Characteristics and Drivers of High-Altitude Ladybird Flight: Insights from Vertical-Looking Entomological Radar

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics and Drivers of High-Altitude Ladybird Flight: Insights from Vertical-Looking Entomological Radar View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NERC Open Research Archive Characteristics and Drivers of High-Altitude Ladybird Flight: Insights from Vertical-Looking Entomological Radar Daniel L. Jeffries1, Jason Chapman2,3, Helen E. Roy4, Stuart Humphries1, Richard Harrington2, Peter M. J. Brown5, Lori-J. Lawson Handley1* 1 Department of Biological Sciences, University of Hull, Hull, Humberside, United Kingdom, 2 Rothamsted Research, Harpenden, Hertfordshire, United Kingdom, 3 Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom, 4 NERC Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom, 5 Department of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom Abstract Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range- shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends) and drivers (aphid abundance, air temperature, wind speed and rainfall) of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis). These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ,1100 m above ground level, where displacement speeds of up to ,60 km/h were recorded, however most ladybirds were found between ,150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a ‘‘typical’’ high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high-altitude insect flight and has important implications for predicting long-distance dispersal. Citation: Jeffries DL, Chapman J, Roy HE, Humphries S, Harrington R, et al. (2013) Characteristics and Drivers of High-Altitude Ladybird Flight: Insights from Vertical-Looking Entomological Radar. PLoS ONE 8(12): e82278. doi:10.1371/journal.pone.0082278 Editor: Eric James Warrant, Lund University, Sweden Received June 25, 2013; Accepted October 21, 2013; Published December 18, 2013 Copyright: ß 2013 Jeffries et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was primarily funded by the Department of Biological Sciences, University of Hull. In addition, Rothamsted Research is a national instituteof bioscience strategically funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC). HER is funded by the Natural Environment Research Council and also receives funding from the Joint Nature Conservation Committee. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction therefore increase the frequency and distance of migration, which, in the case of pest species, presents considerable challenges for 2 An estimated three billion insects fly through a 1 km ‘window’ conservation of native biodiversity and for sustainable agriculture. of sky in England during a typical summer month [1]. While a Ladybirds (Coleoptera: Coccinellidae) are the most abundant substantial proportion of these insects are beneficial and provide aphid predators in cereal crops worldwide, and are important essential ecosystem services, others are pests that pose a potential biological control agents of aphids and coccids [9]. However, use threat to biodiversity, the economy and human health. Knowledge of certain species in biological control has contributed to their of the characteristics (e.g. altitude and displacement speed, status as IAS in many parts of the world (see [6] and [10] for seasonal and annual trends) and drivers (e.g. prey abundance, recent reviews). For example, Coccinella septempunctata was intro- environmental factors) of insect flight is crucial for estimating long- duced to North America for biological control in the 1970s and distance dispersal capability, predicting the dynamics, persistence rapidly spread across the continent, gaining IAS status in the and spread of insect populations, and has important applications 1990s (reviewed in [1,10]). Soon afterwards (1988), another in pest management and conservation [2–6]. This knowledge is coccinellid, Harmonia axyridis, was found to be established and particularly important in the case of invasive alien species (IAS) quickly spreading in North America [6]. Since 1988, H. axyridis has and those undergoing range shifts in response to global warming established in at least 38 countries on four continents, with spread [1–7], since higher temperatures have been shown to drive rates estimated up to 500 km/year [6]. This rapid spread suggests increased migration in certain insects [8]. Global warming could considerable long-distance dispersal capability of this species, but PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e82278 Characteristics and Drivers of Ladybird Flight estimates are confounded by accidental transport by humans [6]. Both H. axyridis and C. septempunctata are considered to be strong, Studying the dispersal capability of H. axyridis is particularly active fliers with high dispersal ability, at least over short distances important given that this species has been linked to declines in [16,18,19], but studying dispersal over longer distances has been indigenous ladybirds and is thought to present a threat to native hampered by the difficulty of tracking the insects in the field. biodiversity [11,12]. Conclusions have therefore been limited to assumptions inferred Knowledge of the key characteristics of ladybird dispersal; from ground level observations of walking [21,30,31] or short- specifically flight altitude, displacement speed, and seasonal and distance flights [21,24,27,32–34], or indirect evidence for long- annual patterns, is crucial to understanding and predicting long- distance flights (e.g. from malaise-traps, [35] or mark-release- distance dispersal. Since wind speed increases with altitude, species recapture experiments, [21,36]). To our knowledge, only one that use high-altitude wind currents have greater long-distance study has so far attempted to directly study coccinellids migrating dispersal potential than those that fly only a few metres above at high altitudes. Using traps on aircraft, Hagen [37] sampled ground level (AGL), where wind currents are negligible [13]. Hippodamia convergens flying to and from migration sites, between Flight altitude is therefore a key determinant of dispersal potential. approximately 1000 and 1650 metres above ground level. Our understanding of insect seasonal phenology tends to be drawn However only 24 beetles were sampled in 15 aerial surveys. In from ground-level observations, but it is unclear whether this recent years, a new generation of vertical-looking entomological accurately reflects insect density and population dynamics. For radars (VLR) have made it possible to identify and record large instance, the number of individual records of H. axyridis from field insects flying at altitudes ,150–1200 m AGL, providing quanti- observations across the UK peaks in October, corresponding to tative estimates of insect aerial density, diversity and biomass, and the period when individuals are migrating to overwintering sites unique insights into insect population dynamics and the charac- [14], but whether this corresponds to a peak in actual abundance teristics and drivers of high-altitude [38–42] flight. Here, we is unclear. An important question is whether the potential for long- analyse VLR data collected at Rothamsted Research, Harpenden, distance dispersal is greater during the migration to or from U.K. between May-October 2000–2010, together with meteoro- overwintering sites or during the summer months, when meteo- logical and aphid suction trap data, and perform simple rological conditions may be more favourable for flight. experiments to investigate high-altitude flight in C. septempunctata Another key question is whether dispersal is driven mainly by and H. axyridis. Specifically, we investigate 1) flight characteristics biotic or environmental cues, or by a combination
Recommended publications
  • Isolation of a Pericentromeric Satellite DNA Family in Chnootriba Argus (Henosepilachna Argus) with an Unusual Short Repeat Unit (TTAAAA) for Beetles
    insects Article Isolation of a Pericentromeric Satellite DNA Family in Chnootriba argus (Henosepilachna argus) with an Unusual Short Repeat Unit (TTAAAA) for Beetles Pablo Mora, Jesús Vela, Areli Ruiz-Mena, Teresa Palomeque and Pedro Lorite * Department of Experimental Biology, Genetic Area, University of Jaén, 23071 Jaén, Spain; [email protected] (P.M.); [email protected] (J.V.); [email protected] (A.R.-M.); [email protected] (T.P.) * Correspondence: [email protected]; Tel.: +34-953-212769 Received: 24 July 2019; Accepted: 17 September 2019; Published: 19 September 2019 Abstract: Ladybird beetles (Coccinellidae) are one of the largest groups of beetles. Among them, some species are of economic interest since they can act as a biological control for some agricultural pests whereas other species are phytophagous and can damage crops. Chnootriba argus (Coccinellidae, Epilachnini) has large heterochromatic pericentromeric blocks on all chromosomes, including both sexual chromosomes. Classical digestion of total genomic DNA using restriction endonucleases failed to find the satellite DNA located on these heterochromatic regions. Cloning of C0t-1 DNA resulted in the isolation of a repetitive DNA with a repeat unit of six base pairs, TTAAAA. The amount of TTAAAA repeat in the C. argus genome was about 20%. Fluorescence in situ hybridization (FISH) analysis and digestion of chromosomes with the endonuclease Tru9I revealed that this repetitive DNA could be considered as the putative pericentromeric satellite DNA (satDNA) in this species. The presence of this satellite DNA was tested in other species of the tribe Epilachnini and it is also present in Epilachna paenulata. In both species, the TTAAAA repeat seems to be the main satellite DNA and it is located on the pericentromeric region on all chromosomes.
    [Show full text]
  • Testing the Applicability of Regional IUCN Red List Criteria on Ladybirds (Coleoptera, Coccinellidae) in Flanders (North Belgium): Opportunities for Conservation
    Insect Conservation and Diversity (2015) doi: 10.1111/icad.12124 MINOR REVIEW Testing the applicability of regional IUCN Red List criteria on ladybirds (Coleoptera, Coccinellidae) in Flanders (north Belgium): opportunities for conservation TIM ADRIAENS,1 GILLES SAN MARTIN Y GOMEZ,2 JOHAN BOGAERT,3 LUC CREVECOEUR,4 JEAN-PIERRE BEUCKX5 and 1 DIRK MAES 1Research Institute for Nature and Forest (INBO), Brussels, Belgium, 2Behavioural Ecology and Conservation Group, Biodiversity Research Centre, Earth and Life Institute, Universite catholique de Louvain (UCL), Louvain-la-Neuve, Belgium, 3Belgian Ladybird Working Group, Kessel-Lo, Belgium, 4LIKONA, Genk, Belgium and 5Heers, Belgium Abstract. 1. Red Lists assess the extinction risk of species and are an impor- tant tool to prioritise species conservation and management measures. World- wide, quantitative IUCN criteria are used to estimate the threat status of species at the regional level. 2. In Flanders (north Belgium), about 70 000 distribution records of lady- birds were collected in 36% of all the grid cells (1 9 1km2) since 1990 during a large-scale citizen-science project. 3. Applying the IUCN criteria to the 36 resident ‘conspicuous’ ladybirds in Flanders resulted in two Regionally Extinct species, three Endangered species and six Vulnerable species. A further seven species were considered Near Threatened and the remaining 15 species (39%) were assessed as Least Concern. Three species were classified as Data deficient. Using the Red List status, we delineated ladybird hotspots that were mainly located in grid cells with large areas of Natura2000 sites. 4. For calculating a distribution trend, we advocate the use of a high grid cell resolution (e.g.
    [Show full text]
  • (Coleoptera: Coccinellidae). Check List from 1758 to 2003
    Available online at www.worldnewsnaturalsciences.com WNOFNS 30(1) (2020) 1-74 EISSN 2543-5426 World Inventory of Beetles of the Subfamily Epilachninae Mulsant, 1846 (Coleoptera: Coccinellidae). Check List from 1758 to 2003 Tomasz Borowski The II Laboratory of Research Works, The Institute of Biopaleogeography named under Charles R. Darwin, 22 Mickiewicza Str., Złocieniec, Poland E-mail address: [email protected] ABSTRACT This paper presents list of beetles of the Subfamily Epilachninae Mulsant, 1846 (Family Coccinellidae Latreille, 1807) and their occurrence. The paper includes: 4 tribes, 23 genera and 1051 species of beetles belonging to the subfamily Epilachninae. Keywords: Coleoptera, Coccinellidae, Epilachninae, Epilachnini, Cynegetini, Epivertini, Eremochilini Tribes Epilachnini ..……...…..….…….2 Cynegetini ..……...…….…….64 Epivertini ..……...…….…….70 Eremochilini ..…….............……70 ( Received 22 February 2020; Accepted 21 March 2020; Date of Publication 24 March 2020 ) World News of Natural Sciences 30(1) (2020) 1-74 Kingdom: Animalia Phylum: Arthropoda Class: Hexapoda Order: Coleoptera Family Coccinellidae Latreille, 1807 Subfamily Epilachninae Mulsant, 1846 Tribe Epilachnini Mulsant, 1846 Genus Adira Gordon et Almeida, 1986 Adira clarkii (Crotch, 1874) Distribution: Brazil Adira gossypiata (Mulsant, 1850) Distribution: Bolivia Adira gossypioides (Gordon, 1975) Distribution: Panama, Colombia Adira inexculta (Gordon, 1975) Distribution: Bolivia Adira nucula (Weise, 1902) Distribution: Peru Adira obscurocincta (Klug, 1829)
    [Show full text]
  • Molecular Cytogenetic Studies in the Ladybird Beetle Henosepilachna Argus Geoffroy, 1762 (Coleoptera, Coccinellidae, Epilachn
    COMPARATIVE A peer-reviewed open-access journal CompCytogen 9(3):Molecular 423–434 (2015) cytogenetic studies in the ladybird beetle Henosepilachna argus 423 doi: 10.3897/CompCytogen.v9i3.5263 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Molecular cytogenetic studies in the ladybird beetle Henosepilachna argus Geoffroy, 1762 (Coleoptera, Coccinellidae, Epilachninae) Pablo Mora1, Jesús Vela1, Olivia Sanllorente1, Teresa Palomeque1, Pedro Lorite1 1 Departamento de Biología Experimental. Universidad de Jaén. 23071 Jaén. Spain Corresponding author: Pedro Lorite ([email protected]) Academic editor: D. Lachowska | Received 10 May 2015 | Accepted 17 June 2015 | Published 09 July 2015 http://zoobank.org/D5BDC6E7-7BFC-46A4-A46B-6F49BB3A3BD6 Citation: Mora P, Vela J, Sanllorente O, Palomeque T, Lorite P (2015) Molecular cytogenetic studies in the ladybird beetle Henosepilachna argus Geoffroy, 1762 (Coleoptera, Coccinellidae, Epilachninae). Comparative Cytogenetics 9(3): 423–434. doi: 10.3897/CompCytogen.v9i3.5263 Abstract The ladybird Henosepilachna argus Geoffroy, 1762 has been cytogenetically studied. In addition we have conducted a review of chromosome numbers and the chromosomal system of sex determination avail- able in the literature in species belonging to the genus Henosepilachna and in its closely related genus Epilachna. Chromosome number of H. argus was 2n=18, including the sex chromosome pair, a common diploid chromosome number within the tribe Epilachnini. The study of prophase I meiotic chromosomes showed the typical Xyp “parachute” bivalent as in the majority of species of Coccinellidae. C-banding and fluorescent staining with AT-specific DAPI fluorochrome dye have been carried out for the first time in H.
    [Show full text]
  • Harmonia Axyridis in Britain
    Modelling the impact of an alien invasion: Harmonia axyridis in Britain Richard Francis Comont Linacre College Trinity term 2013 A thesis submitted for the degree of Doctor of Philosophy Word count: 31,043 i Contents Summary ........................................................................................................................................... vi Declaration ....................................................................................................................................... vii Dedication and Acknowledgements .............................................................................................viii Chapter 1. General introduction ......................................................................................... 1 1. 1.1. Defining alien species and invasive alien species ....................................................... 1 1. 1.2. Impacts and costs of Invasive Alien Species ............................................................... 1 1. 1.3. Trends in arrival, establishment and spread of IAS ..................................................... 2 1. 1.4. Pathways of introduction and spread – how do IAS arrive? ...................................... 3 1. 1.5. From alien to invasive ...................................................................................................... 4 1. 1.6. From alien to invasive – the traits of invasive species ................................................ 5 1. 1.7. Invasibility of native communities – the diversity-invasibility hypothesis
    [Show full text]
  • Satellitome Analysis of Rhodnius Prolixus, One of the Main Chagas Disease Vector Species
    International Journal of Molecular Sciences Article Satellitome Analysis of Rhodnius prolixus, One of the Main Chagas Disease Vector Species Eugenia E. Montiel 1, Francisco Panzera 2 , Teresa Palomeque 1 , Pedro Lorite 1,* and Sebastián Pita 2,* 1 Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; [email protected] (E.E.M.); [email protected] (T.P.) 2 Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay; [email protected] * Correspondence: [email protected] (P.L.); [email protected] (S.P.) Abstract: The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented 19% of R. prolixus genome, being mostly DNA transposon (Class II elements). However, scarce information has been published regarding another important repeated DNA fraction, the satellite DNA (satDNA), or satellitome. Here, we offer, for the first time, extended data about satellite DNA families in the R. prolixus genome using bioinformatics pipeline based on low-coverage sequencing data. The satellitome of R. prolixus represents 8% of the total genome and it is composed by 39 satDNA families, including four satDNA families that are shared with Triatoma infestans, as well as telomeric (TTAGG) and (GATA) repeats, also present in the T. infestans genome. Only three of them exceed n n 1% of the genome. Chromosomal hybridization with these satDNA probes showed dispersed signals over the euchromatin of all chromosomes, both in autosomes and sex chromosomes.
    [Show full text]
  • Contribution to the Knowledge of the Coccinellidae of Sardinia (Coleoptera) *
    ConservaZione habitat invertebrati 5: 501–516 (2011) Cnbfvr Contribution to the knowledge of the Coccinellidae of Sardinia ( Coleoptera)* Claudio CANEPARI Via Venezia 1, I-20097 San Donato Milanese (MI), Italy. E-mail: [email protected] *In: Nardi G., Whitmore D., Bardiani M., Birtele D., Mason F., Spada L. & Cerretti P. (eds), Biodiversity of Marganai and Montimannu (Sardinia). Research in the framework of the ICP Forests network. Conservazione Habitat Invertebrati, 5: 501–516. ABSTRACT An updated checklist of the Coccinellidae of Sardinia (Italy) is provided. Sixty-two species are recorded with certainty, while 19 other species (Scymnus (Mimopullus) fulvicollis (Mulsant, 1846), S. (M.) pharaonis Motschulsky, 1851, S. (Neopullus) haemorrhoidalis (Herbst, 1797), S. (N.) limbatus limbatus (Stephens, 1831), Nephus (Nephus) reunioni Fürsch, 1974, Scymniscus tristiculus (Weise, 1929), Hyperaspis chevrolati Canepari, 1985, H. concolor Suffrian, 1843, H. hoffmannseggi (Gravenhorst, 1807), H. reppensis reppensis (Herbst, 1783), Coc- cidula rufa (Herbst, 1783), Coccinella (Coccinella) magnifi ca Redtenbacher, 1843, Tytthaspis phalerata (A. Costa, 1849), Oenopia lyncea agnata (Rosenhauser, 1847), Halyzia sedecimguttata (Linnaeus, 1758), Myrrha octodecimguttata octodecimguttata (Linnaeus, 1758), Calvia decemguttata (Linnaeus, 1758), Chilocorus similis (Rossi, 1790) and Exochomus nigromaculatus (Goeze, 1777)) are excluded from the Sardinian fauna. Key words: Coccinellidae, Sardinia, faunistics, new records, checklist. RIASSUNTO Contributo alla conoscenza dei Coccinellidae della Sardegna (Coleoptera) L'autore fornisce una lista aggiornata dei Coccinellidae di Sardegna; complessivamente sono segnalate con certezza 62 specie, mentre altre 19 specie (Scymnus (Mimopullus) fulvicollis (Mulsant, 1846), S. (M.) pharaonis Motschulsky, 1851, S. (Neopullus) haemorrhoidalis (Herbst, 1797), S. (N.) limbatus limbatus (Stephens, 1831), Nephus (Nephus) reunioni Fürsch, 1974, Scymniscus tristiculus (Weise, 1929), Hyperaspis chevrolati Canepari, 1985, H.
    [Show full text]
  • Characterization and Transcriptional Analysis of a Subtelomeric Satellite DNA Family in the Ladybird Beetle Henosepilachna Argus (Coleoptera: Coccinellidae)
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 481–487, 2017 http://www.eje.cz doi: 10.14411/eje.2017.061 ORIGINAL ARTICLE Characterization and transcriptional analysis of a subtelomeric satellite DNA family in the ladybird beetle Henosepilachna argus (Coleoptera: Coccinellidae) PABLO MORA, JESÚS VELA, ARELI RUIZ-MENA, TERESA PALOMEQUE and PEDRO LORITE * Área de Genética, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain; e-mails: [email protected], [email protected], [email protected], [email protected], [email protected] Key words. Coleoptera, Coccinellidae, Henosepilachna argus, ladybird beetle, satellite DNA, transcription, in situ hybridization Abstract. Satellite DNAs are the major repetitive DNA components in eukaryotic genomes. Although satellite DNA has long been called “parasite DNA” there is substantial evidence that it could be associated with some functions of chromosome biology. Ladybird beetles (Coccinellidae) are one of the largest and most important groups of beetles. Many ladybirds are of economic interest as biological control agents because they eat some agricultural pests such as aphids and scale insects. However, other species are phytophagous and can damage crops. Despite the ecological importance of the latter group there are no studies on their satellite DNA. A satellite DNA family was isolated and characterized in the ladybird Henosepilachna argus. This satellite DNA is organized in tandem repeats of 658 bp and is A + T rich (67.3%). The recorded high sequence conservation of the monomers together with the detection of putative gene conversion processes indicate concerted evolution. Reverse transcription polymerase chain reaction (RT-PCR) revealed that this satellite DNA is transcribed and in situ hybridization its location in the subtelomeric regions of all chromosomes except the long arm of the X chromosome.
    [Show full text]
  • XII SIMPOZIJUM ENTOMOLOGA SRBIJE SA Meðunarodnim UČEŠĆEM ZBORNIK REZIMEA Niš, Univerzitet U Nišu 2529
    ENTOMOLOŠKO DRUŠTVO SRBIJE ENTOMOLOGICAL SOCIETY OF SERBIA XII SIMPOZIJUM ENTOMOLOGA SRBIJE SA MEðUNARODNIM UČEŠĆEM ZBORNIK REZIMEA Niš, Univerzitet u Nišu 25-29. IX 2019. XII SYMPOSIUM OF ENTOMOLOGISTS OF SERBIA WITH INTERNATIONAL PARTICIPATION BOOK OF ABSTRACTS Niš, University of Niš 25-29th IX 2019 ORGANIZATORI / ORGANIZERS Entomološko društvo Srbije Entomological society of Serbia Ministarstvo prosvete, nauke i tehnološkog razvoja Ministry of Education, Science and Technological Development Univerzitet u Nišu, Prirodno-matematički fakultet University of Niš, Faculty of Sciences and Mathematics ORGANIZACIONI ODBOR / ORGANIZATION COMMITTEE Prof. dr Vladimir Žikić Dr Saša Stanković Dr Marijana Ilić Milošević NAUČNI ODBOR / SCIENTIFIC COMMITTEE Dr Akademik Marko Anñelković, redovni član SANU, Biološki fakultet Univerziteta u Beogradu, Beograd Dr Akademik Radmila Petanović, redovni član SANU, Poljoprivredni fakultet Univerziteta u Beogradu, Beograd Dr Željko Tomanović, redovni profesor, Biološki fakultet Univerziteta u Beogradu, Beograd Dr Vladimir Žikić, redovni profesor, Prirodno-matematički fakultet Univerziteta u Nišu, Niš Dr Ljubiša Stanisavljević, redovni profesor, Biološki fakultet Univerziteta u Beogradu, Beograd Dr Olivera Petrović-Obradović, redovni profesor, Poljoprivredni fakultet Univerziteta u Beogradu, Beograd Dr Jelica Lazarević, naučni savetnik, Institut za biološka istraživanja „Siniša Stanković“, Beograd Dr Snežana Pešić, vanredni profesor, Prirodno-matematički fakultet Univerziteta u Kragujevcu, Kragujevac Dr Draga
    [Show full text]
  • Kommen Henosepilachna Argus (Geoffroy, 1762) Und H
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Acta Entomologica Slovenica Jahr/Year: 1995 Band/Volume: 3 Autor(en)/Author(s): Walluschek-Wallfeld Horst Artikel/Article: Kommen Henosepilachna argus (Geoffroy, 1762) und H. elaterii (Rossi, 1794) in Slowenien nicht vor? (Coleoptera: Coccinellidae). Ali Henosepilachna argus (Geoffroy, 1762) in H. elaterii (Rossi, 1794) ne živita v Sloveniji? (Coleoptera: Coccinellidae). 111-114 ©Slovenian Entomological Society, download unter www.biologiezentrum.at KOMMEN HENOSEPILACHNA ARGUS (GEOFFROY, 1762) UND H. ELATERII (ROSSI, 1794) IN SLOWENIEN NICHT VOR? (COLEOPTERA: COCCINELLIDAE) Horst WALLUSCHEK-WALLFELD Graz Abstract - Do Henosepilachna argus (Geoffroy, 1762) and H. elaterii (Rossi, 1794) not exist in Slovenia? (Coleoptera: Coccinellidae) A short description of the behavior and the distribution in Europe of Henosepilachna argus (Geoffroy, 1762) and H. elaterii (Rossi, 1794) is given. As there are no records until now, the question is whether they do not exist or whether they have not yet been found in Slovenia. Izvleček - Ali Henosepilachna argus (Geoffroy, 1762) in H. elaterii (Rossi, 1794) ne živita v Sloveniji? (Coleoptera: Coccinellidae) Avtor na kratko opisuje vedenje in razširjenost vrst Henosepilachna atgus (Geoffroy, 1762) in H. elaterii (Rossi, 1794) v Evropi. Ker za vrsti za sedaj ni podatkov iz Slovenije, se zastavlja vprašanje, ali tu ne živijo, ali pa jih ni še nihče našel. Einleitung Durch Herrn Dr. Erich Kreissl, Graz, wurde bei mir das Interesse für Käfer und im speziellen für die Famillie Coccinellidae geweckt. In dankenswerter Weise und im viel Gedult hat er mir die ersten Grundbegriffe dieser Materie beigebracht, wozu auch Bestmmungsübungen gehörten.
    [Show full text]
  • Fauna Chrobákov (Coleoptera) Voľnej Prírody V Okolí Obce Bučany Oto Majzlan
    NATURAE TUTELA 16/1 37 – 50 LIPTOVSKÝ MIKULÁŠ 2012 Fauna chrobákov (coleoptera) voľnej prírody v okolí obce bučany Oto MAJZlan o. Majzlan: beetle (coleoptera) fauna in the vicinity of the village of bučany Abstract: Over the course of several years, we investigated the fauna of beetles in the vicinity of the village of Bučany in southwestern Slovakia. Using the Malaise traps, we accumulated a copious amount of study material, including 401 species of beetles. At the site „garden“, the beetle fauna was dominated by the species Trechus austriacus. At the site „forest“, the dominant species were Ceutorhynchus pallidactylus and multiple species of the genus Lignyodes. This research demonstrated high diversity of beetles at the sites classified as „free land“, the first (lowermost) degree of nature protection defined by the Slovak legislature. Key words: Coleoptera, diversity, fauna Slovakia ÚVOD Fauna chrobákov bola na Slovensku spravidla sledovaná v chránených územiach. Z voľnej prírody (1. stupeň ochrany prírody) je veľmi málo údajov. Zo získaného študijného materiálu spracoval Vi d l i č k a (2011a,) Neuroptera a Raphidioptera a Dermaptera, Mecoptera (Vi d l i č k a , 2011b). SleDovanÉ ÚZemie Obec Bučany leží na mierne zvlnenom teréne na styku východného okraja Trnavskej pahorkatiny a Dolnovážskej nivy. Je na styku Trnavskej tabule a Dudvážskej mokradi. Chotár obce leží v nadmorskej výške 136 až 168 m. V historickej minulosti (subatlantiku – pred 2500 až 1000 rokmi) bola väčšina chotára porastená teplomilnými dúbravami a riedkymi lesostepami s porastmi kríkov. V okolí potokov sa nachádzali lužné lesy, ich pozostatkom sú bučianske háje vo východnej časti chotára. V súčasnosti je chotár takmer úplne odlesnený, lesné a lesostepné formácie nahradili polia, role a záhrady.
    [Show full text]
  • July 2021 E.C.A
    ISSN 2074-0786 http://www.e-c-a.eu No. 48 • JULY 2021 E.C.A. - EUROPEAN CYTOGENETICISTS ASSOCIATION NEWSLETTER No. 48 July 2021 E.C.A. Newsletter No. 48 July 2021 The E.C.A. Newsletter is the official organ Contents Page published by the European Cytogeneticists Association (E.C.A.). For all contributions to and publications in the Newsletter, please contact the 13th EUROPEAN CYTOGENENOMICS 2 editor. CONFERENCE (ECC) 2021 Editor of the E.C.A. Newsletter: ECC Programme 2 ECC Committees and Scientific Secretariat 6 Konstantin MILLER Institute of Human Genetics Abstracts invited lectures 6 Hannover Medical School, Hannover, D Abstracts selected oral presentations 13 E-mail: [email protected] Abstracts poster presentations 18 Editorial committee: Abstracts read by title 84 Literature on Social Media 85 J.S. (Pat) HESLOP-HARRISON Genetics and Genome Biology E.C.A. Structures 91 University of Leicester, UK E-mail: [email protected] - Board of Directors 91 - Committee 92 Kamlesh MADAN Dept. of Clinical Genetics - Scientific Programme Committee 92 Leiden Univ. Medical Center, Leiden, NL E.C.A. News 92 E-mail: [email protected] E.C.A. Fellowships 92 Mariano ROCCHI 2022 European Advanced Postgraduate Course 93 President of E.C.A. in Classical and Molecular Cytogenetics (EAPC) Dip. di Biologia, Campus Universitario Bari, I 2022 Goldrain Course in Clinical Cytogenetics 94 E-mail: [email protected] E.C.A. Permanent Working Groups 95 Abstract added in proof 97 V.i.S.d.P.: M. Rocchi ISSN 2074-0786 E.C.A. on Facebook As mentioned in the earlier Newsletters, E.C.A.
    [Show full text]