Breaking the Barriers: Advances in Acoustic Functional Materials

Total Page:16

File Type:pdf, Size:1020Kb

Breaking the Barriers: Advances in Acoustic Functional Materials National Science Review REVIEW 5: 159–182, 2018 doi: 10.1093/nsr/nwx154 Advance access publication 26 December 2017 PHYSICS Special Topic: Metamaterials Breaking the barriers: advances in acoustic functional materials Hao Ge1, Min Yang2,ChuMa3, Ming-Hui Lu1,4, Yan-Feng Chen1,4,∗, Nicholas Fang3,∗ 2,∗ 1National Laboratory and Ping Sheng of Solid State Microstructures and Department of Materials Science and ABSTRACT Engineering, College Acoustics is a classical field of study that has witnessed tremendous developments over the past 25years. of Engineering and Driven by the novel acoustic effects underpinned by phononic crystals with periodic modulation of elastic Applied Sciences, building blocks in wavelength scale and acoustic metamaterials with localized resonant units in Nanjing University, subwavelength scale, researchers in diverse disciplines of physics, mathematics, and engineering have Nanjing 210093, China; 2Department of pushed the boundary of possibilities beyond those long held as unbreakable limits. More recently, structure Physics, Hong Kong designs guided by the physics of graphene and topological electronic states of matter have further University of Science broadened the whole field of acoustic metamaterials by phenomena that reproduce the quantum effects and Technology, Hong classically. Use of active energy-gain components, directed by the parity–time reversal symmetry principle, Kong, China; has led to some previously unexpected wave characteristics. It is the intention of this review to trace 3Department of historically these exciting developments, substantiated by brief accounts of the salient milestones. The latter Mechanical can include, but are not limited to, zero/negative refraction, subwavelength imaging, sound cloaking, total Engineering, sound absorption, metasurface and phase engineering, Dirac physics and topology-inspired acoustic Massachusetts engineering, non-Hermitian parity–time synthetic active metamaterials, and one-way propagation of sound Institute of waves. These developments may underpin the next generation of acoustic materials and devices, andoffer Technology, new methods for sound manipulation, leading to exciting applications in noise reduction, imaging, sensing Cambridge, MA 02139, USA and and navigation, as well as communications. 4 Collaborative Keywords: acoustic metamaterials, phononic crystals, topological acoustics, PT-symmetry synthetic Innovation Center of acoustics, sound absorption Advanced Microstructures, INTRODUCTION transportbecamepossible.Togetherwithsimilarde- Nanjing University, velopments of photonic crystals and optical meta- The study of acoustics involves the generation, prop- Nanjing 210093, materials, the field of classical waves has witnessed China agation, detection and conversion of mechanical what is probably the most influential revolution over waves, i.e., sound and elastic waves. This classical the past century. However, the origin of this revolu- ∗ field includes diverse sub-disciplines such as electro- Corresponding tion can be traced to the quantum theory of solids, acoustics, architectural acoustics, medical ultrason- authors. E-mails: with the advent of the theory of electronic bands. ics, and underwater acoustics. Over the last three [email protected]; Crystals are solid-state materials whose con- [email protected]; decades, the emergence of phononic crystals and stituents are arranged periodically in space. In 1987, [email protected] acoustic metamaterials has provided us with new, the concept of photonic crystals, an optical ana- powerful materials to manipulate sound and vibra- logue of electronic crystals, was proposed by Eli tions, owing to their anomalous acoustic dispersion Received 9 October Yablonovitch and Sajeev John [1,2], which opened relations and unusual properties originating from 2017; Revised 11 a brand new field with great impacts for manipulat- December 2017; multiple scatterings in periodic structures, or lo- ing light. A similar concept for acoustics was also Accepted 11 cal resonances of subwavelength unit cells. Many proposed in parallel to electromagnetism, known December 2017 novel effects, such as subwavelength imaging, nega- as phononic crystals [3,4]. The last two decades tive refraction, invisible cloaking and one-way sound C The Author(s) 2017. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. All rights reserved. For permissions, pleasee-mail: [email protected] Downloaded from https://academic.oup.com/nsr/article-abstract/5/2/159/4775141 by guest on 30 March 2018 160 Natl Sci Rev, 2018, Vol. 5, No. 2 REVIEW have witnessed rapid developments in the field of building block can be described by a spring-mass phononic crystals [5–9]. Photonic and phononic model [30], with the solid sphere being the mass, crystals are both composed of periodically arranged connected to the rigid matrix by the soft silicone rub- scatterers in a homogeneous matrix. The periodic ber, which acts like a spring. The spring allows rela- structures affect the propagation of optical and tive motions between the mass and the rigid matrix. acoustic waves in a similar way to the atomic lat- Near the resonance frequency, the central mass ac- tices interacting with the electronic waves. Waves celerates out of phase with respect to the applying of specific frequencies and momenta are allowed force on the rigid matrix and the dynamic mass den- to propagate in the periodic system. These states sity of the block can turn negative [31]. The intro- are referred to as Bloch states and form an energy- duction of local resonances in a composite medium band structure, which is defined in the reciprocal can have far-reaching consequences. The wave vec- space (momentum space), denoted as the Brillouin tor of an acoustic wave in a homogeneous medium is zone. There may exist gaps separating different en- given by k =|n|ω/c, with n2 = ρ/κ.Themassden- ergy bands in the band structure. In the bandgaps, sity ρ and bulk modulus κ are the two key parame- wave propagation is prohibited along certain, or all, ters of acoustic materials. If the effective mass den- directions. Early research on phononic crystals fo- sity ρ is negative and the modulus κ is positive, then cused on the search for full band gap materials with the wave vector k would be imaginary and the wave exceptional sound attenuation10 [ ,11]. Within the decays as it propagates, thereby giving rise to the band gap, acoustic waves can be trapped at a point band gaps of the locally resonant material. This is the defect, or propagate along the line defect that can first work utilizing local resonances of the subwave- serve as a waveguide. Later, wave propagation in length building blocks to achieve unusual acoustic the pass band was extensively studied, and exotic material properties, and the field of acoustic meta- properties, such as negative refraction, extraordinary materials was initiated with very rapid subsequent transmission and acoustic collimation [12–14], development [32–35]. Resonance-induced negative were explored. These effects offered great poten- effective bulk modulus and double-negative acoustic tial for applications. More recently, the advent of metamaterials were demonstrated theoretically and graphene and its Dirac cones with linear dispersions experimentally [36,37]. Acoustic metamaterials re- have inspired the study and fabrication of phononic quire no periodicity and can be designed at the deep- crystals with Dirac-quasiparticle-like behaviors that subwavelength scale. Hence they can be described can experimentally reproduce quantum electronic by the effective medium theory [38–42]. Moreover, phenomena such as Zitterbewegung and pseudo- the concept of acoustic metamaterials is not lim- diffusion transport of acoustic waves [15–17]. Also, ited only to the locally resonant materials or strictly topological phases of matter18 [ ,19] and the atten- periodic structures. In a broader sense, assemblies dant concept of geometry, i.e. topology, were trans- of subwavelength blocks with homogenized (over ferred to the realm of photonics in 2005, and nu- the wavelength scale) exotic acoustic properties and merous theoretical and experimental investigations functionalities that do not exist in nature can be demonstrated the feasibility of topological photonic termed acoustic metamaterials. states [20,21]. Subsequently, topological properties Acoustic metamaterials that can display both in phonon transport were investigated, uncovering positive and negative effective mass density and bulk the relationship between the geometric phase and modulus are the basis for realizing many intriguing the phonon Hall conductivity [22–24]; topological functionalities. For example, reversed Doppler ef- phases were also realized in acoustic systems, draw- fects have been observed in double-negative materi- ing considerable attention25–28 [ ]. als [43]. Super-resolution imaging can be achieved In order for the phononic crystals to be effec- by designing the flat lens made of double-negative tive in manipulating the acoustic waves, the lattice materials [44]. Transformation acoustics and invisi- constants need to be comparable to the relevant bility cloaking require anisotropic and spatially vary- wavelength. It follows that for low-frequency sound, ing acoustic materials that can only be satisfied by the huge size of the phononic crystal makes it im- acoustic metamaterials [45]. More recently, under practical. In 2000, a locally resonant material was the guidance of
Recommended publications
  • Investigation of Natural Photonic Crystal and Historical Background of Their Development with Future Aspects
    International Journal of Scientific & Engineering Research Volume 10, Issue 11, November-2019 ISSN 2229-5518 580 Investigation of Natural Photonic crystal and Historical background of their development with future aspects Vijay Kumar Shembharkar, Dr. Arvind Gathania Abstract— In this work, microstructural and optical characteristics nanoparticles of wings of Lemon pansy (Junonia lemonias) butterfly were studied with the help of different characterization techaniques. And the historical review of their fabrication and characterizations. We developed the sequence of descoveries and investigations which had happenned in past few years and described future advancements of photonic crystals, with their importance. The mathematical description given for the understanding different dtructures and r elate them for the applications. We represented here optical images of butterfly wings which is taken by optical microscop. —————————— —————————— 1 INTRODUCTION He Nature provides ample number of biological systems T which display beautiful patterns and colours. The study of the microstructures in these systems gives hints about fabricating artificial photonic structures [1]. These biological systems provide novel platforms and templates so as to ac- commodate interesting inorganic materials. There are several biomaterials, such as bacteria [2] and fungal colonies [3], wood cells [4], diatoms [5], echinoid skeletal plates [6], pollen grains [7], eggshell membranes [8], human and dog’s hair [9] and silk Historical Devolopment. [10] which have been used for the biomimetic synthe- sis of a range of organized inorganic make ups that has potential in catalysis, magnetism, separation technology, electronics and photonics. Several re- search groups have workedIJSER on different novel meth- ods to produce such inorganic materials using natural Historical Background templates.
    [Show full text]
  • Nonlinear Ultrafast Acoustics at the Nano Scale Peter Van Capel, Emmanuel Péronne, Jaap Dijkhuis
    Nonlinear ultrafast acoustics at the nano scale Peter van Capel, Emmanuel Péronne, Jaap Dijkhuis To cite this version: Peter van Capel, Emmanuel Péronne, Jaap Dijkhuis. Nonlinear ultrafast acoustics at the nano scale. Ultrasonics, Elsevier, 2015, 56, pp.36-51. 10.1016/j.ultras.2014.09.021. hal-01233796 HAL Id: hal-01233796 https://hal.archives-ouvertes.fr/hal-01233796 Submitted on 17 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Nonlinear ultrafast acoustics at the nano scale ⇑ P.J.S. van Capel a, , E. Péronne b,c, J.I. Dijkhuis a a Debye Institute for Nanomaterials Science, Center for Extreme Matter and Emergent Phenomena, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands b CNRS, UMR 7588, Institut des NanoSciences de Paris, F-75005 Paris, France c Sorbonne Universités, UPMC Univ. Paris 06, UMR 7588, INSP, F-75005 Paris, France Pulsed femtosecond lasers can generate acoustic pulses propagating in solids while displaying either dif-fraction, attenuation, nonlinearity and/or dispersion. When acoustic attenuation and diffraction are neg-ligible, shock waves or solitons can form during propagation. Both wave types are phonon wavepackets with characteristic length scales as short as a few nanometer.
    [Show full text]
  • Photonic Crystal Flakes Ali K
    Letter pubs.acs.org/acssensors Photonic Crystal Flakes Ali K. Yetisen,*,†,‡ Haider Butt,§ and Seok-Hyun Yun*,†,‡ † Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States ‡ Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States § Nanotechnology Laboratory, School of Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom *S Supporting Information ABSTRACT: Photonic crystals (PCs) have been traditionally produced on rigid substrates. Here, we report the development of free-standing one- dimensional (1D) slanted PC flakes. A single pulse of a 5 ns Nd:YAG laser (λ = 532 nm, 350 mJ) was used to organize silver nanoparticles (10−50 nm) into multilayer gratings embedded in ∼10 μm poly(2-hydroxyethyl methacrylate- co-methacrylic acid) hydrogel films. The 1D PC flakes had narrow-band diffraction peak at ∼510 nm. Ionization of the carboxylic acid groups in the hydrogel produced Donnan osmotic pressure and modulated the Bragg peak. In response to pH (4−7), the PC flakes shifted their diffraction wavelength from 500 to 620 nm, exhibiting 0.1 pH unit sensitivity. The color changes were visible to the eye in the entire visible spectrum. The optical characteristics of the 1D PC flakes were also analyzed by finite element method simulations. Free-standing PC flakes may have application in spray deposition of functional materials. KEYWORDS: photonics, nanotechnology, diffraction, Bragg gratings, nanoparticles, hydrogels, diagnostics unable PCs have a wide range of applications including consist of multilayered silver nanoparticles (Ag0 NPs) dynamic displays, mechanochromic devices, and multi- embedded in a poly(2-hydroxyethyl methacrylate-co-metha- T − plexed bioassays.1 5 Embedding PCs in hydrogel matrixes allow crylic acid) (p(HEMA-co-MAA)) hydrogel film.
    [Show full text]
  • Sensitivity Enhanced Biosensor Using Graphene-Based One-Dimensional Photonic Crystal
    Sensors and Actuators B 182 (2013) 424–428 Contents lists available at SciVerse ScienceDirect Sensors and Actuators B: Chemical journal homepage: www.elsevier.com/locate/snb Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal a b,c b a,d,∗ Kandammathe Valiyaveedu Sreekanth , Shuwen Zeng , Ken-Tye Yong , Ting Yu a Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore b School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore c CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore d Department of Physics, Faculty of Science, National University of Singapore, 3 Science Drive, Singapore 117542, Singapore a r a t i c l e i n f o b s t r a c t Article history: In this paper, we propose and analytically demonstrate a biosensor configuration based on the excitation Received 22 October 2012 of surface electromagnetic waves in a graphene-based one-dimensional photonic crystal (1D PC). The Received in revised form 16 February 2013 proposed graphene-based 1D photonic crystal consists of alternating layers of high (graphene) and low Accepted 13 March 2013 (PMMA) refractive index materials, which gives a narrow angular reflectivity resonance and high surface Available online 22 March 2013 fields due to low loss in PC. A differential phase-sensitive method has been used to calculate the sensitivity of the configuration. Our results show that the sensitivity of the proposed configuration is 14.8 times Keywords: higher compared to those of conventional surface plasmon resonance (SPR) biosensors using gold thin Graphene films.
    [Show full text]
  • Photonic Crystal Lasers
    91 Appendix Photonic crystal lasers: future integrated devices 5.1 Introduction The technology of photonic crystals has produced a large variety of new devices. However, photonic crystals have not been integrated with mechanical structures or bottom-up nanomaterials. Both approaches have the potential to create novel devices. The photonic crystal we have fabricated is a suspended slab of material. In a sense it already has a micromechanical aspect. The optical properties can be used with mechanical structures. The photonic crystal laser could be used for integrated optical detection of a nanoresonator beam. The principles of nanomechanical systems could also be used to improve the performance of the laser. For example, heating of the laser limits its performance. The periodic dielectric structure of the photonic crystal laser modifies not only the optical band structure, but also the phononic band structure. Engineering of both band structures simultaneously could increase the heat dissipation, allowing continuous wave lasing. Photonic crystals can also be constructed out of bottom-up materials. Researchers have built microwave frequency waveguides using “log cabin” stacked dielectric rods.1 However, it is a challenge to create these at optical frequencies. Metallic nanowires 92 could serve as the building blocks for such a structure. The hardest challenge of such an experiment is actually the fabrication of the device. Many possibilities for synergy exist between photonic crystals and nanomaterials. 5.2 Basics of photonic crystals Photonic
    [Show full text]
  • Photonic Integrated Circuits Using Crystal Optics (PICCO)
    Photonic Integrated Circuits using Crystal Optics (PICCO) An overview Thomas F Krauss1,*, Rab Wilson1, Roel Baets2, Wim Bogaerts2, Martin Kristensen3, Peter I Borel3, Lars H Frandsen3, Morten Thorhauge3, Bjarne Tromborg3, Andrej Lavrinenko3, Richard M De La Rue4, Harold Chong4, Luciano Socci5, Michele Midrio6, Stefano Boscolo6 and Dominic Gallagher7 1University of St. Andrews, School of Physics and Astronomy, St. Andrews, UK. 2Ghent University - IMEC, Dept. of Information Technology (INTEC), Ghent, Belgium. 3Technical University of Denmark, Research Centre COM, Lyngby, Denmark. 4University of Glasgow, Dept. of Electronics & Electrical Engineering, Glasgow, UK. 5Pirelli Labs S.p.A, Advanced Photonics Research, Milan, Italy. 6University of Udine, Dept. of Electrical & Mechanical Engineering, Udine, Italy. 7Photon Design Europe Ltd. Oxford, UK. * [email protected] PICCO has demonstrated low loss, ultracompact photonic components based on wavelength-scale high contrast photonic microstructures and underpinned their design by sophisticated CAD tools. PICCO has also demonstrated device-fabrication via industrially viable deep UV lithography. Introduction Photonic crystals (PhCs) provide a fascinating platform for a new generation of integrated optical devices and components. Circuits of similar integration density as hitherto only known from electronic VLSI can be envisaged, finally bringing the dream of true photonic integration to fruition. What sets photonic crystals apart from conventional integrated optical circuits is their ability to interact with light on a wavelength scale, thus allowing the creation of devices, components and circuits that are several orders of magnitude smaller than currently possible. Apart from miniaturisation., a key property of photonic crystal components is their "designer dispersion", i.e. their ability to implement desired dispersion characteristics into the circuit.
    [Show full text]
  • Physical Specifications of Photonic Crystal Slab Lenses and Their Effects on Image Quality
    Safavi et al. Vol. 29, No. 7 / July 2012 / J. Opt. Soc. Am. B 1829 Physical specifications of photonic crystal slab lenses and their effects on image quality Sohrab Safavi,1,* Rahim Ghayour,2 and Jonas Ekman1 1Department of Computer Science, Electrical & Space Engineering, Luleå University of Technology, Luleå, Sweden 2Department of Electronic and Communications, Electrical Engineering School, Shiraz University, Shiraz, Iran *Corresponding author: [email protected] Received February 13, 2012; revised May 29, 2012; accepted May 29, 2012; posted May 30, 2012 (Doc. ID 163004); published June 28, 2012 Photonic crystal (PhC) lenses with negative refractive index have attracted intense interest because of their ap- plication in optical frequencies. In this paper, two-dimensional PhC lenses with a triangular lattice of cylindrical holes in dielectric material are investigated. Various physical parameters of the lens are introduced, and their effects on the lens response are studied in detail. The effect of the surface termination is investigated by analyzing the power flux within the PhC structure. A new lens formula has been obtained that shows a linear relation be- tween the source distance (distance between the source and the lens) and the image distance (distance between the image and the lens) for any surface termination of the PhC lens. It is observed that the excitation of surface waves does not necessarily pull the image closer to the lens. The effects of the thickness and the lateral width of the lens are also analyzed. © 2012 Optical Society of America OCIS codes: 230.5298, 240.6690, 110.2960. 1. INTRODUCTION the image is formed in the vicinity of the lens as well.
    [Show full text]
  • Fabrication of Photonic Crystals in Silicon-On- Insulator Using 248-Nm
    928 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 4, JULY/AUGUST 2002 Fabrication of Photonic Crystals in Silicon-on- Insulator Using 248-nm Deep UV Lithography Wim Bogaerts, Member, IEEE, Vincent Wiaux, Dirk Taillaert, Member, IEEE, Stephan Beckx, Bert Luyssaert, Member, IEEE, Peter Bienstman, Associate Member, IEEE, and Roel Baets, Senior Member, IEEE Abstract—We demonstrate wavelength-scale photonic nanos- photonic crystals (PhCs). PhCs are wavelength-scale periodic tructures, including photonic crystals, fabricated in silicon-on-in- structures with a strong refractive index contrast. Another sulator using deep ultraviolet (UV) lithography. We discuss the candidate is the photonic wire (PW), a narrow ridge wave- mass-manufacturing capabilities of deep UV lithography com- pared to e-beam lithography. This is illustrated with experimental guide, typically a few hundred nanometers in width, with high results. Finally, we present some of the issues that arise when refractive index contrast. trying to use established complementary metal–oxide–semi- Because of the large refractive index contrast needed for pho- conductor processes for the fabrication of photonic integrated tonic crystals and photonic wires, semiconductor is the preferred circuits. material for ultracompact PICs. For active devices, one needs a Index Terms—Integrated optics, lithography, nanotechnology. material system that can emit light at the required wavelengths, implying the use of III-V semiconductors. For passive applica- I. INTRODUCTION tions, it is also possible to use silicon, particularly in the form of silicon-on-insulator (SOI). SOI consists of a thin silicon film N THE last decade, optical communication has been separated from the silicon substrate by an oxide layer.
    [Show full text]
  • Photonic Crystals ---An Introduction
    Photonic Crystals −−− An Introduction Toshihiko Baba, Yokohama National University 1. Introduction This presentation introduces a unique world of photonic crystals. They are artificial multi- dimensional periodic structures with a period of the order of optical wavelength. They have many analogies to solid state crystals. The most important one is the band of photons, which is a powerful theory for the understanding of light behavior in a complex photonic crystal structure. It enables us to create the photonic bandgap and the localization of light. They have great potentials for novel applications in optics, optoelectronics, µ-wave technologies, quantum engineering, bio-photonics, acoustics, and so on. Here, I will outline these fundamental features of photonic crystals with their progress of research. 2. Structures and Photonic Bands Figure 1 shows semiconductor photonic crystals with nanometer order periods and corresponding Brillouin zones (unit cells in a reciprocal lattice space, which represents the spatial Fourier spectrum of the photonic crystal structure). They are categorized by the dimension of periodicity. Figure 2 shows examples photonic bands, the dispersion relations between the time frequency and the spatial frequency (wave number k). Such bands are obtained by the similar procedure to solid state physics theory, i.e. a master equation (Maxwell’s wave equation) is transformed into an eigenvalue equation with a periodic boundary condition and solved by computation. Due to the rigorous treatment of vectorial property of electromagnetic fields, photonic bands precisely predict the behavior of light. 3. Unique Phenomena One of the most important discoveries is the existence of a photonic bandgap, which is a forbidden Fig.
    [Show full text]
  • Quantum Nanophotonics with Quantum Dots in Photonic Crystals
    Quantum Nanophotonics with Quantum Dots In Photonic Crystals Benasque Workshop, July 2014 Peter Lodahl, Niels Bohr Institute, University of Copenhagen, Denmark Quantum Photonics Group www.quantum-photonics.dk Photonic Quantum Networks Outstanding challenge in quantum physics: The scaling of small quantum systems into large architectures Kimble, Caltech & Rempe, Munich Integrated photonic circuits: Stable and easy operation of photonic networks Bristol, Oxford, Queensland,... Photonic Crystal Quantum Circuits with On-Chip Quantum Emitters • Deterministic single- photon sources on chip (quantum dots) • Tailor light-matter interaction strength • High-efficiency channeling of photons to a single mode → On-chip quantum- information processing and (Stanford, Munich, Zurich, Cambridge, computing Sheffield, Eindhoven, Copenhagen, …) Outline • All solid-state quantum optics with quantum dots in photonic crystals. • Mesoscopic quantum optics effects. • Role of fabrication imperfections. Controlling Light-Matter Interaction with Photonic Crystals Control of Spontaneous Emission with Photonic Crystals Inhibited (enhanced) spontaneous emission rate in band gap (at band edge) Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). Lodahl, van Driel, Nikolaev, Irman, Overgaag, Vanmaekelberg & Vos, Nature 430, 654 (2004). The Local Density of Optical States The local light-matter coupling strength is determined by the projected local density of states (LDOS) 2 3 (,r) d k e E (r) (k ) d n,k n n 1BZ The decay rate of single emitters is proportional to the LDOS 2 rad(,r) d (,r) 3 0 LDOS can be mapped by employing single emitters with known optical properties Mapping the LDOS of a photonic crystal Fix lattice wavelength and Calculated spatial variation of vary lattice constant the inhibition factor for an LDOS frequency map ideal photonic crystal X dipole Y dipole x70 inhibition of spontaneous emission rate observed Wang, Stobbe & Lodahl, Phys.
    [Show full text]
  • Gold Nanoparticles in Photonic Crystals Applications: a Review
    materials Review Gold Nanoparticles in Photonic Crystals Applications: A Review Iole Venditti Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00187 Rome, Italy; [email protected]; Tel.: +39-06-4991-3347 Academic Editor: Ilaria Fratoddi Received: 30 November 2016; Accepted: 12 January 2017; Published: 24 January 2017 Abstract: This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field. Keywords: gold nanoparticles; composite materials; photonic crystals; opals; inverse opals; plasmonic; plasmonic photonic crystals 1. Introduction Photonic crystals (PCs) are a class of optical media represented by natural or artificial structures with periodic modulation of the refractive index. The period of refractive index repetition must be comparable to the wavelength of the light for intended application.
    [Show full text]
  • Inelastic X-Ray Scattering from Polycrystalline Materials. Irmengard Fischer
    Inelastic x-ray scattering from polycrystalline materials. Irmengard Fischer To cite this version: Irmengard Fischer. Inelastic x-ray scattering from polycrystalline materials.. Condensed Matter [cond-mat]. Université Joseph-Fourier - Grenoble I, 2008. English. tel-00349859 HAL Id: tel-00349859 https://tel.archives-ouvertes.fr/tel-00349859 Submitted on 5 Jan 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université de Grenoble I SCIENCES, TECHNOLOGIE, MÉDECINE THÈSE présentée à l’Université Joseph Fourier - Grenoble I Pour le titre de Docteur de l’UNIVERSITÉ GRENOBLE I Doctorat: Physique de la Matière Condensée et du Rayonnement Ecole Doctorale: Physique Inelastic x - ray scattering from polycrystalline materials par Irmengard FISCHER soutenue le 30 septembre devant le jury composé de: J.R. REGNARD Président du Jury G. BENEDEK, R. CURRAT, I. LOA Rapporteurs D. A. KEEN Examinateur M. KRISCH, A. BOSAK Directeurs de thèse Thèse préparée au sein du laboratoire: European Synchrotron Radiation Facility (ESRF), Grenoble Inelastic x - ray scattering from polycrystalline materials 1 Sicher ist, dass nichts sicher ist. Selbst das nicht. Joachim Ringelnatz Contents Introduction 5 Introduction (française) 9 1 Lattice dynamics and elasticity in crystalline materials 15 1.1 Singlecrystals.................................
    [Show full text]