Effect of Killing Methods on the Insect Fauna and Succession on African
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera: Calyptratae)
Systematic Entomology (2020), DOI: 10.1111/syen.12443 Protein-encoding ultraconserved elements provide a new phylogenomic perspective of Oestroidea flies (Diptera: Calyptratae) ELIANA BUENAVENTURA1,2 , MICHAEL W. LLOYD2,3,JUAN MANUEL PERILLALÓPEZ4, VANESSA L. GONZÁLEZ2, ARIANNA THOMAS-CABIANCA5 andTORSTEN DIKOW2 1Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany, 2National Museum of Natural History, Smithsonian Institution, Washington, DC, U.S.A., 3The Jackson Laboratory, Bar Harbor, ME, U.S.A., 4Department of Biological Sciences, Wright State University, Dayton, OH, U.S.A. and 5Department of Environmental Science and Natural Resources, University of Alicante, Alicante, Spain Abstract. The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment. -
Pdf 409.95 K
Egypt. Acad. J. biolog. Sci., 1(2): 109 - 123 (2008) E. mail. [email protected] ISSN: 1687 – 8809 Received: 20/10/ 2008 Biochemical differences between the virgin queens and workers of the Ant, Camponotus maculatus (Fabricius) Laila Sayed Hamouda Department of Entomology , Faculty of Science , Ain Shams Univ., Cairo , Egypt. ABSTRACT The present data showed that the activities of all the tested enzymes except acetylcholinesterase (α,β-esterases, acid phosphatase and glutathione S-transeferase) were significantly higher in the whole body homogenates of the virgin queens ant, Camponotus maculatus (Fabricius) than that recorded for the workers. Also, the concentration of total soluble proteins of the virgin queens was higher than of workers. These proteins were electrophoretically separated into 22 bands (258.6 to 35.4KDa) in the virgin queen samples while they were separated into 19 bands (216.7 to 35.4KDa) in the worker samples. Ten protein bands were common between the two castes (108.1, 103.9, 99.8, 94.6, 63.7, 61.3, 55.9, 48.1, 40.6 and 35.4KDa) and the remaining bands were characteristic for each caste .Finally, there was difference in the genomic DNA of the two studied castes. Key words: Differentiation – Queen – Worker – Enzymes – SDS Electrophoresis –DNA– Ants INTRODUCTION Ants are social insects of the family Formicidae and, along with the related families of wasps and bees, belong to the order Hymenoptera. The highly organized colonies and nests of ants consist of millions of individuals. They are mostly sterile females (workers, soldiers, and other castes) with some fertile males (drones) and one or more fertile females (queens).Ants dominate most ecosystems, forming 15-20% of the terrestrial animal biomass .Their success has been attributed to their social structure, ability to modify their habitats, tap resources and defend themselves (Ant- Wikipedia ,the free encyclopedia). -
Notes on Ants (Hymenoptera: Formicidae) from Gambia (Western Africa)
ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 26 (online 010): 1–13 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 08.05.2018 LECH BOROWIEC1, SEBASTIAN SALATA2 Notes on ants (Hymenoptera: Formicidae) from Gambia (Western Africa) http://doi.org/10.5281/zenodo.1243767 1 Department of Biodiversity and Evolutionary Taxonomy, University of Wrocław, Przybyszewskiego 65, 51-148 Wrocław, Poland e-mail: [email protected], [email protected] Abstract: A list of 35 ant species or morphospecies collected in Gambia is presented, 9 of them are recorded for the first time from the country:Camponotus cf. vividus, Crematogaster cf. aegyptiaca, Dorylus nigricans burmeisteri SHUCKARD, 1840, Lepisiota canescens (EMERY, 1897), Monomorium cf. opacum, Monomorium cf. salomonis, Nylanderia jaegerskioeldi (MAYR, 1904), Technomyrmex pallipes (SMITH, 1876), and Trichomyrmex abyssinicus (FOREL, 1894). A checklist of 82 ant species recorded from Gambia is given. Key words: ants, faunistics, Gambia, new country records. INTRODUCTION Ants fauna of Gambia (West Africa) is poorly known. Literature data, AntWeb and other Internet resources recorded only 59 species from this country. For comparison from Senegal, which surrounds three sides of Gambia, 89 species have been recorded so far. Both of these records seem poor when compared with 654 species known from the whole western Africa (SHUCKARD 1840, ANDRÉ 1889, EMERY 1892, MENOZZI 1926, SANTSCHI 1939, LUSH 2007, ANTWIKI 2017, ANTWEB 2017, DIAMÉ et al. 2017, TAYLOR 2018). Most records from Gambia come from general web checklists of species. Unfortunately, they lack locality data, date of sampling, collector name, coordinates of the locality and notes on habitats. -
Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus. -
Competition Between Ants for Coconut Palm Nesting Sites
Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Competition between ants for coconut palm nesting sites M.J. Way & B. Bolton To cite this article: M.J. Way & B. Bolton (1997) Competition between ants for coconut palm nesting sites, Journal of Natural History, 31:3, 439-455, DOI: 10.1080/00222939700770221 To link to this article: http://dx.doi.org/10.1080/00222939700770221 Published online: 17 Feb 2007. Submit your article to this journal Article views: 39 View related articles Citing articles: 9 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [Victoria University of Wellington] Date: 12 June 2016, At: 14:35 JOURNAL OF NATURALHISTORY, 1997, 31,439-455 Competition between ants for coconut palm nesting sites M. J. WAYt* and B. BOLTON~ tlmperial College of Science, Technology and Medicine, Silwood Park, Ascot, Berks, UK ~The Natural History Museum, Cromwell Road, London, UK (Accepted 27 May 1996) About 85 different ant species were found nesting on coconut palms in Malaysia, the Philippines, Sri Lanka, Tanzania and Trinidad. Three occurred in all countries. With the exception of the leaf-nesting Oecophylla spp, all nested in leaf axils and spadices mostly between the two sheaths (spathes) and peduncle of the spadix. Up to eight species were found nesting in the same palm and five in the same spadix. In the latter circumstances the nest distribution of different non-dominant species is initially associated with the 'height' of available spaces, the smaller species nesting in the narrower, more distal end and the larger in the proximal end of the spadix. -
Blow Fly (Diptera: Calliphoridae) in Thailand: Distribution, Morphological Identification and Medical Importance Appraisals
International Journal of Parasitology Research ISSN: 0975-3702 & E-ISSN: 0975-9182, Volume 4, Issue 1, 2012, pp.-57-64. Available online at http://www.bioinfo.in/contents.php?id=28. BLOW FLY (DIPTERA: CALLIPHORIDAE) IN THAILAND: DISTRIBUTION, MORPHOLOGICAL IDENTIFICATION AND MEDICAL IMPORTANCE APPRAISALS NOPHAWAN BUNCHU Department of Microbiology and Parasitology and Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand. *Corresponding Author: Email- [email protected] Received: April 03, 2012; Accepted: April 12, 2012 Abstract- The blow fly is considered to be a medically-important insect worldwide. This review is a compilation of the currently known occur- rence of blow fly species in Thailand, the fly’s medical importance and its morphological identification in all stages. So far, the 93 blow fly species identified belong to 9 subfamilies, including Subfamily Ameniinae, Calliphoridae, Luciliinae, Phumosiinae, Polleniinae, Bengaliinae, Auchmeromyiinae, Chrysomyinae and Rhiniinae. There are nine species including Chrysomya megacephala, Chrysomya chani, Chrysomya pinguis, Chrysomya bezziana, Achoetandrus rufifacies, Achoetandrus villeneuvi, Ceylonomyia nigripes, Hemipyrellia ligurriens and Lucilia cuprina, which have been documented already as medically important species in Thailand. According to all cited reports, C. megacephala is the most abundant species. Documents related to morphological identification of all stages of important blow fly species and their medical importance also are summarized, based upon reports from only Thailand. Keywords- Blow fly, Distribution, Identification, Medical Importance, Thailand Citation: Nophawan Bunchu (2012) Blow fly (Diptera: Calliphoridae) in Thailand: Distribution, Morphological Identification and Medical Im- portance Appraisals. International Journal of Parasitology Research, ISSN: 0975-3702 & E-ISSN: 0975-9182, Volume 4, Issue 1, pp.-57-64. -
Oecophylla Longinoda, an Ant Predator of Anomma Driver Ants (Hymenoptera Formicidae)* by William H
OECOPHYLLA LONGINODA, AN ANT PREDATOR OF ANOMMA DRIVER ANTS (HYMENOPTERA FORMICIDAE)* BY WILLIAM H. COTWALD, JR. Department o Biology, Utica College o Syracuse University Utica., New York, I35O2 Ants o the subgenus A nomma, one ot 6 subgenera composing the genus Dorylus, are commonly reerred to as "driver ants." The driver ant receives its name appa.rently because it "drives everything before it capable o muscular movement, so ormidable is it rom its numbers and bite ." (Savage, 847). O the Dorylus subgenera, Anomma is most conspicuous. Its species are aggressive, primarily epigaeic oragers (i.e. surface adapted as opposed to subterranean) with colo.nies consisting ot up to 22 million individuals (Raignier and van Boven, 955). Although the erocity ot the Anomma driver ants has been fictionalized and tales o their behavior are in- corporated into Arican olklo.re, their pugnacity has been repeatedly documented (Loveridge, 922 Raignier and van Boven, 9.55 Savage, 847, 849; Wheeler 9o, 922). The driver ants have also been described as clearly dominant animals (Weber, 943). Without a doubt, they appea.r as efficient predato,rs, having evolved a system o group predation o significant adaptive advantage in trop- ical environments. However, these carnivores are themselves no.t without predators. Bequaert (922) reports Anomma species rom the stomachs ot 4 species o.x Arican toa.ds (genus Bufo) and 3 species, ot Arican rogs (in the genera Rana, Kassina, Hemisus). He also reports that driver ants are commonly eaten by Arican skinks o the genus Mabuya and by pangolins (scaly anteaters) o the genus Manis. -
Hymenoptera, Formicidae) Fauna of Senegal
Journal of Insect Biodiversity 5(15): 1-16, 2017 http://www.insectbiodiversity.org RESEARCH ARTICLE A preliminary checklist of the ant (Hymenoptera, Formicidae) fauna of Senegal Lamine Diamé1,2*, Brian Taylor3, Rumsaïs Blatrix4, Jean-François Vayssières5, Jean- Yves Rey1,5, Isabelle Grechi6, Karamoko Diarra2 1ISRA/CDH, BP 3120, Dakar, Senegal; 2UCAD, BP 7925, Dakar, Senegal; 311Grazingfield, Wilford, Nottingham, NG11 7FN, United Kingdom; 4CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE, 1919 route de Mende, 34293 Montpellier Cedex 5, France; 5CIRAD; UPR HortSys; Montpellier, France; 6CIRAD, UPR HortSys, F-97410 Saint-Pierre, La Réunion, France. *Corresponding author: [email protected] Abstract: This work presents the first checklist of the ant species of Senegal, based on a review of the literature and on recent thorough sampling in Senegalese orchard agrosystems during rainy and dry seasons. Eighty-nine species belonging to 31 genera and 9 subfamilies of Formicidae are known. The most speciose genera were Monomorium Mayr, 1855, and Camponotus Mayr, 1861, with 13 and 12 species, respectively. The fresh collection yielded 31 species recorded for the first time in Senegal, including two undescribed species. The composition of the ant fauna reflects the fact that Senegal is in intermediate ecozone between North Africa and sub-Saharan areas, with some species previously known only from distant locations, such as Sudan. Key words: Ants, checklist, new records, sub-Saharan country, Senegal. Introduction Information on the ant fauna of Senegal is mostly known from scattered historical records, and no synthetic list has been published. The first record dates from 1793 while the most recent was in 1987 (see Table 1). -
Bengalomania – a Review of Andy Z. LEHRER's Book On
ROGNES: 443–471 Studia dipterologica 12 (2005) Heft 2 ɀ ISSN 0945-3954 Bengalomania – A review of Andy Z. LEHRER’S book on Bengalia ROBINEAU-DESVOIDY, 1830 and related works (Diptera, Calliphoridae) [Bengalomania – Eine Besprechung von Andy Z. LEHRERS Buch über Bengalia ROBINEAU-DESVOIDY, 1830 und verwandte Publikationen (Diptera, Calliphoridae)] by Knut ROGNES Stavanger (Norway) Abstract Three recent works of Andy Z. LEHRER are reviewed, with a main emphasis on the book ‘Ben- galiidae du Monde (Insecta: Diptera)’. The proposed classification of Bengalia ROBINEAU- DESVOIDY, 1830 is rejected. All new family-group names, viz. Afridigaliinae LEHRER, 2005b; Gangelomyiinae LEHRER, 2005b (misspelled as Gangelomyinae) and Maraviolinae LEHRER, 2005b are sunk as junior synonyms of the tribe Bengaliini BRAUER & BERGENSTAMM, 1889, new synonyms. All new genus-group names, viz. Afridigalia LEHRER, 2005b; Ashokiana LE- HRER, 2005b; Kenypyga LEHRER, 2005b; Shakaniella LEHRER, 2005b; Tsunamia LEHRER 2005b; Bezzigalia LEHRER 2005b; Gangelomyia LEHRER 2005b; Laoziana LEHRER, 2005b; Temaseka LEHRER, 2005b and Maraviola LEHRER, 2005b are sunk as junior synonyms of Bengalia ROBIN- EAU-DESVOIDY, 1830, new synonyms. Bengalia ruedai LEHRER, 2005b is sunk as a synonym of Bengalia calilungae RUEDA, 1985, new synonym. Temaseka mallochi LEHRER, 2005b is sunk as a synonym of Bengalia concava MALLOCH, 1927, new synonym. Afridigalia adrianponti LEHRER, 2005b and Afridigalia falsimonia LEHRER, 2005b are sunk as synonyms of Bengalia floccosa (VA N DER WULP, 1884), new synonyms. Afridigalia lubana LEHRER, 2005b and Afridi- galia sanaga LEHRER, 2005b are sunk as synonyms of Bengalia gaillardi SURCOUF & GUYON, 1912, new synonyms. Afridigalia laguna LEHRER, 2005b and Afridigalia nusantara LEHRER, 2005b are sunk as synonyms of Bengalia inermis MALLOCH, 1927, new synonyms. -
Daitoensis. Camponotus (Myrmamblys) Daitoensis Terayama, 1999B: 41, Figs
daitoensis. Camponotus (Myrmamblys) daitoensis Terayama, 1999b: 41, figs. 31-34 (s.w.) JAPAN. Status as species: Imai, et al. 2003: 34; McArthur, 2012: 194. daliensis. Camponotus abdominalis var. daliensis Forel, 1901h: 70 (w.q.) COSTA RICA. Nomen nudum. dallatorrei. Camponotus alii dallatorrei Özdikmen, 2010a: 520. Replacement name for Camponotus alii var. concolor Dalla Torre, 1893: 221. [Junior primary homonym of Camponotus concolor Forel, 1891b: 214.] dalmasi. Camponotus dalmasi Forel, 1899c: 145 (footnote) (w.) COLOMBIA. Combination in C. (Myrmorhachis): Forel, 1914a: 274; combination in C. (Myrmocladoecus): Emery, 1925b: 166; Wheeler, W.M. 1934e: 424. Status as species: Forel, 1902b: 172; Emery, 1925b: 166; Kempf, 1972a: 55; Bolton, 1995b: 95; Mackay & Mackay, 2019: 758. dalmaticus. Formica dalmatica Nylander, 1849: 37 (w.) CROATIA (Lastovo I., “Ex insula Dalmatica Lagosta”). [Misspelled as dalmatinus by Müller, 1923b: 164.] Forel, 1913d: 436 (q.m.). Combination in Camponotus: Mayr, 1863: 399; Roger, 1863b: 1; combination in C. (Orthonotomyrmex): Müller, 1923b: 164; combination in C. (Myrmentoma): Menozzi, 1921: 32; Emery, 1925b: 120; combination in Orthonotomyrmex: Novák & Sadil, 1941: 109 (in key). As unavailable (infrasubspecific) name: Emery, 1916b: 226. Junior synonym of lateralis: Mayr, 1855: 322; Nylander, 1856b: 58; Smith, F. 1858b: 12 (first entry, see below); Mayr, 1863: 399; Roger, 1863b: 1; Dours, 1873: 164; André, 1874: 201 (in list); Forel, 1874: 97 (in list). Subspecies of lateralis: Forel, 1874: 40; Emery & Forel, 1879: 449; André, 1882a: 151 (in key); Forel, 1886e: clxvii; Forel, 1892i: 306; Dalla Torre, 1893: 238; Emery, 1896d: 373 (in list); Emery, 1898c: 125; Forel, 1913d: 436; Emery, 1914d: 159; Menozzi, 1921: 32; Müller, 1923b: 164; Emery, 1925a: 69; Emery, 1925b: 120; Ceballos, 1956: 312. -
A Morphological and Molecular Study of Some Species In
Myrmecologische Nachrichten 8 99 - 110 Wien, September 2006 A morphological and molecular study of some species in the Camponotus maculatus group (Hymenoptera: Formicidae) in Australia and Africa, with a description of a new Australian species Archie J. MCARTHUR & Remko LEYS Abstract Captain Cook is recognised as the collector of Camponotus maculatus (FABRICIUS, 1782) from Sierra Leone and since then many subspecies have been described, most of which are from Africa. One, Camponotus maculatus humilior FOREL, 1902 is common in northern Australia. We describe a morphological and molecular study aimed at determining the relationship of species of the C. maculatus group in Australia and Africa. From this we find no close relationship between the Australian and African species examined. We raise Camponotus maculatus humilior to species rank, syn- onymise Camponotus villosus CRAWLEY, 1915 with Camponotus novaehollandiae MAYR, 1870 and describe Campo- notus crozieri sp.n. We indicate the need for more work in defining the boundaries of Camponotus novaehollandiae. Key words: Ants, Formicinae, DNA, cryptic species, Camponotus maculatus, C. novaehollandiae, C. humilior, C. crozieri, new species. Archie J. McArthur (contact author) & Dr. Remko Leys, South Australian Museum, North Terrace, Adelaide SA 5000, Australia. E-mail: [email protected] Introduction There are over 1400 described species and subspecies of analysis? (b) What is the status of brownish specimens ap- Camponotus MAYR, 1861 world wide (BOLTON 1995). parently closely related to C. novaehollandiae, common Their taxonomy is complicated by the wide variation in in Australia, in relation to the consistently coloured yel- shape and colour of worker castes within a species. -
Revision of the Afrotropical Species of the Bengalia Peuhi Speciesgroup
Zootaxa 3553: 1–79 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Monograph ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:17C95920-B910-4149-8516-AA6A83373244 ZOOTAXA 3553 Revision of the Afrotropical species of the Bengalia peuhi species- group, including a species reassigned to the B. spinifemorata species- group (Diptera, Calliphoridae), with notes on the identity of Ochromyia petersiana Loew, 1852 (Diptera, Rhiniidae) KNUT ROGNES University of Stavanger, Faculty of Arts and Education, Department of Early Childhood Education, NO–4036 Stavanger, Norway. E-mail: [email protected] or [email protected]. Magnolia Press Auckland, New Zealand Accepted by J. O’Hara: 10 Oct. 2012; published: 19 Nov. 2012 KNUT ROGNES Revision of the Afrotropical species of the Bengalia peuhi species-group, including a species reassigned to the B. spinifemorata species-group (Diptera, Calliphoridae), with notes on the identity of Ochromyia petersiana Loew, 1852 (Diptera, Rhiniidae) (Zootaxa 3553) 79 pp.; 30 cm. 19 November 2012 ISBN 978-1-77557-052-3 (paperback) ISBN 978-1-77557-053-0 (Online edition) FIRST PUBLISHED IN 2012 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2012 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.