Models of Sparse Random Graphs and Network Algorithms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oracle Database 10G: Oracle Spatial Network Data Model
Oracle Database 10g: Oracle Spatial Network Data Model An Oracle Technical White Paper May 2005 Oracle Spatial Network Data Model Table of Contents Introduction ....................................................................................................... 3 Design Goals and Architecture ....................................................................... 4 Major Steps Using the Network Data Model................................................ 5 Network Modeling........................................................................................ 5 Network Analysis.......................................................................................... 6 Network Modeling ............................................................................................ 6 Metadata and Schema ....................................................................................... 6 Network Java Representation and API.......................................................... 7 Network Creation Using SQL and PL/SQL ................................................ 8 Creating a Logical Network......................................................................... 9 Creating a Spatial Network.......................................................................... 9 Creating an SDO Geometry Network ................................................ 10 Creating an LRS Geometry Network.................................................. 10 Creating a Topology Geometry Network........................................... 11 Network Creation -
A Network-Of-Networks Percolation Analysis of Cascading Failures in Spatially Co-Located Road-Sewer Infrastructure Networks
Physica A 538 (2020) 122971 Contents lists available at ScienceDirect Physica A journal homepage: www.elsevier.com/locate/physa A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks ∗ ∗ Shangjia Dong a, , Haizhong Wang a, , Alireza Mostafizi a, Xuan Song b a School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, United States of America b Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China article info a b s t r a c t Article history: This paper presents a network-of-networks analysis framework of interdependent crit- Received 26 September 2018 ical infrastructure systems, with a focus on the co-located road-sewer network. The Received in revised form 28 May 2019 constructed interdependency considers two types of node dynamics: co-located and Available online 27 September 2019 multiple-to-one dependency, with different robustness metrics based on their function Keywords: logic. The objectives of this paper are twofold: (1) to characterize the impact of the Co-located road-sewer network interdependency on networks' robustness performance, and (2) to unveil the critical Network-of-networks percolation transition threshold of the interdependent road-sewer network. The results Percolation modeling show that (1) road and sewer networks are mutually interdependent and are vulnerable Infrastructure interdependency to the cascading failures initiated by sewer system disruption; (2) the network robust- Cascading failure ness decreases as the number of initial failure sources increases in the localized failure scenarios, but the rate declines as the number of failures increase; and (3) the sewer network contains two types of links: zero exposure and severe exposure to liquefaction, and therefore, it leads to a two-phase percolation transition subject to the probabilistic liquefaction-induced failures. -
Learning on Hypergraphs: Spectral Theory and Clustering
Learning on Hypergraphs: Spectral Theory and Clustering Pan Li, Olgica Milenkovic Coordinated Science Laboratory University of Illinois at Urbana-Champaign March 12, 2019 Learning on Graphs Graphs are indispensable mathematical data models capturing pairwise interactions: k-nn network social network publication network Important learning on graphs problems: clustering (community detection), semi-supervised/active learning, representation learning (graph embedding) etc. Beyond Pairwise Relations A graph models pairwise relations. Recent work has shown that high-order relations can be significantly more informative: Examples include: Understanding the organization of networks (Benson, Gleich and Leskovec'16) Determining the topological connectivity between data points (Zhou, Huang, Sch}olkopf'07). Graphs with high-order relations can be modeled as hypergraphs (formally defined later). Meta-graphs, meta-paths in heterogeneous information networks. Algorithmic methods for analyzing high-order relations and learning problems are still under development. Beyond Pairwise Relations Functional units in social and biological networks. High-order network motifs: Motif (Benson’16) Microfauna Pelagic fishes Crabs & Benthic fishes Macroinvertebrates Algorithmic methods for analyzing high-order relations and learning problems are still under development. Beyond Pairwise Relations Functional units in social and biological networks. Meta-graphs, meta-paths in heterogeneous information networks. (Zhou, Yu, Han'11) Beyond Pairwise Relations Functional units in social and biological networks. Meta-graphs, meta-paths in heterogeneous information networks. Algorithmic methods for analyzing high-order relations and learning problems are still under development. Review of Graph Clustering: Notation and Terminology Graph Clustering Task: Cluster the vertices that are \densely" connected by edges. Graph Partitioning and Conductance A (weighted) graph G = (V ; E; w): for e 2 E, we is the weight. -
Multiplex Conductance and Gossip Based Information Spreading in Multiplex Networks
1 Multiplex Conductance and Gossip Based Information Spreading in Multiplex Networks Yufan Huang, Student Member, IEEE, and Huaiyu Dai, Fellow, IEEE Abstract—In this network era, not only people are connected, different networks are also coupled through various interconnections. This kind of network of networks, or multilayer networks, has attracted research interest recently, and many beneficial features have been discovered. However, quantitative study of information spreading in such networks is essentially lacking. Despite some existing results in single networks, the layer heterogeneity and complicated interconnections among the layers make the study of information spreading in this type of networks challenging. In this work, we study the information spreading time in multiplex networks, adopting the gossip (random-walk) based information spreading model. A new metric called multiplex conductance is defined based on the multiplex network structure and used to quantify the information spreading time in a general multiplex network in the idealized setting. Multiplex conductance is then evaluated for some interesting multiplex networks to facilitate understanding in this new area. Finally, the tradeoff between the information spreading efficiency improvement and the layer cost is examined to explain the user’s social behavior and motivate effective multiplex network designs. Index Terms—Information spreading, multiplex networks, gossip algorithm, multiplex conductance F 1 INTRODUCTION N the election year, one of the most important tasks Arguably, this somewhat simplified version of multilayer I for presidential candidates is to disseminate their words networks already captures many interesting multi-scale and and opinions to voters in a fast and efficient manner. multi-component features, and serves as a good starting The underlying research problem on information spreading point for our intended study. -
Planarity As a Driver of Spatial Network Structure
DOI: http://dx.doi.org/10.7551/978-0-262-33027-5-ch075 Planarity as a driver of Spatial Network structure Garvin Haslett and Markus Brede Institute for Complex Systems Simulation, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom [email protected] Downloaded from http://direct.mit.edu/isal/proceedings-pdf/ecal2015/27/423/1903775/978-0-262-33027-5-ch075.pdf by guest on 23 September 2021 Abstract include city science (Cardillo et al., 2006; Xie and Levin- son, 2007; Jiang, 2007; Barthelemy´ and Flammini, 2008; In this paper we introduce a new model of spatial network growth in which nodes are placed at randomly selected lo- Masucci et al., 2009; Chan et al., 2011; Courtat et al., 2011; cations in space over time, forming new connections to old Strano et al., 2012; Levinson, 2012; Rui et al., 2013; Gud- nodes subject to the constraint that edges do not cross. The mundsson and Mohajeri, 2013), electronic circuits (i Can- resulting network has a power law degree distribution, high cho et al., 2001; Bassett et al., 2010; Miralles et al., 2010; clustering and the small world property. We argue that these Tan et al., 2014), wireless networks (Huson and Sen, 1995; characteristics are a consequence of two features of our mech- anism, growth and planarity conservation. We further pro- Lotker and Peleg, 2010), leaf venation (Corson, 2010; Kat- pose that our model can be understood as a variant of ran- ifori et al., 2010), navigability (Kleinberg, 2000; Lee and dom Apollonian growth. -
Arxiv:2006.02870V1 [Cs.SI] 4 Jun 2020
The why, how, and when of representations for complex systems Leo Torres Ann S. Blevins [email protected] [email protected] Network Science Institute, Department of Bioengineering, Northeastern University University of Pennsylvania Danielle S. Bassett Tina Eliassi-Rad [email protected] [email protected] Department of Bioengineering, Network Science Institute and University of Pennsylvania Khoury College of Computer Sciences, Northeastern University June 5, 2020 arXiv:2006.02870v1 [cs.SI] 4 Jun 2020 1 Contents 1 Introduction 4 1.1 Definitions . .5 2 Dependencies by the system, for the system 6 2.1 Subset dependencies . .7 2.2 Temporal dependencies . .8 2.3 Spatial dependencies . 10 2.4 External sources of dependencies . 11 3 Formal representations of complex systems 12 3.1 Graphs . 13 3.2 Simplicial Complexes . 13 3.3 Hypergraphs . 15 3.4 Variations . 15 3.5 Encoding system dependencies . 18 4 Mathematical relationships between formalisms 21 5 Methods suitable for each representation 24 5.1 Methods for graphs . 24 5.2 Methods for simplicial complexes . 25 5.3 Methods for hypergraphs . 27 5.4 Methods and dependencies . 28 6 Examples 29 6.1 Coauthorship . 29 6.2 Email communications . 32 7 Applications 35 8 Discussion and Conclusion 36 9 Acknowledgments 38 10 Citation diversity statement 38 2 Abstract Complex systems thinking is applied to a wide variety of domains, from neuroscience to computer science and economics. The wide variety of implementations has resulted in two key challenges: the progenation of many domain-specific strategies that are seldom revisited or questioned, and the siloing of ideas within a domain due to inconsistency of complex systems language. -
Rumour Spreading and Graph Conductance∗
Rumour spreading and graph conductance∗ Flavio Chierichetti, Silvio Lattanzi, Alessandro Panconesi fchierichetti,lattanzi,[email protected] Dipartimento di Informatica Sapienza Universit`adi Roma October 12, 2009 Abstract if its completion time is poly-logarithmic in the size of We show that if a connected graph with n nodes has the network regardless of the source, and that it is slow conductance φ then rumour spreading, also known as otherwise. randomized broadcast, successfully broadcasts a mes- Randomized broadcast has been intensely investi- sage within O(log4 n/φ6) many steps, with high proba- gated (see the related-work section). Our long term bility, using the PUSH-PULL strategy. An interesting goal is to characterize a set of necessary and/or suffi- feature of our approach is that it draws a connection be- cient conditions for rumour spreading to be fast in a tween rumour spreading and the spectral sparsification given network. In this work, we provide a very general procedure of Spielman and Teng [23]. sufficient condition{ high conductance. Our main moti- vation comes from the study of social networks. Loosely 1 Introduction stated, we are looking after a theorem of the form \Ru- mour spreading is fast in social networks". Our result is Rumour spreading, also known as randomized broadcast a good step in this direction because there are reasons or randomized gossip (all terms that will be used as to believe that social networks have high conductance. synonyms throughout the paper), refers to the following This is certainly the case for preferential attachment distributed algorithm. Starting with one source node models such as that of [18]. -
Absorbing State 34, 36 Adaptive Boolean Networks 78 Adaptive Chemical Network 73 Adaptive Coupled Map Lattices 66 Adaptive Epide
239 Index a b absorbing state 34, 36 b-value 107, 109, 112, 119 adaptive Boolean networks 78 Bak–Sneppen model 74, 75 adaptive chemical network 73 benchmark 216, 217, 234 adaptive coupled map lattices 66 Bethe–Peierls approach 225 adaptive epidemiological network betweenness of a node 68 95 bill-tracking website 6 adaptive network of coupled biodiversity 46 oscillators 83 biological evolution 73 adaptive networks 63–66, 70–72, bipartite networks 211 74, 83, 90, 98, 100, 102 bipartite structure 216 adaptive rewiring 91, 92 bipartition 218, 220 adaptive SIS model 96 bipartitioning problem 219 adjacency matrix 9, 66, 206, 207, birth-death processes 31, 37 209–211, 217, 223 bisection problem 232 aftershock 108, 113, 121, bistability 27 125–129, 131, 134, 135, 137 bivariate analysis 164 aftershock magnitudes 127 bivariate measures 162 aftershock sequence 121, 123 bivariate nonlinear approaches aftershock sequences 136 163 agent-based models 73 bivariate time-series analysis agent-based simulation 172, 173, 178 frameworks 3 block-structure 201, 203, 217, air transportation network 2, 10 222, 234, 235 anti-epileptic drugs 159, 163 Boolean networks 65, 76, 79 assortative 67 bounded rationality 25 attractor 164 box-counting technique 112, 113 autoregressive modeling 161, brain 161 172, 175 Brownian motion 6, 7 avalanche size 139 burst-firing 169, 170 average shortest path length 167 bursting 166, 167, 170 Reviews of Nonlinear Dynamics and Complexity. Edited by Heinz Georg Schuster Copyright c 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: -
Query Processing in Spatial Network Databases
Query Processing in Spatial Network Databases Dimitris Papadias Jun Zhang Department of Computer Science Department of Computer Science Hong Kong University of Science and Technology Hong Kong University of Science and Technology Clearwater Bay, Hong Kong Clearwater Bay, Hong Kong [email protected] [email protected] Nikos Mamoulis Yufei Tao Department of Computer Science and Information Systems Department of Computer Science University of Hong Kong City University of Hong Kong Pokfulam Road, Hong Kong Tat Chee Avenue, Hong Kong [email protected] [email protected] than their Euclidean distance. Previous work on spatial Abstract network databases (SNDB) is scarce and too restrictive Despite the importance of spatial networks in for emerging applications such as mobile computing and real-life applications, most of the spatial database location-based commerce. This necessitates the literature focuses on Euclidean spaces. In this development of novel and comprehensive query paper we propose an architecture that integrates processing methods for SNDB. network and Euclidean information, capturing Every conventional spatial query type (e.g., nearest pragmatic constraints. Based on this architecture, neighbors, range search, spatial joins and closest pairs) we develop a Euclidean restriction and a has a counterpart in SNDB. Consider, for instance, the network expansion framework that take road network of Figure 1.1, where the rectangles advantage of location and connectivity to correspond to hotels. If a user at location q poses the efficiently prune the search space. These range query "find the hotels within a 15km range", the frameworks are successfully applied to the most result will contain a, b and c (the numbers in the figure popular spatial queries, namely nearest correspond to network distance). -
Urban Street Network Analysis in a Computational Notebook
Urban Street Network Analysis in a Computational Notebook Geoff Boeing Department of Urban Planning and Spatial Analysis Sol Price School of Public Policy University of Southern California [email protected] Abstract: Computational notebooks offer researchers, practitioners, students, and educators the ability to interactively conduct analytics and disseminate re- producible workflows that weave together code, visuals, and narratives. This article explores the potential of computational notebooks in urban analytics and planning, demonstrating their utility through a case study of OSMnx and its tu- torials repository. OSMnx is a Python package for working with OpenStreetMap data and modeling, analyzing, and visualizing street networks anywhere in the world. Its official demos and tutorials are distributed as open-source Jupyter notebooks on GitHub. This article showcases this resource by documenting the repository and demonstrating OSMnx interactively through a synoptic tutorial adapted from the repository. It illustrates how to download urban data and model street networks for various study sites, compute network indicators, vi- sualize street centrality, calculate routes, and work with other spatial data such as building footprints and points of interest. Computational notebooks help in- troduce methods to new users and help researchers reach broader audiences in- terested in learning from, adapting, and remixing their work. Due to their utility and versatility, the ongoing adoption of computational notebooks in urban plan- ning, analytics, and related geocomputation disciplines should continue into the future.1 1 Introduction A traditional academic and professional divide has long existed between code creators and code users. The former would develop software tools and workflows for professional or research ap- plications, which the latter would then use to conduct analyses or answer scientific questions. -
Random Boolean Networks As a Toy Model for the Brain
UNIVERSITY OF GENEVA SCIENCE FACULTY VRIJE UNIVERSITEIT OF AMSTERDAM PHYSICS SECTION Random Boolean Networks as a toy model for the brain MASTER THESIS presented at the science faculty of the University of Geneva for obtaining the Master in Theoretical Physics by Chlo´eB´eguin Supervisor (VU): Pr. Greg J Stephens Co-Supervisor (UNIGE): Pr. J´er^ome Kasparian July 2017 Contents Introduction1 1 Biology, physics and the brain4 1.1 Biological description of the brain................4 1.2 Criticality in the brain......................8 1.2.1 Physics reminder..................... 10 1.2.2 Experimental evidences.................. 15 2 Models of neural networks 20 2.1 Classes of models......................... 21 2.1.1 Spiking models...................... 21 2.1.2 Rate-based models.................... 23 2.1.3 Attractor networks.................... 24 2.1.4 Links between the classes of models........... 25 2.2 Random Boolean Networks.................... 28 2.2.1 General definition..................... 28 2.2.2 Kauffman network.................... 30 2.2.3 Hopfield network..................... 31 2.2.4 Towards a RBN for the brain.............. 32 2.2.5 The model......................... 33 3 Characterisation of RBNs 34 3.1 Attractors............................. 34 3.2 Damage spreading........................ 36 3.3 Canonical specific heat...................... 37 4 Results 40 4.1 One population with Gaussian weights............. 40 4.2 Dale's principle and balance of inhibition - excitation..... 46 4.3 Lognormal distribution of the weights.............. 51 4.4 Discussion............................. 55 i 5 Conclusion 58 Bibliography 60 Acknowledgements 66 A Python Code 67 A.1 Dynamics............................. 67 A.2 Attractor search.......................... 69 A.3 Hamming Distance........................ 73 A.4 Canonical specific heat..................... -
Boolean Analysis of MOS Circuits
Bo olean Analysis of MOS Circuits Randal E Bryant Computer Science Department CarnegieMellon University Pittsburgh PA February Abstract The switchlevel mo del represents a digital metaloxide semiconductor MOS cir cuit as a network of charge storage no des connected by resistive transistor switches The functionality of such a network can b e expressed as a series of systems of Bo olean equations Solving these equations symb olically yields a set of Bo olean formulas that describ e the mapping from input and current state to the new network state This analysis supp orts the same class of networks as the switchlevel simulator MOSSIM I I and provides the same functionality including the handling of bidirectional eects and indeterminate X logic values In the worst case the analysis of an n no de network can yield a set of formulas containing a total of O n op erations However all but a limited set of dense passtransistor networks give formulas with O n total op era tions The analysis can serve as the basis of ecient programs for a varietyoflogic design tasks including logic simulation on b oth conventional and sp ecial purp ose computers fault simulation test generation and symb olic verication Keywords and phrases switchlevel networks symb olic analysis logic simulation fault simulation simulation accelerators Intro duction The switchlevel mo del has proved successful as an abstract representation of digital metaloxide semiconductor MOS circuits for a variety of applications This mo del repre sents a circuit in terms of its exact transistor