UC Santa Cruz Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Yellowstone Wolfproject Annual Report 1999
YELLOWSTONE WOLFPROJECT ANNUAL REPORT 1999 Yellowstone Wolf Project Annual Report 1999 Douglas W. Smith, Kerry M. Murphy, and Debra S. Guernsey National Park Service Yellowstone Center for Resources Yellowstone National Park, Wyoming YCR-NR-2000-01 Suggested citation: Smith, D.W., K.M. Murphy, and D.S. Guernsey. 2000. Yellowstone Wolf Project: Annual Report, 1999. National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming, YCR-NR-2000-01. ii TABLE OF CONTENTS Background.................................................................... iv Composition of Wolf Kills ...................................... 8 1999 Summary................................................................ v Winter Studies ......................................................... 8 The Yellowstone Wolf Population .................................. 1 Wolf Management .......................................................... 9 Population Status and Reproduction ....................... 1 Area Closures .......................................................... 9 Population Movements and Territories ................... 2 Pen Removal ........................................................... 9 Mortalities ............................................................... 3 Wolf Depredation Outside the Park......................... 9 Pack Summaries ............................................................. 3 Wolf Genetics Studies .................................................... 9 Leopold Pack .......................................................... -
The Impact of Forest Logging and Fragmentation on Carnivore Species Composition, Density and Occupancy in Madagascar’S Rainforests
The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests B RIAN D. GERBER,SARAH M. KARPANTY and J OHNY R ANDRIANANTENAINA Abstract Forest carnivores are threatened globally by Introduction logging and forest fragmentation yet we know relatively little about how such change affects predator populations. arnivores are one of the most threatened groups of 2009 This is especially true in Madagascar, where carnivores Cterrestrial mammals (Karanth & Chellam, ). have not been extensively studied. To understand better the Declines of predators are often attributed to habitat loss effects of logging and fragmentation on Malagasy carnivores and fragmentation but few quantitative studies have we evaluated species composition, density of fossa examined how carnivore populations and communities 2002 Cryptoprocta ferox and Malagasy civet Fossa fossana, and change with habitat loss or fragmentation (Crooks, ; 2005 carnivore occupancy in central-eastern Madagascar. We Michalski & Peres, ). This is particularly true for ’ photographically-sampled carnivores in two contiguous Madagascar s carnivores, with knowledge lacking about ff (primary and selectively-logged) and two fragmented rain- their ecology and the e ects of anthropogenic disturbances 2010 forests (fragments , 2.5 and . 15 km from intact forest). (Irwin et al., ), especially in the eastern rainforest where Species composition varied, with more native carnivores in only short-term studies have been conducted (Gerber et al., 2010 16 the contiguous than fragmented rainforests. F. fossana was ). With only % of the original primary forests extant absent from fragmented rainforests and at a lower density in Madagascar and those remaining becoming smaller and 2007 in selectively-logged than in primary rainforest (mean more isolated over time (Harper et al., ), habitat loss −2 1.38 ± SE 0.22 and 3.19 ± SE 0.55 individuals km , respect- and fragmentation are serious threats to many endemic 2010 ively). -
Rocky Mountain Wolf Recovery 2003 Annual Report
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Wildlife Damage Management, Internet Center Rocky Mountain Wolf Recovery Annual Reports for March 2003 Rocky Mountain Wolf Recovery 2003 Annual Report Follow this and additional works at: https://digitalcommons.unl.edu/wolfrecovery Part of the Environmental Health and Protection Commons "Rocky Mountain Wolf Recovery 2003 Annual Report" (2003). Rocky Mountain Wolf Recovery Annual Reports. 5. https://digitalcommons.unl.edu/wolfrecovery/5 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Rocky Mountain Wolf Recovery Annual Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Rocky Mountain Wolf Recovery 2003 Annual Report A cooperative effort by U.S. Fish and Wildlife Service, Nez Perce Tribe, National Park Service, and USDA Wildlife Services. T. Meier, editor. NPS photo by D. Smith This cooperative annual report presents information on the status, distribution and management of the recovering Rocky Mountain wolf population from January 1, 2003 through December 31, 2003. It is also available at http://westerngraywolf.fws.gov/annualreports.htm This report may be copied and distributed as needed. Suggested citation: U.S. Fish and Wildlife Service, Nez Perce Tribe, National Park Service, and USDA Wildlife Services. 2004. Rocky Mountain Wolf Recovery 2003 Annual Report. T. Meier, -
FRESHWATER CRABS in AFRICA MICHAEL DOBSON Dr M
CORE FRESHWATER CRABS IN AFRICA 3 4 MICHAEL DOBSON FRESHWATER CRABS IN AFRICA In East Africa, each highland area supports endemic or restricted species (six in the Usambara Mountains of Tanzania and at least two in each of the brought to you by MICHAEL DOBSON other mountain ranges in the region), with relatively few more widespread species in the lowlands. Recent detailed genetic analysis in southern Africa Dr M. Dobson, Department of Environmental & Geographical Sciences, has shown a similar pattern, with a high diversity of geographically Manchester Metropolitan University, Chester St., restricted small-bodied species in the main mountain ranges and fewer Manchester, M1 5DG, UK. E-mail: [email protected] more widespread large-bodied species in the intervening lowlands. The mountain species occur in two widely separated clusters, in the Western Introduction Cape region and in the Drakensburg Mountains, but despite this are more FBA Journal System (Freshwater Biological Association) closely related to each other than to any of the lowland forms (Daniels et Freshwater crabs are a strangely neglected component of the world’s al. 2002b). These results imply that the generally small size of high altitude inland aquatic ecosystems. Despite their wide distribution throughout the species throughout Africa is not simply a convergent adaptation to the provided by tropical and warm temperate zones of the world, and their great diversity, habitat, but evidence of ancestral relationships. This conclusion is their role in the ecology of freshwaters is very poorly understood. This is supported by the recent genetic sequencing of a single individual from a nowhere more true than in Africa, where crabs occur in almost every mountain stream in Tanzania that showed it to be more closely related to freshwater system, yet even fundamentals such as their higher taxonomy mountain species than to riverine species in South Africa (S. -
Yellowstone Wolf Project: Annual Report, 2009
YELLOWSTONE WOLFPROJECT ANNUAL REPORT 2009 Yellowstone Wolf Project Annual Report 2009 Douglas Smith, Daniel Stahler, Erin Albers, Richard McIntyre, Matthew Metz, Kira Cassidy, Joshua Irving, Rebecca Raymond, Hilary Zaranek, Colby Anton, Nate Bowersock National Park Service Yellowstone Center for Resources Yellowstone National Park, Wyoming YCR-2010-06 Suggested citation: Smith, D.W., D.R. Stahler, E. Albers, R. McIntyre, M. Metz, K. Cassidy, J. Irving, R. Raymond, H. Zaranek, C. Anton, N. Bowersock. 2010. Yellowstone Wolf Project: Annual Report, 2009. National Park Ser- vice, Yellowstone Center for Resources, Yellowstone National Park, Wyoming, YCR-2010-06. Wolf logo on cover and title page: Original illustration of wolf pup #47, born to #27, of the Nez Perce pack in 1996, by Melissa Saunders. Treatment and design by Renée Evanoff. All photos not otherwise marked are NPS photos. ii TABLE OF CON T EN T S Background .............................................................iv Wolf –Prey Relationships ......................................11 2009 Summary .........................................................v Composition of Wolf Kills ...................................11 Territory Map ..........................................................vi Winter Studies.....................................................12 The Yellowstone Wolf Population .............................1 Summer Predation ...............................................13 Population and Territory Status .............................1 Population Genetics ............................................14 -
Assessing Carnivore Distribution from Local Knowledge Across a Human-Dominated Landscape in Central-Southeastern Madagascar M
bs_bs_banner Animal Conservation. Print ISSN 1367-9430 Assessing carnivore distribution from local knowledge across a human-dominated landscape in central-southeastern Madagascar M. Kotschwar Logan1, B. D. Gerber1, S. M. Karpanty1, S. Justin2 & F. N. Rabenahy3 1 Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA 2 Centre ValBio, Ranomafana, Ifanadiana, Madagascar 3 MICET, Manakambahiny, Antananarivo, Madagascar Keywords Abstract carnivores; distribution; disturbance; forest loss; human-dominated landscape; local Carnivores are often sensitive to habitat loss and fragmentation, both of which are ecological knowledge; Madagascar; widespread in Madagascar. Clearing of forests has led to a dramatic increase in human-carnivore conflict. highly disturbed, open vegetation communities dominated by humans. In Mada- gascar’s increasingly disturbed landscape, long-term persistence of native carni- Correspondence vores may be tied to their ability to occupy or traverse these disturbed areas. Sarah Karpanty, 150 Cheatham Hall, However, how Malagasy carnivores are distributed in this landscape and how they Department of Fish and Wildlife interact with humans are unknown, as past research has concentrated on popu- Conservation, Virginia Tech, Blacksburg, VA lations within continuous and fragmented forests. We investigated local ecological 24061, USA. knowledge of carnivores using semi-structured interviews in communities 0 to Email: [email protected] 20 km from the western edge of continuous rainforest in central-southeastern -
Interspecific Killing Among Mammalian Carnivores
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC vol. 153, no. 5 the american naturalist may 1999 Interspeci®c Killing among Mammalian Carnivores F. Palomares1,* and T. M. Caro2,² 1. Department of Applied Biology, EstacioÂn BioloÂgica de DonÄana, thought to act as keystone species in the top-down control CSIC, Avda. MarõÂa Luisa s/n, 41013 Sevilla, Spain; of terrestrial ecosystems (Terborgh and Winter 1980; Ter- 2. Department of Wildlife, Fish, and Conservation Biology and borgh 1992; McLaren and Peterson 1994). One factor af- Center for Population Biology, University of California, Davis, fecting carnivore populations is interspeci®c killing by California 95616 other carnivores (sometimes called intraguild predation; Submitted February 9, 1998; Accepted December 11, 1998 Polis et al. 1989), which has been hypothesized as having direct and indirect effects on population and community structure that may be more complex than the effects of either competition or predation alone (see, e.g., Latham 1952; Rosenzweig 1966; Mech 1970; Polis and Holt 1992; abstract: Interspeci®c killing among mammalian carnivores is Holt and Polis 1997). Currently, there is renewed interest common in nature and accounts for up to 68% of known mortalities in some species. Interactions may be symmetrical (both species kill in intraguild predation from a conservation standpoint each other) or asymmetrical (one species kills the other), and in since top predator removal is thought to release other some interactions adults of one species kill young but not adults of predator populations with consequences for lower trophic the other. -
Thesis Winter Ecology of Bighorn Sheep In
THESIS WINTER ECOLOGY OF BIGHORN SHEEP IN YELLOWSTONE NATIONAL PARK Submitted by John L. 01demeyer In partial fulfillment of the requirements for the Degree of Master of Science Colorado State University December 1966 COLORADO STATE m~IVERSI1Y December 1966 WE HEREBY RECOl-lEEND 'lRAT lliE 'IHESIS PREPARED UNDER OUR SUPERVISION BY J onn L. 01demeyer ENTITLED tt'v-linter ecolo&;,( of bighorn sheep in yellowstone National ParkU BE ACCEPTED AS FULFILLING nus PART OF 'mE ~UIIill"LENTS FOR THE DillREE OF EASTER OF SCI~CE. CO:TJli ttee on Graduate Work --- - Examination Satisfacto~ Pennission to publish this thesis or any part of it must be obtained from the Dean of the Graduate School. PJL,ORADO STATE UN !VEKS ITY LI BRARIES i ABSTRACT WIN TER ECOLOOY OF ID:GHORN SHEEP IN YELLOVlS'IDHE NA TI ONAL PARK A bighorn sheep study was conducted on the northern winter range of yellowstone National Park, TNY01~inE from JIDle 1965 to June 1966. The objectives of the study were to census the bighorn population, map the winter bighorn distribution, detennine plant conposition and utilization on irnportant bighorn winter ranees, observe daily feedine habits, and assess the effect of competition on bighorn sheep. ~o hundred twen~ nine bighorn sheep wintered on the northern winter range. These herds were located on Nt. Everts, along the Yellowstone River, on Specimen Ridge, and along Soda Butte Creek. The ewe to ram ratio was 100: 78, the ewe to lamb ra tic waS 100: 47, and the ewe to yearling ratio was 100: 20. Range analysis was done on HacHinn Bench, Specimen Ridge, and Druid Peak. -
Yellowstone Wolf Project Annual Report 2004
Yellowstone Wolf Project Annual Report 2004 Douglas W. Smith, Daniel R. Stahler, and Debra S. Guernsey National Park Service Yellowstone Center for Resources Yellowstone National Park, Wyoming YCR-2005-02 Suggested citation: Smith, D.W., D.R. Stahler, and D.S. Guernsey. 2005. Yellowstone Wolf Project: Annual Report, 2004. National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wy o ming, YCR-2005-02. Wolf logo on cover and title page: Original illustration of wolf pup #47, born to #27, of the Nez Perce pack in 1996, by Melissa Saunders. Treatment and design by Renée Evanoff. All photos not otherwise marked are NPS photos by Douglas Smith and Daniel R. Stahler. ii TABLE OF CONTENTS Background .............................................................iv Gibbon Meadows Pack ........................................10 2004 Summary .........................................................v Bechler Pack ........................................................11 Territory Map ..........................................................vi Wolf Capture and Collaring ...................................11 The Yellowstone Wolf Pop u la tion .............................1 Wolf Predation ........................................................11 Population and Territory Status .............................1 Wolf –Prey Relationships ......................................11 Reproduction ........................................................3 Composition of Wolf Kills ...................................12 Mortalities .............................................................3 -
Yellowstone Wolf Project: Annual Report, 1997
Suggested citation: Smith, D.W. 1998. Yellowstone Wolf Project: Annual Report, 1997. National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming, YCR-NR- 98-2. Yellowstone Wolf Project Annual Report 1997 Douglas W. Smith National Park Service Yellowstone Center for Resources Yellowstone National Park, Wyoming YCR-NR-98-2 BACKGROUND Although wolf packs once roamed from the Arctic tundra to Mexico, they were regarded as danger- ous predators, and gradual loss of habitat and deliberate extermination programs led to their demise throughout most of the United States. By 1926 when the National Park Service (NPS) ended its predator control efforts, Yellowstone had no wolf packs left. In the decades that followed, the importance of the wolf as part of a naturally functioning ecosystem came to be better understood, and the gray wolf (Canis lupus) was eventually listed as an endangered species in all of its traditional range except Alaska. NPS policy calls for restoring native species that have been eliminated as a result of human activity if adequate habitat exists to support them and the species can be managed so as not to pose a serious threat to people or property outside the park. Because of its size and the abundant prey that existed here, Yellowstone was an obvious choice as a place where wolf restoration would have a good chance of succeeding. The designated recovery area includes the entire Greater Yellowstone Area. The goal of the wolf restoration program is to maintain at least 10 breeding wolf pairs in Greater Yellowstone as it is for the other two recovery areas in central Idaho and northwestern Montana. -
The Joint Evolution of Animal Movement and Competition Strategies
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.452886; this version posted August 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. The joint evolution of animal movement and competition strategies Pratik R. Gupte1,a,∗ Christoph F. G. Netz1,a Franz J. Weissing1,∗ 1. Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands. ∗ Corresponding authors; e-mail: [email protected] or [email protected] a Both authors contributed equally to this study. Keywords: Movement ecology, Intraspecific competition, Individual differences, Foraging ecol- ogy, Kleptoparasitism, Individual based modelling, Ideal Free Distribution 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.452886; this version posted August 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Abstract 2 Competition typically takes place in a spatial context, but eco-evolutionary models rarely address 3 the joint evolution of movement and competition strategies. Here we investigate a spatially ex- 4 plicit producer-scrounger model where consumers can either forage on a heterogeneous resource 5 landscape or steal resource items from conspecifics (kleptoparasitism). We consider three scenar- 6 ios: (1) a population of foragers in the absence of kleptoparasites; (2) a population of consumers 7 that are either specialized on foraging or on kleptoparasitism; and (3) a population of individuals 8 that can fine-tune their behavior by switching between foraging and kleptoparasitism depend- 9 ing on local conditions. -
Small Carnivore CAMP 1993.Pdf
SMALL CARNIVORE CONSERVATION ASSESSMENT AND MANAGEMENT PLAN Final Review Draft Report 1G May 1994 Edited and compiled by Roland Wirth, Angela Glatston, Onnie Byers, Susie Ellis, Pat Foster-Turley, Paul Robinson, Harry Van Rompaey, Don Moore, Ajith Kumar, Roland Melisch, and Ulysses Seal Prepared by the participants of a workshop held in Rotterdam, The Netherlands 11-14 February 1993 A Collaborative Workshop IUCN/SSC MUSTELID, VIVERRID, AND PROCYONID SPECIALIST GROUP IUCN/SSC OTTER SPECIALIST GROUP IUCN/SSC CAPTIVE BREEDING SPECIALIST GROUP Sponsored by The Rotterdam Zoo IUCN/SSC Sir Peter Scott Fund United Kingdom Small Carnivore Taxon Advisory Group A contribution of the IUCN/SSC Captive Breeding Specialist Group, IUCN/SSC Mustelid, Viverrid, and Procyonid Specialist Group and the IUCN/SSC Otter Specialist Group. The Primary Sponsors of the Workshop were: The Rotterdam Zoo, IUCN/SSC Peter Scott Fund, United Kingdom Small Carnivore Taxon Advisory Group. Cover Photo: Malayan Civet, Viverra tangalunga by Roland Wirth. Wirth, R., A Glatston, 0. Byers, S. Ellis, P. Foster-Turley, P. Robinson, H. Van Rompaey, D. Moore, A Kumar, R. Melisch, U.Seal. (eds.). 1994. Small Carnivore Conservation Assessment and Management Plan. IUCN/SSC Captive Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Captive Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Bank. Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No.