Prof. Dr. Jenny Russinova

Total Page:16

File Type:pdf, Size:1020Kb

Prof. Dr. Jenny Russinova Ghent University Faculty of Sciences Department of Plant Biotechnology and Bioinformatics VIB department of Plant Systems Biology Endomembrane trafficking and brassinosteroid signaling from a small molecule perspective. Wim Dejonghe Promoter: Prof. Dr. Jenny Russinova This thesis was submitted as fulfillment of the requirements to obtain the degree of Doctor (PhD) in sciences: Biochemistry and Biotechnology Academic year 2014-2015 Copyright © 2015 by the Authors All rights reserved. This thesis is meant solely for personal use. This thesis or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the promoter or the first author. This thesis was carried out at the University of Ghent and Flemish Institute for Biotechnology (VIB) department of Plant Systems Biology (PSB). The research was funded by the Flemish institute for Innovation through Science and Technology (IWT) and VIB. Examination committee Chair: Dr Steffen Vanneste Prof. Dr. Geert De Jaeger Department of Plant Systems Biology. VIB, Ghent University Department of Plant Systems Biology. VIB, Ghent University Dr. Erich Kombrink Promoter: Max Planck Institute for Plant Breeding Research. Chemical Biology Laboratory Prof. Dr. Jenny Russinova Department of Plant Systems Biology. VIB, Ghent University Other committee members: Prof. Dr. Kris Gevaert Reading committee: Department of Biochemistry, Ghent University. VIB Department of Medical Prof. Dr. Savvas Savvides Protein Research. Unit for Structural Biology, L-ProBE, Ghent University. Inflammation Research Center, VIB, Ghent University Prof. Dr. Johan Winne Department of Organic and Macromolecular Chemistry. Ghent University Prof. Dr. Patrik Verstreken VIB Center for the Biology of Disease. KU Leuven, Center for Human Genetics, Dr. Daniel Van Damme Laboratory of Neuronal Communication Department of Plant Systems Biology. VIB, Ghent University 3 Contents List of abbreviations ............................................................................................................................. 9 Scope .................................................................................................................................................. 13 Summary ............................................................................................................................................ 15 Samenvatting ...................................................................................................................................... 17 Chapter I: Introduction ....................................................................................................................... 19 Abstract ........................................................................................................................................... 21 1.1. Brassinosteroids and their chemical toolbox* ......................................................................... 22 1.1.2 Small molecules affecting BR biosynthesis ....................................................................... 24 1.1.3. Small molecules affecting BR signaling ........................................................................... 26 1.2. Small molecules for dissecting endomembrane trafficking: a cross‐systems view** .......... 30 1.2.1. Endomembrane trafficking routes in yeasts, plants and mammals: a comparative view . 30 1.2.2. In search for small-molecule modifiers of endomembrane trafficking ............................ 31 1.2.3. Chemical effectors of exocytosis/secretion/anterograde trafficking ................................. 35 1.2.4. Chemical effectors of endocytosis/retrograde trafficking ................................................. 37 1.2.5. Chemical effectors of vacuolar trafficking and autophagy ............................................... 38 1.2.6. Special considerations when analyzing drug-induced endomembrane trafficking phenotypes .................................................................................................................................. 39 1.3. Target Identification Strategies in Plant Chemical Biology*** .............................................. 46 1.3.1. Commonly used target identification strategies in plant chemical biology ...................... 47 1.3.1.1. Forward genetic screen for compound resistance ..................................................... 48 1.3.1.2. Phenotyping approach ............................................................................................... 49 1.3.1.3. In silico-based target identification strategies ........................................................... 51 1.3.2. Emerging target identification strategies in plant chemical biology ................................ 51 1.3.2.1. Activity-based protein profiling (ABPP) .................................................................. 51 1.3.2.2. Yeast 3-hybrid ........................................................................................................... 52 1.3.2.3. Affinity-based technologies ...................................................................................... 54 5 1.3.2.4. Phage display ............................................................................................................. 57 1.3.3. Label-free compound based technologies ......................................................................... 58 1.3.3.1. Chemical denaturation shift ...................................................................................... 59 1.3.3.2. Target identification by chromatographic co-elution (TICC) ................................... 59 1.3.3.3. Drug affinity-responsive target stability (DARTS) ................................................... 59 1.4. Future perspectives .................................................................................................................. 61 1.5. Acknowledgments ................................................................................................................... 64 1.6. References ............................................................................................................................... 65 Chapter II: Small molecule screen for effectors of clathrin-mediated endocytosis and brassinosteroid signaling ............................................................................................................................................. 81 Abstract ........................................................................................................................................... 83 Introduction .................................................................................................................................... 84 Results and Discussion ................................................................................................................... 85 Compound Screen for CME inhibitors ....................................................................................... 85 BR signaling in response to small molecules ............................................................................. 88 Small molecule screen on light-grown and dark-grown seedlings ............................................. 88 Comparative summary of screening results and selection of hit molecules ............................... 90 Materials and methods .................................................................................................................. 101 References .................................................................................................................................... 102 Chapter III: Protonophore uncouplers are potent inhibitors of clathrin-mediated endocytosis in plants .......................................................................................................................................................... 105 Abstract ......................................................................................................................................... 107 Introduction .................................................................................................................................. 108 Results .......................................................................................................................................... 109 ES9 blocks clathrin-mediated endocytosis in different systems ............................................... 109 ES9 affects energy metabolism through uncoupling of oxidative phosphorylation in mitochondria ............................................................................................................................. 110 Cytosolic acidification but not ATP depletion rapidly inhibits CME in Arabidopsis .............. 112 E S9 activity causes an arrest in dynamic behavior of CME machinery at the plasma membrane ................................................................................................................................................... 115 Protonophores affect multiple aspects of endomembrane trafficking ...................................... 116 Discussion ..................................................................................................................................... 120 ES9 and TyrA23 are mitochondrial uncouplers ........................................................................ 120 ATP depletion alone does not efficiently block CME in Arabidopsis root cells and Drosophila neuromuscular junctions ..........................................................................................................
Recommended publications
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Effects of Altered Expression of the Sumo Conjugating Enzyme, UBC9 on Mitosis, Meiosis and Conjugation in Tetrahymena Thermophila Qianyi Yang Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Fall 2014 Effects of altered expression of the sumo conjugating enzyme, UBC9 on mitosis, meiosis and conjugation in Tetrahymena thermophila Qianyi Yang Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Biochemistry Commons, and the Molecular Biology Commons Recommended Citation Yang, Qianyi, "Effects of altered expression of the sumo conjugating enzyme, UBC9 on mitosis, meiosis and conjugation in Tetrahymena thermophila" (2014). Open Access Dissertations. 395. https://docs.lib.purdue.edu/open_access_dissertations/395 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 (Revised 08/14) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Qianyi Yang Entitled EFFECTS OF ALTERED EXPRESSION OF THE SUMO CONJUGATING ENZYME, UBC9 ON MITOSIS, MEIOSIS AND CONJUGATION IN TETRAHYMENA THERMOPHILA Doctor of Philosophy For the degree of Is approved by the final examining committee: James D. Forney Scott D. Briggs Mark C. Hall Clifford F. Weil To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy
    [Show full text]
  • S1 SUPPORTING INFORMATION Comparative Proteomic Analysis
    SUPPORTING INFORMATION Comparative proteomic analysis unveils critical pathways underlying the role of nitrogen fertilizer treatment in American elderberry Bo Yang1, Andrew L. Thomas2, and C. Michael Greenlief 1, † 1Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA 2Division of Plant Sciences, Southwest Research Center, University of Missouri, Mt. Vernon, Missouri 65712, USA †Corresponding author: C. Michael Greenlief Phone: 573-882-3288; Fax: 573-882-2754; E-mail: [email protected] TABLE OF CONTENTS Figure S1. Scatter graph of relative spots volumes detected on 2-DE gels Figure S2. Representative 2-DE maps of differentially expressed proteins Figure S3. PCA analysis of differentially expressed proteins Figure S4. Mercator protein functional categorization of each genotype Table S1. Statistical analysis of differentially expressed proteins Table S2. Protein report for MALDI-TOF/TOF Table S3. Protein report for LC-MS/MS Table S4. Identification of altered proteins after 56 kg N/ha treatment Table S5. Identification of altered proteins after 112 kg N/ha treatment Table S6. Identification of altered proteins after 169 kg N/ha treatment S1 Figure S1. Scatter graph based on the ratios of relative spots volumes detected in the master gel (y-axis) and the respective replicates (x-axis). (A-D): 0, 56, 112 and 169 kg N/ha treated Adams II. (E-H): 0, 56, 112 and 169 kg N/ha treated Bob Gordon. (I-L): 0, 56, 112 and 169 kg N/ha treated Wyldewood. A B C S2 D E F G S3 H I J K S4 L S5 Figure S2. Representative 2-DE maps of proteins extracted from American elderberry leaves.
    [Show full text]
  • Molecular Mechanism for the Interaction Between Gibberellin and Brassinosteroid Signaling Pathways in Arabidopsis
    Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis Javier Gallego-Bartoloméa, Eugenio G. Mingueta, Federico Grau-Enguixa, Mohamad Abbasa, Antonella Locascioa, Stephen G. Thomasb, David Alabadía,1, and Miguel A. Blázqueza aInstituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain; and bRothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom Edited by Mark Estelle, University of California at San Diego, La Jolla, CA, and approved July 10, 2012 (received for review December 5, 2011) Plant development is modulated by the convergence of multiple response to auxin (10) and thus provides one of the possible environmental and endogenous signals, and the mechanisms that molecular mechanisms explaining the synergistic effect that both allow the integration of different signaling pathways is currently hormones exert on the expression of many genes (11). being unveiled. A paradigmatic case is the concurrence of brassinos- GAs and BRs regulate common physiological responses, e.g., teroid (BR) and gibberellin (GA) signaling in the control of cell expan- as illustrated by the dwarf phenotype of the GA- and BR-de- sion during photomorphogenesis, which is supported by phys- ficient mutants (6, 12). Moreover, both hormones act synergisti- iological observations in several plants but for which no molecular cally to promote hypocotyl elongation of light-grown Arabidopsis mechanism has been proposed. In this work, we show that the in- seedlings (13), a behavior that, as with BRs and auxin, might be tegration of these two signaling pathways occurs through the phys- interpreted as an indication of interaction between the two ical interaction between the DELLA protein GAI, which is a major pathways.
    [Show full text]
  • Identification of QTL for Resistance Against Two Fungal Pathogens, Pyrenophora Teres F
    Fluturë Novakazi Institut für Resistenzforschung und Stresstoleranz Identification of QTL for resistance against two fungal pathogens, Pyrenophora teres f. teres and Bipolaris sorokiniana, in a barley (Hordeum vulgare L.) diversity set Dissertationen aus dem Julius Kühn-Institut Julius Kühn-Institut Bundesforschungsinstitut für Kulturpflanzen Kontakt | Contact: Fluturë Novakazi Beethovenstraße 24 18069 Rostock Die Schriftenreihe ,,Dissertationen aus dem Julius Kühn-lnstitut“ veröffentlicht Doktorarbeiten, die in enger Zusammenarbeit mit Universitäten an lnstituten des Julius Kühn-lnstituts entstan- den sind. The publication series „Dissertationen aus dem Julius Kühn-lnstitut“ publishes doctoral disser- tations originating from research doctorates and completed at the Julius Kühn-Institut (JKI) either in close collaboration with universities or as an outstanding independent work in the JKI research fields. Der Vertrieb dieser Monographien erfolgt über den Buchhandel (Nachweis im Verzeichnis liefer- barer Bücher - VLB) und OPEN ACCESS unter: https://www.openagrar.de/receive/openagrar_mods_00005667 The monographs are distributed through the book trade (listed in German Books in Print - VLB) and OPEN ACCESS here: https://www.openagrar.de/receive/openagrar_mods_00005667 Wir unterstützen den offenen Zugang zu wissenschaftlichem Wissen. Die Dissertationen aus dem Julius Kühn-lnstitut erscheinen daher OPEN ACCESS. Alle Ausgaben stehen kostenfrei im lnternet zur Verfügung: http://www.julius-kuehn.de Bereich Veröffentlichungen. We advocate open access to scientific knowledge. Dissertations from the Julius Kühn-lnstitut are therefore published open access. All issues are available free of charge under http://www.julius-kuehn.de (see Publications). Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation In der Deutschen Nationalbibliografie: detaillierte bibliografische Daten sind im lnternet über http://dnb.d-nb.de abrufbar.
    [Show full text]
  • Integration of Auxin and Brassinosteroid Pathways by Auxin Response Factor 2
    Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2 Gre´ gory Vert†, Cristina L. Walcher‡, Joanne Chory§¶, and Jennifer L. Nemhauser‡¶ †Biochimie and Physiologie Mole´culaire des Plantes, Centre National de la Recherche Scientifique, Unite´Mixte de Recherche 5004, Institut de Biologie Inte´grative des Plantes, 2 Place Viala, 34060 Montpellier Cedex 1, France; ‡Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800; and §Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037 Contributed by Joanne Chory, April 25, 2008 (sent for review March 5, 2008) Plant form is shaped by a complex network of intrinsic and extrinsic bind and activate transcription on the promoters of genes like signals. Light-directed growth of seedlings (photomorphogenesis) SAUR-15, common to both auxin and BR pathways (13). BRs depends on the coordination of several hormone signals, including regulate the activity of BES1 and BZR1 by modulating their brassinosteroids (BRs) and auxin. Although the close relationship phosphorylation status, dependent on the coordinate action of between BRs and auxin has been widely reported, the molecular the BIN2 GSK3 kinase and the BSU1 phosphatase, and respec- mechanism for combinatorial control of shared target genes has tive family members (7, 15–18). Phosphorylation by BIN2 in- remained elusive. Here we demonstrate that BRs synergistically hibits homodimerization by BES1, thereby blocking DNA- increase seedling sensitivity to auxin and show that combined binding and transcriptional activation (17), and modulates the treatment with both hormones can increase the magnitude and dynamics of BZR1 in the cell by interaction with a 14-3-3 protein duration of gene expression.
    [Show full text]
  • Transcriptomic Signature of Drought Response in Pearl Millet
    www.nature.com/scientificreports OPEN Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and Received: 4 September 2017 Accepted: 4 February 2018 development of web-genomic Published: xx xx xxxx resources Sarika Jaiswal1, Tushar J. Antala2, M. K. Mandavia2, Meenu Chopra1, Rahul Singh Jasrotia1, Rukam S. Tomar2, Jashminkumar Kheni2, U. B. Angadi1, M. A. Iquebal1, B. A. Golakia2, Anil Rai1 & Dinesh Kumar1 Pearl millet, (Pennisetum glaucum L.), an efcient (C4) crop of arid/semi-arid regions is known for hardiness. Crop is valuable for bio-fortifcation combating malnutrition and diabetes, higher caloric value and wider climatic resilience. Limited studies are done in pot-based experiments for drought response at gene-expression level, but feld-based experiment mimicking drought by withdrawal of irrigation is still warranted. We report de novo assembly-based transcriptomic signature of drought response induced by irrigation withdrawal in pearl millet. We found 19983 diferentially expressed genes, 7595 transcription factors, gene regulatory network having 45 hub genes controlling drought response. We report 34652 putative markers (4192 simple sequence repeats, 12111 SNPs and 6249 InDels). Study reveals role of purine and tryptophan metabolism in ABA accumulation mediating abiotic response in which MAPK acts as major intracellular signal sensing drought. Results were validated by qPCR of 13 randomly selected genes. We report the frst web-based genomic resource (http://webtom. cabgrid.res.in/pmdtdb/) which can be used for candidate genes-based SNP discovery programs and trait-based association studies. Looking at climatic change, nutritional and pharmaceutical importance of this crop, present investigation has immense value in understanding drought response in feld condition.
    [Show full text]
  • PIN-LIKES Coordinate Brassinosteroid Signalling with Nuclear Auxin Input in Arabidopsis Thaliana
    bioRxiv preprint doi: https://doi.org/10.1101/646489; this version posted July 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PIN-LIKES coordinate brassinosteroid signalling with nuclear auxin input in Arabidopsis thaliana Authors: Lin Sun1, Elena Feraru1, Mugurel I. Feraru1, Krzysztof Wabnik2, Jürgen Kleine-Vehn1,* Affiliations: 1Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria 2Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Autopista M-40, Km 38 - 28223 Pozuelo de Alarcón, Spain *Correspondence should be addressed to J.K.-V. ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/646489; this version posted July 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Auxin and brassinosteroids (BR) are crucial growth regulators and display overlapping functions during plant development. Here, we reveal an alternative phytohormone crosstalk mechanism, revealing that brassinosteroid signaling controls nuclear abundance of auxin. We performed a forward genetic screen for imperial pils (imp) mutants that enhance the overexpression phenotypes of PIN-LIKES (PILS) putative intracellular auxin transport facilitator. Here we report that the imp1 mutant is defective in the brassinosteroid-receptor BRI1. Our data reveals that BR signaling transcriptionally and posttranslationally represses accumulation of PILS proteins at the endoplasmic reticulum, thereby increasing nuclear abundance and signaling of auxin.
    [Show full text]
  • Brassinosteroid Regulation of Wood Formation in Poplar
    Research Brassinosteroid regulation of wood formation in poplar Juan Du1,2,3*, Suzanne Gerttula3*, Zehua Li2, Shu-Tang Zhao2, Ying-Li Liu2, Yu Liu1, Meng-Zhu Lu2,4 and Andrew T. Groover3,5 1College of Life Sciences, Zhejiang University, 866 Yu Hang tang Road, Hangzhou 310058, China; 2State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; 3Pacific Southwest Research Station, US Forest Service, Davis, CA 95618, USA; 4State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; 5Department of Plant Biology, University of California Davis, Davis, CA 95616, USA Summary Authors for correspondence: Brassinosteroids have been implicated in the differentiation of vascular cell types in herba- Meng-Zhu Lu ceous plants, but their roles during secondary growth and wood formation are not well Tel: +1 86 10 62872015 defned. Email: [email protected] Here we pharmacologically and genetically manipulated brassinosteroid levels in poplar Andrew Groover trees and assayed the effects on secondary growth and wood formation, and on gene expres- Tel: +1 530 759 1738 sion within stems. Email: [email protected] Elevated brassinosteroid levels resulted in increases in secondary growth and tension wood Received: 6 March 2019 formation, while inhibition of brassinosteroid synthesis resulted in decreased growth and sec- Accepted: 30 April 2019 ondary vascular differentiation. Analysis of gene expression showed that brassinosteroid action is positively associated with genes involved in cell differentiation and cell-wall biosyn- New Phytologist (2020) 225: 1516–1530 thesis. doi: 10.1111/nph.15936 The results presented here show that brassinosteroids play a foundational role in the regula- tion of secondary growth and wood formation, in part through the regulation of cell differen- tiation and secondary cell wall biosynthesis.
    [Show full text]
  • Q&A: What Are Brassinosteroids and How Do They Act in Plants?
    Tang et al. BMC Biology (2016) 14:113 DOI 10.1186/s12915-016-0340-8 QUESTION AND ANSWER Open Access Q&A: what are brassinosteroids and how do they act in plants? Jiao Tang1,2,3, Zhifu Han1,2 and Jijie Chai1,2* showed that the reactions induced by these ingredients Abstract were different from those induced by gibberellins [8]. Brassinosteroids (BRs) are a class of polyhydroxylated They therefore speculated that these ingredients were a steroidal phytohormones in plants with similar new class of hormones, termed brassins. This hypothesis, structures to animals’ steroid hormones. however, was not accepted by some other researchers, Brassinosteroids regulate a wide range of physiological who argued that the physiological activities of the ingredi- processes including plant growth, development and ents could have been caused by gibberellin due to the immunity. Brassinosteroid signalling and its integration crude nature of the extract from which brassins were with other signalling pathways have been investigated identified [9]. Given the potential applications of brassins thoroughly at the molecular level. in agriculture, efforts organized by the US Department of Agriculture led to purification of 4 mg of brassins from 500 pounds of bee-collected Brassica pollen. The crystal What are the plant steroid hormones structure of the purified brassins was then solved and brassinosteroids? brassinolide was identified as the active component [10]. Brasinosteroids, defined as the sixth plant hormone after These findings marked the discovery of the first plant the classic plant hormones auxin, gibberellins, cytokinin, steroidal hormone. Currently, nearly 70 kinds of natural abscisic acid and ethylene, are analogous to animal steroid brassinolide analogues have been isolated from tissues of hormones in structure [1, 2].
    [Show full text]
  • Integrative Comparative Analyses of Metabolite And
    UC Davis UC Davis Previously Published Works Title Integrative comparative analyses of metabolite and transcript profiles uncovers complex regulatory network in tomato (Solanum lycopersicum L.) fruit undergoing chilling injury. Permalink https://escholarship.org/uc/item/5nk3w5vc Journal Scientific reports, 9(1) ISSN 2045-2322 Authors Zhang, Wen-Fa Gong, Ze-Hao Wu, Meng-Bo et al. Publication Date 2019-03-14 DOI 10.1038/s41598-019-41065-9 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Integrative comparative analyses of metabolite and transcript profles uncovers complex regulatory Received: 22 June 2018 Accepted: 27 February 2019 network in tomato (Solanum Published: xx xx xxxx lycopersicum L.) fruit undergoing chilling injury Wen-Fa Zhang1, Ze-Hao Gong1, Meng-Bo Wu1, Helen Chan2, Yu-Jin Yuan1, Ning Tang1, Qiang Zhang1, Ming-Jun Miao3, Wei Chang3, Zhi Li3, Zheng-Guo Li1, Liang Jin1 & Wei Deng1 Tomato fruit are especially susceptible to chilling injury (CI) when continuously exposed to temperatures below 12 °C. In this study, integrative comparative analyses of transcriptomics and metabolomics data were performed to uncover the regulatory network in CI tomato fruit. Metabolite profling analysis found that 7 amino acids, 27 organic acids, 16 of sugars and 22 other compounds had a signifcantly diferent content while transcriptomics data showed 1735 diferentially expressed genes (DEGs) were down-regulated and 1369 were up-regulated in cold-stored fruit. We found that the contents of citrate, cis-aconitate and succinate were increased, which were consistent with the expression of ATP-citrate synthase (ACS) and isocitrate dehydrogenase (IDH) genes in cold-treated tomato fruit.
    [Show full text]
  • Citrate Synthase Polyclonal Antibody Catalog Number:16131-1-AP Featured Product 45 Publications
    For Research Use Only Citrate synthase Polyclonal antibody www.ptglab.com Catalog Number:16131-1-AP Featured Product 45 Publications Catalog Number: GenBank Accession Number: Purification Method: Basic Information 16131-1-AP BC010106 Antigen affinity purification Size: GeneID (NCBI): Recommended Dilutions: 150ul , Concentration: 350 μg/ml by 1431 WB 1:1000-1:8000 Nanodrop and 313 μg/ml by Bradford Full Name: IP 0.5-4.0 ug for IP and 1:500-1:2000 method using BSA as the standard; citrate synthase for WB Source: IHC 1:100-1:400 Calculated MW: IF 1:50-1:500 Rabbit 466 aa, 52 kDa Isotype: Observed MW: IgG 45-50 kDa Immunogen Catalog Number: AG9117 Applications Tested Applications: Positive Controls: IF, IHC, IP, WB,ELISA WB : mouse heart tissue, HeLa cells Cited Applications: IP : mouse heart tissue, IF, IHC, WB IHC : human liver cancer tissue, Species Specificity: human, mouse, rat IF : HepG2 cells, Cited Species: hamster, human, mouse, rat Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0 Citrate synthase (CS), the first and rate-limiting enzyme of the tricarboxylic acid cycle, plays a key role in Background Information regulating energy generation of mitochondrial respiration(PMID:19479947).It belongs to the citrate synthase family. The deduced 466-amino acid protein contains an N-terminal mitochondrial targeting sequence and a motif highly conserved in citrate synthases(PMID:12549038). It can exsit as a dimer(PMID:8749851). Northern blot analysis detected no CS expression in thymus and small intestine(PMID:12549038).
    [Show full text]