June, 1978 the Thesis of Hedwig Gertrud Knauer Is Approved

Total Page:16

File Type:pdf, Size:1020Kb

June, 1978 the Thesis of Hedwig Gertrud Knauer Is Approved CALIFORNIA STATE UNIVERSITY, NORTHRIDGE CURVES OF CONSTANT HIDTH AND A-CURVES ti .A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Mathematics by Hedwig Gertrud Knc-:J.cr- June, 1978 The Thesis of Hedwig Gertrud Knauer is approved: (William Karush) Advisor (Joel L. Zeitlin) (Date · Committee Chairman . \. California State University, Northridge ii Dedication To my husband Wolfgang and my sons Tom, Stephen, and Peter iii Acknowledgement: I wish to express my gratitude to Dr. Huriel Wright and to Dr. Joel Zeitlin for their constant en­ couragement and help with this project.. iv TABLE OF CONTENTS Dedication p. iii Acknowledgment p. iv •ra.ble of Contents p. v Abstract p. vi I. Introduction p. 1 II. History p. 3 III. Definitions artd General Notions p. 4 IV. Curves of Constant Width or Rotors in the Square A. Circular Arc Constructions (l) The Reuleaux Triangle and its Applications p. 12 (2) Reuleaux Polygons and Their Construction p. 18 B. Non-Circular Arc Constructions: Involutes of Astroids p. 20 V. General Theorems p. 24 VI. Involutes of Astroids as Curves of p. 36 Const.ant Width VII. ~-Curves or Rotors in the Equilateral p. 49 Triangle VIII.Conclusion p. 61 Footnotes and Bibliography p. 63 v ABSTRACT CURVES OF CONSTANT WIDTH AND L'l-CURVES by Hedwig Gertrud Knauer Master of Science in Mathematics This thesis deals with curves of constant width (rotors in a square), a topic which first appeared in 1780 in a tre~ atise by Leonard Euler and reappeared interrnittently in the late 19·th and early 20th century in widely different mathe­ matical contexts. After the turn of the century it was dis­ covered that L'l-curves (rotors in an equilateral triangle) are closely related to curves of constant width. About the middle of this century renewed interest in these curves was evident as part of the theory of convexity~ In this thesis significant examples of curves of con­ stant width and L'l-curves are described, constructed, and parametrized. A variety of theorems are presented which es­ tablish major characteristics of these curves. The conclu­ sion indicates the present state of research in this field. vi I. Introduction Just before the invention of the wheel primitive people probably used logs as rollers to transport heavy loads. The logs' circular cross sections kept the under­ side of the load always the same distance from the ground. "Ob- viously a wheel must be made in the form of a circle with the hub at the center, since any other form will produce an Fig. 1 up-and-dovm motion." [l,p. 163] If rollers are used, how- ever, the movement of the center is not important. The cross section may be any curve that will serve to keep the load the same distance h above the ground. Such a curve­ which has always the same width h between a supporting line (in this case the ground) and the "top" - is called a "curve of constant width". It can be shown that a curve of constant width h revolves inside a square of sidelength h, and it is therefore called a "rotor in a sguare." Since curves of constant width are rotors in a square, it is natural to ask if there are rotors in an equilateral triangle. Such curves do exist and are called b.-curve~ ("delta-curves"), because the Greek capital letter ~ resembles an equilateral triangle. In this thesis we will study the properties of both types of curves and some of their applications. Chapter II 1 2 gives a brief history, Chapter III gives definitions and introduces some tools from differential geometry for subse­ quent development. In Chapter IV several examples of curves of constant width, including the Reuleaux triangle and in­ volutes of astroids are described and constructed. The next chapter lists and proves several theorems which char­ acterize curves of constant width. In Chapter-VI for the particular case of involutes of astroids parantetrizations are developed, the theorems are verified and some of the in­ volutes are graphed. Chapter VII deals with ~-curves and the analogies to the curves of constant width. II. History Leonhard Euler discovered and studied curves of con- stant width as involutes of tricusped curves (1778). He called them "orbiformes" [2]. Since then, many authors have written about them, yet in 1958 Eggleston was moved to ·1r.rrite 11 it is surprizing, how little is known about them" [3]. Barbier studied the curves in 1860 in connection with Buffon's needle problem and found the theorem named after him: "All curves of constant width h have the same per1meter• II [4,J. In 1875 Franz Reuleaux published a "Text- book of Kinematics" in which a large section is devoted to curves which revolve in a square (namely curves of constant width) and to rotors in an equilateral triangle (~-curves). But the emphasis is on geometrical construction and not on analysis. The well known curvilinear triangle consisting of three congruent circular arcs of radius h is named after Reuleaux [5]. Many papers on curves of constant width were published in the late 19th and the early 20th century, es- pecially in Japanese Mathematics Journals, but written in French, German, and English. Papers treating rotors in the equilateral triangle analytically appeared around 1915, again mostly in Japanese Journals [6],[7],[8],[9]. 3 III. Definitions and General Notions To begin the discussion of curves of constant width, we have to define the width of a closed convex curve in a , given direction d*): Each point of the curve C is project- ed perpendicularly onto a line n also in the given direction. These projections fill the closed line segment AB of the line n. The length of the line segment !AB"J is the width h of the curve C in the direction of n. The line nA, perpendicular to n at A has at least one point in common with the curve C, while C lies completely to one side of nA. Similarly this is the case for the line nB, perpendicular to n at B. These two lines are called a pair of supporting lines in the direct- ion of n. A closed curve has exactly two supporting lines (= one pair of supporting lines) for every direction n. It should be noted that a supporting line does not have to be tangent. We will see later that a Reuleaux triangle has infinitely many supporting lines which are not tangents at each of it's vertices. The definition of curves of constant width may now be stated more precisely: For a curve of constant width the distance between every pair of supporting lines is always *)This discussion follows Rademacher and Toeplitz. pl63ff. 4 5 the same distance h. Now, if one considers any two.pairs of supporting lines of a curve of constant width, they form a rhombus (Fig. 3). If the two pairs are in perpendicu­ lar directions, they form a square of sidelength h. There­ fore all squares circumscribed around a given curve of con­ stant width h are congruent (Fig. 4). This means that a square of sidelength h can be Fig. 3 rotated around a curve of con­ stant width h in such a way, that it always touches the curve at four points. Since the motion is relative, it follows, that a curve of con­ stant width can rotate inside a square of sidelength h. Fig. 4 It is important t.o realize, that only for the circle the center of rotation stays the same. For all other curves of constant width the instantaneous center of rotation changes (Fig. 5). At any point. of contact between the sides of the square and the curve, the center of rotation has to lie on the perpendicular to the square's side at that point. Since this has to be the case for all points of contact, 6 the perpendiculars have to meet in one point M. As the curve rotates, the contact points change, and so does the center of rotation. Definitions and Notions from Differential Geometry In the following we will need some expressions and defi- nitions from Differential Fig. 5 geometry. The function {3.1) X ( t) = (x ( t) , y ( t) ) represents a continuous curve if x (t) and y (t) are defined and continuous functions of a parameter t in some closed interval t1 ~ t ~ t 2 • We can change to another parameter r of t is a monotone function of r in the closed interval r 1 < r < Then the interval r ~ r ~ r is mapped onto t 1 2 1 < t < t in a one-to-one way and we can write 2 X (t (r)) -·(X (t(r)), y (t (r)) or X (r) (x (r), y (r)) for r < r ~ r = 1 2 X (t) can also be looked upon as the path of the end point of the vector X (t) from the origin to the point X with the coordinates (x (t), y (t)). The length of this vector is defined as 2 2 (3.2) lx (t) I = /C (t) + y (t) The linear combination of two vectors x , x is defin- 1 2 7 ed as ( 3. 3) and a, b real numbers. The scalar product of two vectors x1 , x2 is defined a.s (3.4) or (3.5) where x 1 , y 1 , x 21 y 2 are the coordinates of the end points of xll x2, and 8 is the angle between the vectors. In particular we have for any vector ( 3.
Recommended publications
  • Extremal Problems for Convex Polygons ∗
    Extremal Problems for Convex Polygons ∗ Charles Audet Ecole´ Polytechnique de Montreal´ Pierre Hansen HEC Montreal´ Fred´ eric´ Messine ENSEEIHT-IRIT Abstract. Consider a convex polygon Vn with n sides, perimeter Pn, diameter Dn, area An, sum of distances between vertices Sn and width Wn. Minimizing or maximizing any of these quantities while fixing another defines ten pairs of extremal polygon problems (one of which usually has a trivial solution or no solution at all). We survey research on these problems, which uses geometrical reasoning increasingly complemented by global optimization meth- ods. Numerous open problems are mentioned, as well as series of test problems for global optimization and nonlinear programming codes. Keywords: polygon, perimeter, diameter, area, sum of distances, width, isoperimeter problem, isodiametric problem. 1. Introduction Plane geometry is replete with extremal problems, many of which are de- scribed in the book of Croft, Falconer and Guy [12] on Unsolved problems in geometry. Traditionally, such problems have been solved, some since the Greeks, by geometrical reasoning. In the last four decades, this approach has been increasingly complemented by global optimization methods. This allowed solution of larger instances than could be solved by any one of these two approaches alone. Probably the best known type of such problems are circle packing ones: given a geometrical form such as a unit square, a unit-side triangle or a unit- diameter circle, find the maximum radius and configuration of n circles which can be packed in its interior (see [46] for a recent survey and the site [44] for a census of exact and approximate results with up to 300 circles).
    [Show full text]
  • Representation of Curves of Constant Width in the Hyperbolic Plane
    PORTUGALIAE MATHEMATICA Vol. 55 Fasc. 3 { 1998 REPRESENTATION OF CURVES OF CONSTANT WIDTH IN THE HYPERBOLIC PLANE P.V. Araujo¶ * Abstract: If γ is a curve of constant width in the hyperbolic plane H2, and l is a diameter of γ, the track function x(θ) gives the coordinate of the point of intersection l(x(θ)) of l with the diameter of γ that makes an angle θ with l. We show that x(θ) determines the shape of γ up to the choice of a constant; this provides a representation of all curves of constant width in H2. The track function is locally Lipschitz on (0; ¼), satis¯es jx0(θ) sin θj < 1 ¡ ² for some ² > 0, and, if l is appropriately chosen, has a continuous extension to [0; ¼] such that x(0) = x(¼); conversely, any function satisfying these three conditions is the track function of some curve of constant width. As a by-product of the representation thus obtained, we prove that each curve of constant width in H2 can be uniformly approximated by real analytic curves of constant width, and extend to all curves of constant width some results previously established under restrictive smoothness assumptions. 1 { Introduction A closed convex curve γ in the Euclidean plane is said to have constant width W if the distance between every two distinct parallel lines of support of ­ is equal to W; equivalently, γ has constant width W if, for each p 2 γ, the maxi- mum distance from p to other points of γ is equal to W. This latter condition can be taken as the de¯nition of constant width for simple closed curves in ar- bitrary metric spaces: here we are concerned with such curves in the hyperbolic Received: February 26, 1997; Revised: July 5, 1997.
    [Show full text]
  • Network Editorial Rsula Martin’S Article in the Last Issue Was Particularly Topical in Celebrating the Impact of Mathematics Upon U Society
    network Editorial rsula Martin’s article in the last issue was particularly topical in celebrating the impact of mathematics upon U society. Although I have yet to see Hidden Figures, I have read the book by Margot Lee Shetterly that inspired this film. It is astonishing that the brilliant mathematicians – who performed the extensive analyses and laborious calculations that enabled the USA to fly supersonically, journey through space and visit the moon – were not properly recognised for 50 years. © Drake2uk | Dreamstime.com © Drake2uk These forgotten geniuses were known simply as computers and included Dorothy Vaughan, Katherine Johnson and Mary Jackson. At least their dedication and achievements have finally been acknowledged. The accomplishments of many other gifted mathematicians are similarly hidden from public view due to their sensitive nature, particularly in defence as evidenced by vending machines, supermarket trolleys and other automated James Moffat’s remarkable recollections that also appeared in payment devices. Instead, it approximates a regular convex April’s issue of Mathematics Today. curvilinear dodecagon, similar to an old threepenny bit, and its I hope that you have visited the IMA’s fabulous new website. diameter varies from 23.03 mm to 23.43 mm. There is plenty to explore, including puzzles, careers, jobs, In contrast, the 20p and 50p coins rather surprisingly have policies, newsletters, articles, publications, awards, conferences, constant widths despite being non-circular, as they approximate branches, workshops and access to the Reuleaux heptagons. The width-pre- newly upgraded database via myIMA. … surprisingly have constant serving property of Reuleaux polygons Among these webpages, you will find is quite impressive.
    [Show full text]
  • Mizel's Problem on a Circle References
    Mizel`s problem on a circle Maxim V. Tkachuk Institute of Mathematics of the National Academy of Sciences of Ukraine [email protected] The problem is known in literature as Mizel’s problem(A characterization of the circle): A closed convex curve such that, if three vertices of any rectangle lie on it, so does the fourth, must be a circle. In 1961 A.S. Besicovitch [1] solved this problem. Later, a modified proof of this statement was presented by L.W. Danzer, W.H. Koenen, C. St. J. A. Nash-Williams, A.G.D. Watson [2, 3, 4, 5]. In 1989 T. Zamfirescu [6] proved a similar result for a Jordan curve (not convex a priory) and for a rectangle with the infinitesimal relation between its sides: ¯ ¯ ¯a¯ ¯ ¯ · " > 0; b where a and b are sidelengths of a rectangle. In 2006 M. Tkachuk [7] obtained the most general result in this area for any arbitrary compact set C ½ R2, where the complement R2nC is not connected. T. Zamfirescu proved that every analytic curve of constant width satisfying the infinitesimal rectangle property is a circle. Our aim is to prove the theorem for a convex curve without the analyticity condition(Theorem 1 [6]) and to discuss new unsolved problems concerning Mizel’s problem. Theorem.[9] Any convex curve of constant width satisfying the infinitesimal rectangular condition is a circle. References [1] Besicovich A. S. A problem on a Circle. - J. London Math. Soc.,1961 - 36.- p.241-244. [2] Watson A. G. D., On Mizel’s problem, J. London Math.
    [Show full text]
  • Geometry by Construction
    GEOMETRY BY CONSTRUCTION GEOMETRY BY CONSTRUCTION Object Creation and Problem-solving in Euclidean and Non-Euclidean Geometries MICHAEL MCDANIEL Universal-Publishers Boca Raton Geometry by Construction: Object Creation and Problem-solving in Euclidean and Non-Euclidean Geometries Copyright © 2015 Michael McDaniel All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher Universal-Publishers Boca Raton, Florida USA • 2015 ISBN-10: 1-62734-028-9 ISBN-13: 978-1-62734-028-1 www.universal-publishers.com Cover image: Kamira/Bigstock.com Publisher's Cataloging-in-Publication Data McDaniel, Michael. Geometry by construction : object creation and problem-solving in euclidean and non- euclidean geometries / Michael McDaniel. pages cm Includes bibliographical references and index. ISBN: 978-1-62734-028-1 (pbk.) 1. Euclid's Elements. 2. Geometry, Non-Euclidean. 3. Geometry, Modern. 4. Geometry—Foundations. 5. Geometry—Problems, Exercises, etc. I. Title. QA445 .M34 2015 516—dc23 2015930041 January 7, 2015 10:13 World Scientific Book - 9.75in x 6.5in swp0000 Contents Michael McDaniel Aquinas College Preface ix 1. Euclidean geometry rules and constructions 3 1.1 Euclidean Geometry Vocabulary and Definitions . 4 1.2 Constructions to know ....................... 10 1.3 Tangent construction ........................ 15 1.4 Cyclic quadrilaterals ........................ 16 1.5 Similar triangles ........................... 18 1.6 The theorem of Menelaus ..................... 19 1.7 sAs for similar triangles ...................... 22 1.8 Ceva’sTheorem ........................... 24 1.9 Incircles, excircles and circumcircles . 25 1.10 The 9-point circle .........................
    [Show full text]
  • Exercise Sheet 6
    TECHNISCHE UNIVERSITAT¨ BERLIN Institut fur¨ Mathematik Prof. Dr. John M. Sullivan Geometry II Dott. Matteo Petrera SS 10 http://www.math.tu-berlin.de/∼sullivan/L/10S/Geo2/ Exercise Sheet 6 Exercise 1: Reuleaux triangles. (4 pts) A Reuleaux triangle is the planar body of constant width made from three circular arcs centered at the corners of an equilateral triangle. Glue four Reuleaux triangles along their edges in tetrahedral fashion. (This can be done in 3-space, say with paper models, or we can think about the resulting piecewise-smooth surface intrinsically.) What is the Guass curvature? Exercise 2: CMC surfaces. (4 pts) 3 If p is a vertex on a polyhedral surface M in R , we defined the area vector Ap and the mean curvature vector Hp as the gradients of volume and surface area. We said that M is a discrete CMC surface if there is a constant λ such that Hp = λAp for all p. Consider a triangular bipyramid M with three vertices equally spaced around the unit xy-circle and two more at heights ±h along the z-axis. For what value(s) of h is M a discrete CMC surface? Exercise 3: Convex polytopes. (4 pts) Let P ⊂ R3 be a convex polytope containing the origin O. For a facet F of P , denote by α(F ) the sum of the angles of F and by β(F ) the sum of the angles of the projection of F onto a unit sphere centered at O. Finally, let ω(F ) = β(F ) − α(F ). Prove that X ω(F ) = 4π.
    [Show full text]
  • Individual Round 7 November 2015
    BmMT 2015 Individual Round 7 November 2015 1. What is the units digit of 1 + 9 + 92 + ::: + 92015 ? Solution: The even powers have units digit 1 and the odd powers have units digit 9, so the sum has units digit 0. 2. In Fourtown, every person must have a car and therefore a license plate. Every license plate must be a 4-digit number where each digit is a value between 0 and 9 inclusive. However 0000 is not a valid license plate. What is the minimum population of Fourtown to guarantee that at least two people who have the same license plate? Solution: Since there are 9999 possible license plates, there would need to be 10; 000 people in Fourtown to guarantee a duplicate plate. 3. Two sides of an isosceles triangle 4ABC have lengths 9 and 4. What is the area of 4ABC? Solution: The third side must be 9, since a 4; 4; 9 triangle can't exist. If we drop a perpendicular from the vertex opposite the base to the side of length 4, thenp we have a right triangle with leg 2 p 2 2 andp hypotenusep 9, so the altitude has length 9 − 2 = 77. Thus, the area of the triangle is 4 77=2 = 2 77. 1 3 2x 4. Let x be a real number such that 10 x = x. Find (x ) Solution: (x3)2x = (xx)6 = 106 = 1; 000; 000. 5. A Berkeley student and a Stanford student are going to visit each others campus and go back to their own campuses immediately after they arrive by riding bikes.
    [Show full text]
  • Bulging Triangles: Generalization of Reuleaux Triangles
    Bulging Triangles: Generalization of Reuleaux Triangles Norihiro Someyama∗ ∗Shin-yo-ji Buddhist Temple, Tokyo, Japan [email protected] ORCID iD: https://orcid.org/0000-0001-7579-5352 Abstract We introduce a bulging triangle like the generalization of the Reuleaux triangle. We may be able to propose various ways to bulge a triangle, but this paper presents the way so that its vertices are the same as them of the original triangle. We find some properties and theorems of our bulging triangles. In particular, we investigate, via calculus, whether basic facts such as triangle inequalities and Pythagorean theorem hold for bulging triangles. Keywords: Reuleaux triangle, Covexity, Triangle inequality, Pythagorean theorem. 2010 Mathematics Subject Classification: 51M04, 51M05, 51N20. 1 Introduction • the \triangle inequality" holds, i.e., the sum of the lengths of any two \round sides" is There is the Reuleaux triangle (also called the greater than the length of the remaining one spherical triangle) as one of famous and notable \round side", figures in geometry. It is named after F. Reuleaux (1829-1905), a German mechanical engineer. He • the three \round sides" are equal and the considered a figure in which an equilateral triangle common length is πa=3 ; 1:047a if the length is bulged in a natural way so that it has a constant of one side of 4ABC is a, p p width. To be more precise, it is defined as follows: 2 2 • its area is (π − 3)a =2 ; 1:628 × ( 3a =4) Let 4ABC be an equilateral triangle consisting (i.e., about 1.628 times the original area) if of vertices A, B and C.
    [Show full text]
  • Meissner's Mysterious Bodies
    Meissner's Mysterious Bodies Bernd Kawohl & Christof Weber June 19, 2011 Introduction Certain three-dimensional convex bodies have a counterintuitive property; they are of constant width. In this particular respect they resemble a sphere without being one. Discovered a century ago, Meissner's bodies have often been conjectured to minimize volume among bodies of given constant width. However, this conjecture is still open. We draw attention to this challenging and beautiful open problem by presenting some of its history and its recent development. One Century of Bodies of Constant Width In §32 of their famous book \Geometry and the Imagination", Hilbert and Cohn-Vossen list eleven properties of the sphere and discuss which of these suffices to uniquely determine the shape of the sphere [22]. One of those properties is called constant width: if a sphere is squeezed between two parallel (supporting) planes, it can rotate in any direction and always touches both planes. As the reader may suspect, there are many other con- vex sets with this property of constant width. To indicate this property in common with spheres, such three-dimensional objects are sometimes called spheroforms ([8, p. 135], [36], [7, p. 33]). Some of the three-dimensional convex sets of constant width have a rota- tional symmetry. They can be generated by rotating plane sets of constant width with a reflection symmetry about their symmetry line. The drawing in Figure 1 is taken from a catalogue of mathematical models produced by the publisher Martin Schilling in 1911 [34, p. 149]. Influenced by mathematicians like Felix Klein, such models were produced for educational purposes, many of which were made by plaster.
    [Show full text]
  • Reuleaux Triangle
    What Makes a Circle a Circle? Loyola University Chicago Feb 7, 2017 Steven L. Jordan Adjunct Professor, Loyola University Chicago Professor Emeritus, University of Illinois at Chicago Circles – features Always curved = 3 Never ends Rolling a circle on its≈ “center” and “radius” edge Angles Area = Diameter Area = 2 Tangent 2 Area 4 3 2 ≈ 4 How many squares make Area of square a circle? and area of circle G K H C A B J F I More properties, please! Circle and areas of plane figures Circle is the most fat of all! Isoperimetric inequality If a plane figure has perimeter C and area A, then 4 If this is equal,2 then we have a circle! ≤ Maybe someone mentions AB = 3.00 in. Chords in a circle C Angles? D Lengths? A I B E Rolling out a rope Circular section? If a plane figure has constant diameter, is it a circle? What do we mean by “diameter” or “width?” Support Line For finite set, or compact planar figure. Line defines a half-plane. Figure is on one side of the line. Figure touches the line. Try with our pictures. Now draw a 2nd line, parallel Move it until it becomes a support line on the other side. C E A B H “Width” – distance between support lines m CE = 3.00 in. C E M A B m MN = 4.13 in. H N What happens? Minimum “width”? Maximum width? Width as a function of the angle? (trigonometry if you like it) Graph of width as a function of angle? Other figures? E.g., See Warm-up figures.
    [Show full text]
  • MYSTERIES of the EQUILATERAL TRIANGLE, First Published 2010
    MYSTERIES OF THE EQUILATERAL TRIANGLE Brian J. McCartin Applied Mathematics Kettering University HIKARI LT D HIKARI LTD Hikari Ltd is a publisher of international scientific journals and books. www.m-hikari.com Brian J. McCartin, MYSTERIES OF THE EQUILATERAL TRIANGLE, First published 2010. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the publisher Hikari Ltd. ISBN 978-954-91999-5-6 Copyright c 2010 by Brian J. McCartin Typeset using LATEX. Mathematics Subject Classification: 00A08, 00A09, 00A69, 01A05, 01A70, 51M04, 97U40 Keywords: equilateral triangle, history of mathematics, mathematical bi- ography, recreational mathematics, mathematics competitions, applied math- ematics Published by Hikari Ltd Dedicated to our beloved Beta Katzenteufel for completing our equilateral triangle. Euclid and the Equilateral Triangle (Elements: Book I, Proposition 1) Preface v PREFACE Welcome to Mysteries of the Equilateral Triangle (MOTET), my collection of equilateral triangular arcana. While at first sight this might seem an id- iosyncratic choice of subject matter for such a detailed and elaborate study, a moment’s reflection reveals the worthiness of its selection. Human beings, “being as they be”, tend to take for granted some of their greatest discoveries (witness the wheel, fire, language, music,...). In Mathe- matics, the once flourishing topic of Triangle Geometry has turned fallow and fallen out of vogue (although Phil Davis offers us hope that it may be resusci- tated by The Computer [70]). A regrettable casualty of this general decline in prominence has been the Equilateral Triangle. Yet, the facts remain that Mathematics resides at the very core of human civilization, Geometry lies at the structural heart of Mathematics and the Equilateral Triangle provides one of the marble pillars of Geometry.
    [Show full text]
  • J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2013 Intro: Smooth
    J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2013 Intro: smooth curves and surfaces in Euclidean space (usu- We instead focus on regular smooth curves α. Then if ally R3). Usually not as level sets (like x2 + y2 = 1) as in ϕ: J → I is a diffeomorphism (smooth with nonvanishing algebraic geometry, but parametrized (like (cos t, sin t)). derivative, so ϕ−1 is also smooth) then α ◦ ϕ is again smooth Euclidean space Rn 3 x = (x ,..., x ) with scalar product and regular. We are interested in properties invariant under P 1 n √ (inner prod.) ha, bi = a · b = aibi and norm |a| = ha, ai). such smooth reparametrization. This is an equivalence rela- tion. An unparametrized (smooth) curve can be defined as an equivalence class. We study these, but implicitly. A. CURVES For a fixed t0 ∈ I we define the arclength function s(t):= R t |α˙(t)| dt. Here s maps I to an interval J of length len(α). t0 I ⊂ R interval, continuous α: I → Rn is a parametrized If α is a regular smooth curve, then s(t) is smooth, with pos- n curve in R . We write α(t) = α1(t), . , αn(t) . itive derivatives ˙ = |α˙| > 0 equal to the speed. Thus it has a The curve is Ck if it has continuous derivs of order up to smooth inverse function ϕ: J → I. We say β = α ◦ ϕ is the ∞ k.(C0=contin, C1,..., C =smooth). Recall: if I not open, arclength parametrization (or unit-speed parametrization) of differentiability at an end point means one-sided derivatives α.
    [Show full text]