National Glass & Industries Limited Glass News India 7 Post Office - Bahadurgarh, Jhajjar, Haryana-124507 President - KK Sharma Vice President - Jimmy Tyagi Glass News Worldwide 12 Honorary General Secretary - NN Goyal Secretary & Treasurer - JB Bhardwaj Glasspex India 2015 16 SOUTH INDIA GLASS MANUFACTURERS’ ASSOCIATION (SIGMA) c/o AGI Glasspac (An SBU of HSIL Ltd.,) Glass Factory Road, Off. Motinagar Advertise in Kanch 21 PB No. 1930, Sanathnagar, PO Hyderabad -500018 President - Sandip Somany UTTAR PRADESH GLASS MANUFACTURERS’ SYNDICATE (UPGMS) Indian Glass Industry set for ‘Brisk Action’ 22 c/o General Traders A-10, Industrial Estate, Firozabad – 283203 (UP) President - Raj Kumar Mittal Abbe Number and Transparency for Optical Glasses 27 Vice President - Dharmendra Mohan Gupta Vice President - Santosh Agarwal Hony. Secretary - Sanjay Agarwal Government of India, Ministry of Finance (Department of 32 Treasurer - Deepak Gupta Jt. Secretary - Pramod Kumar Garg Revenue) Notification No. 48/2014-Customs (ADD) WESTERN INDIA GLASS MANUFACTURERS’ ASSOCIATION (WIGMA) c/o Pragati Glass Works (P) Ltd. 111, Damji Shamji Industrial Complex, 9, LBS Marg, Kurla (W), Mumbai - 400070 Optimistic Mood at glasstec 2014 36 President - H R Bhandari Honorary Secretary - G K Sarda Transparency in Float Glass and some Applications 39 Quarterly Journal of glass industry, published & printed by Vinit No contact please! 43 Kapur on behalf of the All India Glass Manufacturers’ Federation from 812, New Delhi House, 27 Barakhamba Road, New Delhi – 110001 (New non-contact inspection modules improve job-change and printed at New United Process, A-26, Ph-II, Naraina Indl. Area, New Delhi-110028 times in container glass production) T: +91 11 23316507 F: +91 11 23350357 E: [email protected] 45 Editor MOHAN LALVANI समाचार Complimentary copy for Members/Government/NGOs and those connected with Glass Industry Safety First with Heye IS-Machines 47 Others: Price (Excluding Bank Charges): Indian Companies : ` 125 per Copy Confidence in the Future 50 Annual Subscription ` 450 Foreign Companies : US$ 25 per Copy Annual Subscription US$ 80 List of Advertisers 50 Membership of AIGMF 51 www.glassworldwide.co.uk Kanch | Vol 2 | No. 3 | October-December 2014 3 4 Kanch | Vol 2 | No. 3 | October-December 2014 www.aigmf.com From President’s Desk I would like to thank members of AIGMF for electing me as President of AIGMF in its Annual General Meeting held on Sept 26, 2014. I assure all members to work in the best interest of glass industry. Jan-March 2015 issue of Kanch will be released as special issue during Glasspex 2015 (March 13-15) at Bombay Convention & Exhibition Centre, Mumbai. We are looking forward to a magnificent display of latest technology, by world renowned companies exhibiting their products in the exhibition. There are many challenges for glass industry in terms of its usage due to misconceptions, inadequate knowledge, absence of codes and standards. AIGMF is working on to bring in more awareness through conference on usage of glass. A step in that direction is organizing conference in coming Glasspex India 2015 on Use of Glass in Buildings, Glass Façade Regulations & Implementation. Another challenge that glass industry faces is energy conservation. AIGMF is organizing a conference and expert view on latest development in this direction during Glasspex India 2015. I invite one and all from glass fraternity to participate in Glasspex India 2015. Mumbai Fire Brigade, Municipal Corporation of Greater Mumbai (MCGM) organized "Survival Environment" Workshop on Fire Curtain and Glass Facade Regulation & Implementation in collaboration with Institute of Fire Engineers India on Nov 29, 2014 at Mumbai with the active support of AIGMF/AGP member companies (Asahi India Glass, Gold Plus Group, HNG Float Glass, Gujarat Guardian), CCPS and Saint Gobain India. The Workshop was organized at Four Seasons Hotel at Worli, Mumbai and attended by more than 100 delegates comprising of officers from State Govt., Fire Safety Engineers, Builders, Developers, Architects, Professionals, Glass industry, Mumbai Fire Brigade, Delhi Fire Service, MCGM, (The Maharashtra Chamber of Housing Industry) MCHI, (The Confederation of Construction Products and Services) CCPS, (Practicing Engineers Architects and Town Planners Association) PEATA etc. Bureau of Indian Standards has released IS: 16231 (Part 4) – 2014 on “Code of Practice on Use of Glass in Buildings - Safety Related to Human Impact” with inputs derived from CCPS publication (supported by Architectural Glass Panel/ AIGMF) ‘Guidelines on Use of Glass in Buildings-Human Safety’- http://aigmf.com/Guidelines.pdf My best wishes to all readers for Happy & Prosperous New year 2015. Sanjay Ganjoo President, AIGMF and COO, Asahi India Glass Ltd., Taloja (Maharashtra) Kanch | Vol 2 | No. 3 | October-December 2014 5 6 Kanch | Vol 2 | No. 3 | October-December 2014 www.aigmf.com GLASS News India AIGMF EXECUTIVE technical collaboration, transfer of EXECUTIVE COMMITTEE COMMITTEE MEET AND technology & business development. MEMBERS ANNUAL GENERAL MEETING Vice President – Mr. Raj Kumar Secretary announced names of The Executive Committee Meet and Mittal members of Executive Committee of Annual General meeting were held at the AIGMF for the Year 2014-15: Casurina Hall, India Habitat Centre, Mittal Ceramics, Firozabad Mr. S.C. Bansal - outgoing President New Delhi on September 26, 2014. A Commerce Graduate; elected as Apart from normal agenda and the Chairman of Indian Industries NOMINEES OF proceedings, highlight of the day Association (IIA) Firozabad Chapter and WESTERN INDIA GLASS MANUFACTURERS’ was election of President and office President of UP Glass Manufacturers’ ASSOCIATION bearers for the year 2014-15. Syndicate. Associated with Glass Following were unanimously elected Industry for almost 30 years. He heads 1. Mr. H.R. Bhandari - Pragati Glass in the Annual General Body Meeting: five glass companies in Firozabad. Pvt. Ltd., Mumbai 2. Mr. G.K. Sarda - Empire Ind. Ltd., President – Mr. Sanjay Ganjoo Hony. General Secretary – Mr. Bharat Somany Vitrum Glass, Mumbai. 3. Mr. Vijay Shah - Piramal Glass Ltd., HNG & Inds. Ltd., Bahadurgarh Mumbai. (Haryana) 4. Mr. S.U. Mody – Neutral Glass & A Bachelor of Commerce (Honours) Allied Industries Ltd., Mumbai graduate from University of Delhi with a 5. Mr. Sanjay Jain - HNG & Industries professional course in Management from Ltd., Mumbai the Indian Institute of Management, Ahmedabad and multifarious hands- NOMINEES OF EASTERN INDIA on training in the glass industry from GLASS MANUFACTURERS’ various leading companies around the ASSOCIATION Asahi India Glass Ltd., Taloja world (Germany, Italy, USA & Japan). 1. Mr. Sushil Jhunjhunwala - La-Opala (Maharashtra) Apart from association with Hindusthan RG Ltd., Kolkata National Glass & Industries Limited, A Mechanical Engineer; joined Asahi NOMINEES OF U.P. GLASS India in 1989 and is currently working Executive Director at Glass Equipment MANUFACTURERS’ SYNDICATE (India) Limited, an engineering unit of as COO of architectural glass business. 1. Mr. Raj Kumar Mittal - Mittal HNG & Industries Limited. Sr. Vice President – Mr. Arun Ceramics, Firozabad Kumar D Hony. Treasurer – Mr. Sanjay 2. Mr. Mohan Lal Agarwal
Recommended publications
  • Presentación De Powerpoint
    Touch Panel The touch panel is an input device, so it needs to be combined with a display and a PC or other device to make a complete touch input system. This is the main structure. • Cover Lens - Can be made of composed of glass, PET, PC or other plastic film. This primarily serves to protect the touch sensor and act as an electrical insulator, though it can also be a functional part of the product, in the case of resistive technology. • Touch Sensor - this is wear the circuity for the touch screen is located and it acts to collect and process the touch signal • Controller - The controller connects between the touch sensor and the PCB. It takes information from the touch sensor and translates it into information that the PCB can understand and act on. • COF - The controller can be located on a chip mounted on the product’s FPC (this is known as Chip on Film – or COF). • COB - The controller can also be on a separate PCB (known as COB – Chip on Board). • Software Drivers - The driver allows the touchscreen and PCB to work together. It tells the computer’s OS how to interpret the touch information that is sent from the controller. Most touch screen drivers today are a mouse emulation type - this makes touching the screen the same as clicking your mouse at the same location on the screen. This allows the touchscreen to work with existing software eases application development costs and lead times. • FPC - a flat printed circuit cable (FPC or FFC) that is used to send data from the screen to the controller, or the display to the board.
    [Show full text]
  • The American Ceramic Society 25Th International Congress On
    The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings.
    [Show full text]
  • High-Precision Micro-Machining of Glass for Mass-Personalization and Submitted in Partial Fulfillment of the Requirements for the Degree Of
    High-precision micro-machining of glass for mass-personalization Lucas Abia Hof A Thesis In the Department of Mechanical, Industrial and Aerospace Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Mechanical Engineering) at Concordia University Montreal, Québec, Canada June 2018 © Lucas Abia Hof, 2018 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Lucas Abia Hof Entitled: High-precision micro-machining of glass for mass-personalization and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: ______________________________________ Chair Dr. K. Schmitt ______________________________________ External Examiner Dr. P. Koshy ______________________________________ External to Program Dr. M. Nokken ______________________________________ Examiner Dr. C. Moreau ______________________________________ Examiner Dr. R. Sedaghati ______________________________________ Thesis Supervisor Dr. R. Wüthrich Approved by: ___________________________________________________ Dr. A. Dolatabadi, Graduate Program Director August 14, 2018 __________________________________________________ Dr. A. Asif, Dean Faculty of Engineering and Computer Science Abstract High-precision micro-machining of glass for mass- personalization Lucas Abia Hof,
    [Show full text]
  • Understanding the Effects of Compositional Changes in Ion Exchange
    Understanding the effects of compositional changes in ion exchange By: Hande Özbayraktar A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of Engineering Department of Materials Science and Engineering APRIL 2021 1 Acknowledgments First and foremost, I gratefully acknowledge the financial support for my doctoral study provided by Mr Erol Güral, Deputy Chairman of Gürok Company. I would like to express my gratitude and sincere thanks to my supervisor, Professor Russel J. Hand for, his kind supervision throughout my research. I could not have completed this thesis without his guidance, support, encouragement and patience. I would also like to express my sincere gratitude to my second supervisor Dr Adrian Leyland for his kind support and encouragement. Special thanks to our wonderful technicians and people at the University of Sheffield, especially Dr Lisa Hollands for glass melting, Neil Hind for helping me out with the heat treatment, Dr Dawn Bussey for her guidance during my indentation runs, Tes Monaghan for micro preparation, Dr Nik Reeves-McLaren for Raman Spectroscopy and XRF. Special thanks to all my great friends for all the good times we had together in Sheffield. I would like to express my gratitude and appreciation to my mum, Sadiye, my dad, Gürbüz and my brother, Eray, for their unconditional love, understanding, constant support and encouragement. I owe special thanks to my beloved husband Semih for his love, continual support, encouragement and patience, especially during difficult times. Last, but of course, not least, I thank my precious daughter, Zeynep who joined us right after I finished my PhD.
    [Show full text]
  • Materials Innovation Case Study: Corning’S Gorilla Glass 3 for Consumer Electronics
    Materials Innovation Case Study: Corning’s Gorilla Glass 3 for Consumer Electronics SUMMARY Corning’s Gorilla Glass 3 is a notable materials innovation that occurred over a compressed, 22-month time period—an achievement facilitated by Corning’s depth of modeling capability, experience with prior Gorilla Glass products, and direct control over the major elements of the innovation process. The following case study explores the specific actions that led to this success through the development of a “reverse roadmap,” which captures and classifies the key activities that either accelerated or inhibited the innovation process. Gorilla Glass has indeed been a commercial BACKGROUND success for Corning—recently, Gorilla Glass 4 was While it is now a household name, Corning’s introduced to extend the product line. At the end Gorilla Glass has only been used in consumer of 2015, Corning’s Gorilla Glass had been used in applications for less than 10 years. In fact, the first over 4.5 billion devices, including smartphones, 4 generation of the glass—which resists breakage tablets, notebook computers, and smartwatches, and scratching thanks to a chemical treatment as well as extended applications such as interior applied by an ion exchange process1—was architecture and design, markerboards, and developed for Apple’s first iPhone, launched automotive glass and touch panels. in 2007. When Gorilla Glass 2 was introduced in 2012, it achieved the market’s desire for a REVERSE ROADMAP thinner product at a size 20% thinner than its predecessor.2 The materials innovation process employed to develop Gorilla Glass 3 is outlined in a “reverse In its third iteration, Gorilla Glass 3 is even roadmap,” which captures events that have stronger, thinner, and more scratch resistant.
    [Show full text]
  • Micro-Hole Drilling on Glass Substrates—A Review
    micromachines Review Micro-Hole Drilling on Glass Substrates—A Review Lucas A. Hof 1 and Jana Abou Ziki 2,* 1 Department of Mechanical & Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC H3G 1M8, Canada; [email protected] 2 Bharti School of Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada * Correspondence: [email protected]; Tel.: +1-705-675-1151 (ext. 2296) Academic Editors: Hongrui Jiang and Nam-Trung Nguyen Received: 14 November 2016; Accepted: 3 February 2017; Published: 13 February 2017 Abstract: Glass micromachining is currently becoming essential for the fabrication of micro-devices, including micro- optical-electro-mechanical-systems (MOEMS), miniaturized total analysis systems (µTAS) and microfluidic devices for biosensing. Moreover, glass is radio frequency (RF) transparent, making it an excellent material for sensor and energy transmission devices. Advancements are constantly being made in this field, yet machining smooth through-glass vias (TGVs) with high aspect ratio remains challenging due to poor glass machinability. As TGVs are required for several micro-devices, intensive research is being carried out on numerous glass micromachining technologies. This paper reviews established and emerging technologies for glass micro-hole drilling, describing their principles of operation and characteristics, and their advantages and disadvantages. These technologies are sorted into four machining categories: mechanical, thermal, chemical, and hybrid machining (which combines several machining methods). Achieved features by these methods are summarized in a table and presented in two graphs. We believe that this paper will be a valuable resource for researchers working in the field of glass micromachining as it provides a comprehensive review of the different glass micromachining technologies.
    [Show full text]
  • Property of Cover Glass in Capacitive Touch Screen Corning Incorporated
    Property of Cover Glass in Capacitive Touch Screen Corning Incorporated Founded: • Corning is the world leader in specialty glass 1851 and ceramics. • We create and make keystone components Headquarters: that enable high-technology systems for Corning, New York consumer electronics, mobile emissions control, telecommunications and Employees: life sciences. Approximately 25,000 worldwide • We succeed through sustained investment 2007 Sales: in R&D, over 150 years of materials science and process engineering knowledge, and a $5.86 Billion distinctive collaborative culture. Fortune 500 Rank: 417 Technical Materials © Corning Incorporated 2008 2 Corning market segments and additional operations Display Telecom Environmental Life Specialty Other Technologies Technologies Sciences Materials Products & Services •LCD Glass •Optical Fiber & •Emissions •Cell Culture & •Advanced Optics & •Display Futures Substrates Cable Control Products Bioprocess Materials – Automotive •Display Optics & •New Business •LTPS-LCD Glass •Hardware & – Diesel •General Development – Stationary Components Substrates Equipment Laboratory •Semiconductor í Coaxial Products Optics & •Drug Discovery Connectivity Technology Products Components •Aerospace •Steuben Glass •Astronomy •Optical Metrology •Equity Companies •Ophthalmic – Dow Corning Corp. – Eurokera, S.N.C •Telecom – Samsung Corning Components Precision Glass •Specialty Glass Company, LTD (SCP) GorillaTM Glass Technical Materials © Corning Incorporated 2008 3 A culture of innovation High-throughput Glass envelope for
    [Show full text]
  • From Pyrex to Vaccine Vials
    PROFILE Corning: from Pyrex to Vaccine Vials The US group that invented Pyrex has also developed ultra-tough glass for smartphone screens and high-tech ceramics for catalytic converters in cars. Now it’s manufacturing vials adapted to COVID-19 vaccines that must be stored at -70°C. Corning’s Eagle glass enables manufacturers to innovate with LCD screens that are designed to be slimmer, lighter and more eco-friendly. (©Corning Incorporated) By Benoît Georges Published March 31, 2021 at 11:10 a.m. | Updated March 31, 2021 at 11:24 a.m. What do your smartphone screen, the Pyrex dishes you cook with, the ceramic essential to the catalytic converter in your car, the fiber optics that connect you to the Internet, and a vial of COVID-19 vaccine have in common? All these products were invented by a 100-year-old company that you’ve probably never heard of: the US company Corning. A global giant with 50,000 employees and a turnover of 11 billion dollars whose 108 plants worldwide supply the major telecom operators, Nasa, Mercedes, Apple, and Pfizer. Corning is also the name of a small town with a population of 10,500, and a five hour drive from Manhattan in an area of upstate New York that is mostly known for its lakes and vineyards. Ever since a businessman, Amory Houghton, moved his glassworks there from Brooklyn in 1868, the destinies of Corning (the town) and Corning (the company) have been intertwined. The group provides jobs for 7,000 people in the region, where it has always had its headquarters and main R&D lab.
    [Show full text]
  • Gorilla Glass Toughest Ever Smartphone Screen
    BreakingNewsEnglish - Many online quizzes at URL below Gorilla Glass toughest True / False ever smartphone screen a) The article said a new glass will stop your heart from sinking. T / F 28th July, 2020 b) The glass used in many smartphones is called Guerilla Glass. T / F How many times has your heart sunk after c) The new smartphone glass will be less easy to dropping your scratch and crack. T / F smartphone and d) The new glass can stay intact after being worrying if you dropped from two metres. T / F smashed the glass? There may be an e) A company spokesman said dropping a phone answer to reduce that rarely breaks it. T / F feeling. The glass used f) The spokesman said visible scratches affect a to make the screens device's usability. T / F on many of the world's smartphones just got g) The company worked on both scratch- tougher. Corning, the resistance and drop-resistance. T / F company that makes the glass, has just made a h) The new glass will debut on the new iPhone in stronger version. It is called Gorilla Glass and has the near future. T / F been used in smartphones for many years. Corning has greatly improved the glass to make it more difficult to scratch, crack or smash. The new Synonym Match product is called Gorilla Glass Victus. It can survive (The words in bold are from the news article.) drops of up to two metres without any signs of 1. reduce a. lead to damage. It is also two times more scratch-resistant than other glass.
    [Show full text]
  • Specialty Glass Materials Products & Specifications
    Specialty Glass Materials Products & Specifications 04/14 Web: www.abrisatechnologies.com - E–mail: [email protected] - Tel: (877) 622-7472 Page 1 Specialty Glass Materials Products & Specifications 01/14 It all starts with the basic element, the glass. Each substrate has unique and specific qualities which are matched to the application and specifications that your unique project requires. High Ion-Exchange (HIE™) Thin Glass High Ion-Exchange (HIE™) Aluminosilicate Thin Glass - (Page 3) - Asahi Dragontrail™ - (Pages 4 & 5) - Corning® Gorilla® Glass - (Pages 6 & 7) - SCHOTT Xensation™ Cover Glass - (Page 8) Soda-Lime Soda-Lime (Clear & Tinted) - (Page 9) Soda-Lime (Low Iron) - (Page 10) Soda-Lime (Anti-Glare Etched Glass) - (Page 11) Patterned Glass for Light Control - (Page 12 & 13) Soda-Lime Low Emissivity (Low-E) Glass - (Page 14) Soda-Lime (Heat Absorbing Float Glass) - (Page 15) Borosilicate SCHOTT BOROFLOAT® 33 Multi-functional Float Glass - (Pages 16 & 17) SCHOTT BOROFLOAT® Infrared (IRR) - (Page 18) SCHOTT SUPREMAX® Rolled Borosilicate - (Pages 19 & 20) SCHOTT D263® Colorless Thin Glass - (Pages 21 & 22) SCHOTT Duran® Lab Glass - (Pages 23 & 24) Ceramic/Glass SCHOTT Robax® Transparent Ceramic Glass - (Page 25) SCHOTT Pyran® Fire Rated Ceramic - (Page 26) Quartz/Fused Silica Corning® 7980 Fused Silica - (Page 27) GE 124 Fused Quartz - (Page 28) Specialty Glass ® ® Corning Willow Glass - (Page 29) Corning® Eagle XG® LCD Glass - (Page 30 & 31) Laminated Glass - Safety Glass - (Page 32) SCHOTT Superwhite B270® Flat Glass - (Page 33) Weld Shield - (Page 34) White Flashed Opal - (Page 35) X-Ray Glass (Radiation Shielding Glass) - (Page 36) Web: www.abrisatechnologies.com - E–mail: [email protected] - Tel: (877) 622-7472 Page 2 Specialty Glass Materials Products & Specifications 01/14 High Ion-Exchange (HIE™) Chemically Strengthened Aluminosilicate Thin Glass High Ion-Exchange (HIE™) thin glass is strong, lightweight and flexible.
    [Show full text]
  • The Latest Developments in Glass Science and Technology Cam
    www.tubiad.org ISSN:2148-3736 El-Cezerî Fen ve Mühendislik Dergisi Cilt: 4, No: 2, 2017 (209-233) El-Cezerî Journal of Science and ECJSE Engineering Vol: 4, No: 2, 2017 (209-233) Research Paper / Makale The Latest Developments in Glass Science and Technology Bekir KARASU, Oguz BEREKET, Ecenur BIRYAN, Deniz SANOĞLU Anadolu University, Engineering Faculty, Department of Materials Science and Engineering, 26555, Eskişehir TÜRKİYE, [email protected] Received/Geliş: 18.11.2016 Revised/Düzeltme: 25.01.2017 Accepted/Kabul: 14.02.2017 Abstract: The aim of this study is to give detailed information about the latest developments/ applications in the glass science and technology. In this aspect, smart glass, security glass, thin glass, amorphous metal, electrolytes, molecular liquid, colloidal glass, glass added polymer, glass-ceramic, fiberglass, double glazing, Dragontrail glass, Gorilla glass, fluorescent lamp, glass to metal seal, glassphalt, heatable glass, lamination, nano channel glass, photochromic lenses, night vision glasses, glass cockpit, porous glass, self—cleaning glass and bioactive glass were mentioned. Keywords: Glass, Science, Technology, Innovation, Application Cam Bilimi ve Teknolojisindeki En Son Gelişmeler Özet: Bu çalışmanın amacı cam bilimi ve teknolojisindeki en son gelişmeler hakkında detaylı bilgi sunmaktır. İlgili bağlamda, güvenlik camı, ince cam, camsı metal, elektrolitler, moleküler sıvı, koloidal cam, cam katkılı polimer, cam-seramik, cam lifi, izolasyon camı, Dragontrail camı, Gorilla camı, flüoresan lamba, cam-metal sızdırmazlığı, cam katkılı asfalt, ısıtılabilir cam, tabakalama, nano kanallı cam, fotokromik lensler, gece görüş camları, cam pilot kabini, porlu cam, kendi kendini temizleyebilen cam ve biyo-aktif camdan bahsedilmiştir. Anahtar kelimeler: Cam, Bilim, Teknoloji, Yenilik, Uygulama 1.
    [Show full text]
  • Bent, Veneer-Encapsulated Heat-Treated Safety Glass Panels and Methods of Manufacture
    (19) TZZ¥_ZZ_T (11) EP 3 100 854 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 07.12.2016 Bulletin 2016/49 B32B 17/10 (2006.01) E04B 1/76 (2006.01) E04B 2/88 (2006.01) (21) Application number: 16172838.1 (22) Date of filing: 03.06.2016 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • ALDER, Russell Ashley GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Fort Smith, Arkansas 72908 (US) PL PT RO RS SE SI SK SM TR • ALDER, Richard Ashley Designated Extension States: Fort Smith, Arkansas 72916 (US) BA ME Designated Validation States: (74) Representative: Romano, Giuseppe et al MA MD Società Italiana Brevetti S.p.A Piazza di Pietra, 39 (30) Priority: 03.06.2015 US 201562170240 P 00186 Roma (IT) (71) Applicant: Precision Glass Bending Corporation Greenwood, Arkansas 72936-1970 (US) (54) BENT, VENEER-ENCAPSULATED HEAT-TREATED SAFETY GLASS PANELS AND METHODS OF MANUFACTURE (57) A laminated, bent, safety glass panel (30) for to form a protective barrier on the heat-treated glass that architectural or interior uses and a method of manufac- dampens the explosive release of its internal residual turing such panels. The panel comprises a single stresses in the event of breakage thereby preventing par- heat-treated bent glass sheet, fully-tempered orticles dislodging and subsequent disintegration. The vul- heat-strengthened, forming a substrate (32) encapsulat- nerable perimeter (37) and perforation (45) edges of the ed by at least one thin, chemically-strengthened, glass veneer sheet (38) are equal in size or inset to the edges veneer sheet (38).
    [Show full text]