Chlortetracycline Hydrochloride PRODUCT DATA SHEET Issue Date 01/06/2020

Total Page:16

File Type:pdf, Size:1020Kb

Chlortetracycline Hydrochloride PRODUCT DATA SHEET Issue Date 01/06/2020 Chlortetracycline Hydrochloride PRODUCT DATA SHEET issue date 01/06/2020 Product Name: Chlortetracycline Hydrochloride Product Number: C072 CAS Number: 64-72-2 Molecular Formula: C22H23ClN2O8· HCl Molecular Weight: 515.34 g/mol Form: Powder Appearance: Yellow powder Source: Streptomyces aureofaciens. Potency (on a dry basis): ≥ 900 µg/mg pH: 2.3-3.3 Optical Rotation: ­235º to ­250º Storage Conditions: ­20 °C, protected from light. Description: Chlortetracycline hydrochloride (HCl) is tetracycline antibiotic and the first antibiotic of the tetracycline class to be discovered. Chlortetracycline HCl is soluble in water at 8.6 mg/mL. Mechanism of Action: The mechanism of chlorotetracycline involves entering a cell and binding to the 30s ribosomal subunit preventing peptide elongation and ultimately inhibiting protein synthesis. Resistance to chlortetracycline can be a result of inactivation by cell enzymes or pumping the antibiotic out of the cell upon entering. Spectrum: Chlortetracycline is a broad spectrum antibiotic targeting a wide variety of gram positive and gram negative bacterial cells. Microbiology Applications Chlortetracycline HCl is commonly used in clinical in vitro microbiological antimicrobial susceptibility tests (panels, discs, and MIC strips) against gram positive and gram negative microbial isolates. Medical microbiologists use AST results to recommend antibiotic treatment options for infected patients. Representative MIC values include: Micrococcus 17 µg/mL For a complete list of chlortetracycline MIC values, click here. Plant Biology Chlortetracycline, in combination with colistin and gentamicin have been Applications successfully used in sweet cherry (Prunus avium L). tissue culture to eliminate Pseudomonas spp. contaminants. References: Hierowski, Marian. "Inhibition of Chlortetracycline Protein Synthesis in the E. coli In Vitro System.." PNAS 53.3 (1965): 594-99. www.ncbi.gov. Web. 10 Sept. 2012. Leifert C., Ritchie J.Y. and Waites W.M., Contaminants of plant-tissue and cell cultures. World Journal of Microbiology and Biotechnology 7. 452469. If you need any help, contact us: [email protected]. Find more information on: www.toku-e.com/.
Recommended publications
  • National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): a Cross-Sectional Study
    Tropical Medicine and Infectious Disease Article National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): A Cross-Sectional Study Joseph Sam Kanu 1,2,* , Mohammed Khogali 3, Katrina Hann 4 , Wenjing Tao 5, Shuwary Barlatt 6,7, James Komeh 6, Joy Johnson 6, Mohamed Sesay 6, Mohamed Alex Vandi 8, Hannock Tweya 9, Collins Timire 10, Onome Thomas Abiri 6,11 , Fawzi Thomas 6, Ahmed Sankoh-Hughes 12, Bailah Molleh 4, Anna Maruta 13 and Anthony D. Harries 10,14 1 National Disease Surveillance Programme, Sierra Leone National Public Health Emergency Operations Centre, Ministry of Health and Sanitation, Cockerill, Wilkinson Road, Freetown, Sierra Leone 2 Department of Community Health, Faculty of Clinical Sciences, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone 3 Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, 1211 Geneva, Switzerland; [email protected] 4 Sustainable Health Systems, Freetown, Sierra Leone; [email protected] (K.H.); [email protected] (B.M.) 5 Unit for Antibiotics and Infection Control, Public Health Agency of Sweden, Folkhalsomyndigheten, SE-171 82 Stockholm, Sweden; [email protected] 6 Pharmacy Board of Sierra Leone, Central Medical Stores, New England Ville, Freetown, Sierra Leone; [email protected] (S.B.); [email protected] (J.K.); [email protected] (J.J.); [email protected] (M.S.); [email protected] (O.T.A.); [email protected] (F.T.) Citation: Kanu, J.S.; Khogali, M.; 7 Department of Pharmaceutics and Clinical Pharmacy & Therapeutics, Faculty of Pharmaceutical Sciences, Hann, K.; Tao, W.; Barlatt, S.; Komeh, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown 0000, Sierra Leone 8 J.; Johnson, J.; Sesay, M.; Vandi, M.A.; Directorate of Health Security & Emergencies, Ministry of Health and Sanitation, Sierra Leone National Tweya, H.; et al.
    [Show full text]
  • 4. Antibacterial/Steroid Combination Therapy in Infected Eczema
    Acta Derm Venereol 2008; Suppl 216: 28–34 4. Antibacterial/steroid combination therapy in infected eczema Anthony C. CHU Infection with Staphylococcus aureus is common in all present, the use of anti-staphylococcal agents with top- forms of eczema. Production of superantigens by S. aureus ical corticosteroids has been shown to produce greater increases skin inflammation in eczema; antibacterial clinical improvement than topical corticosteroids alone treatment is thus pivotal. Poor patient compliance is a (6, 7). These findings are in keeping with the demon- major cause of treatment failure; combination prepara- stration that S. aureus can be isolated from more than tions that contain an antibacterial and a topical steroid 90% of atopic eczema skin lesions (8); in one study, it and that work quickly can improve compliance and thus was isolated from 100% of lesional skin and 79% of treatment outcome. Fusidic acid has advantages over normal skin in patients with atopic eczema (9). other available topical antibacterial agents – neomycin, We observed similar rates of infection in a prospective gentamicin, clioquinol, chlortetracycline, and the anti- audit at the Hammersmith Hospital, in which all new fungal agent miconazole. The clinical efficacy, antibac- patients referred with atopic eczema were evaluated. In terial activity and cosmetic acceptability of fusidic acid/ a 2-month period, 30 patients were referred (22 children corticosteroid combinations are similar to or better than and 8 adults). The reason given by the primary health those of comparator combinations. Fusidic acid/steroid physician for referral in 29 was failure to respond to combinations work quickly with observable improvement prescribed treatment, and one patient was referred be- within the first week.
    [Show full text]
  • Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks
    processes Review Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks Manuel Conde-Cid 1, Avelino Núñez-Delgado 2 , María José Fernández-Sanjurjo 2 , Esperanza Álvarez-Rodríguez 2, David Fernández-Calviño 1,* and Manuel Arias-Estévez 1 1 Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; [email protected] (M.C.-C.); [email protected] (M.A.-E.) 2 Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; [email protected] (A.N.-D.); [email protected] (M.J.F.-S.); [email protected] (E.Á.-R.) * Correspondence: [email protected] Received: 30 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Veterinary antibiotics are widely used worldwide to treat and prevent infectious diseases, as well as (in countries where allowed) to promote growth and improve feeding efficiency of food-producing animals in livestock activities. Among the different antibiotic classes, tetracyclines and sulfonamides are two of the most used for veterinary proposals. Due to the fact that these compounds are poorly absorbed in the gut of animals, a significant proportion (up to ~90%) of them are excreted unchanged, thus reaching the environment mainly through the application of manures and slurries as fertilizers in agricultural fields. Once in the soil, antibiotics are subjected to a series of physicochemical and biological processes, which depend both on the antibiotic nature and soil characteristics. Adsorption/desorption to soil particles and degradation are the main processes that will affect the persistence, bioavailability, and environmental fate of these pollutants, thus determining their potential impacts and risks on human and ecological health.
    [Show full text]
  • BD BBL™ Sabouraud Brain Heart Infusion Agar Slants with Chloramphenicol and Gentamicin, Pkg
    BBL™ Sabouraud Brain Heart Infusion Agar Slants with Chloramphenicol and Gentamicin 8806701 • Rev. 02 • April 2015 QUALITY CONTROL PROCEDURES I INTRODUCTION This medium is used in qualitative procedures for the selective isolation and cultivation of pathogenic fungi from clinical and nonclinical specimens. II PERFORMANCE TEST PROCEDURE 1. Inoculate representative samples with the cultures listed below. a. For B. dermatitidis and T. mentagrophytes inoculate directly using a 0.01 mL loopful of fungal broth culture. b. For C. albicans and E. coli inoculate using 0.01 mL of saline suspensions diluted to yield 103 – 104 CFUs. 2. Incubate tubes with loosened caps at 25 ± 2 °C for up to 7 days in an aerobic atmosphere. 3. Expected Results Organisms ATCC® Recovery *Blastomyces dermatitidis 56218 Fair to heavy growth *Candida albicans 10231 Fair to heavy growth *Trichophyton mentagrophytes 9533 Fair to heavy growth *Escherichia coli 25922 Inhibition (partial to complete) *Recommended organism strain for User Quality Control. III ADDITIONAL QUALITY CONTROL 1. Examine the tubes for signs of deterioration as described under “Product Deterioration.” 2. Visually examine representative tubes to assure that any existing physical defects will not interfere with use. 3. Determine the pH potentiometrically at room temperature for adherence to the specification of 6.8 ± 0.2. 4. Incubate uninoculated representative samples at 20 – 25 °C and 30 – 35 °C and examine after 7 days for microbial contamination. PRODUCT INFORMATION IV INTENDED USE This medium is used in qualitative procedures for the selective isolation and cultivation of pathogenic fungi from clinical and nonclinical specimens. V SUMMARY AND EXPLANATION Sabouraud Brain Heart Infusion Agar is based on the formulation of Gorman.1 The combination of Brain Heart Infusion Agar and Sabouraud Dextrose Agar in this medium improves the recovery of fungi compared with the recovery on either medium individually.
    [Show full text]
  • Topical Antibiotics for Impetigo: a Review of the Clinical Effectiveness and Guidelines
    CADTH RAPID RESPONSE REPORT: SUMMARY WITH CRITICAL APPRAISAL Topical Antibiotics for Impetigo: A Review of the Clinical Effectiveness and Guidelines Service Line: Rapid Response Service Version: 1.0 Publication Date: February 21, 2017 Report Length: 23 Pages Authors: Rob Edge, Charlene Argáez Cite As: Topical antibiotics for impetigo: a review of the clinical effectiveness and guidelines. Ottawa: CADTH; 2017 Feb. (CADTH rapid response report: summary with critical appraisal). ISSN: 1922-8147 (online) Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document.
    [Show full text]
  • Automated Hilic-MS/MS Method for Therapeutic Drug Monitoring of Aminoglycoside Antibiotics and Vancomycin
    Automated HILiC-MS/MS Method for Therapeutic Drug Monitoring of Aminoglycoside Antibiotics and Vancomycin Mikaël LEVI1, Daisuke KAWAKAMI2, Jun WATANABE1 1 SHIMADZU Corporation, MS Business Unit, Kyoto, Japan; 2 SHIMADZU Corporation, Clinical & Biotechnology Business Unit, Kyoto, Japan Area Ratio Area Ratio y = 0.005292846x² + 0.04278182x - 0.004441359 y = 0.001371438x² + 0.02132510x + 0.00002051234 6.0 4.50 1. Introduction R² = 0.9974212 R = 0.9987098 R² = 0.9990104 R = 0.9995051 4.25 5.5 Curve Fit: Default (Quadratic) Curve Fit: Default (Quadratic) Weighting: 1/C 4.00 Weighting: Default (1/C^2) Zero: Default (Not Forced) Zero: Default (Not Forced) 5.0 3.75 3.50 4.5 Aminoglycoside antibiotics are used for treatment of severe infections, especially in the case of Arbekacin 3.25 Kanamycin 4.0 3.00 2.75 3.5 Gram-negative bacilli infection. However, aminoglycosides have narrow therapeutic indexes due to 2.50 3.0 2.25 2.00 2.5 their nephrotoxicity. Therefore, the benefit of therapeutic drug monitoring (TDM) for aminoglycoside 1.75 2.0 1.50 1.25 1.5 has been well-established. Vancomycin, a glycopeptide antibiotic, often used with aminoglycosides 1.00 1.0 0.75 0.50 0.5 because of their synergism, is also nephrotoxic and need to be monitored as well. 0.25 0.0 0.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 Conc.Ratio (mg/L) Conc.Ratio (mg/L) While LC-MS/MS is now considered as the gold standard method for TDM, many clinical laboratories Area Ratio Area Ratio 13 y = 0.0003193042x² + 0.2404682x - 0.001638089 y = 0.00002521235x² + 0.01160575x - 0.0007537159 R² = 0.9995769 R = 0.9997884 0.65 R² = 0.9997885 R = 0.9998942 12 Curve Fit: Default (Quadratic) 0.60 Curve Fit: Quadratic still use immunoassays.
    [Show full text]
  • (ESVAC) Web-Based Sales and Animal Population
    16 July 2019 EMA/210691/2015-Rev.2 Veterinary Medicines Division European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) Sales Data and Animal Population Data Collection Protocol (version 3) Superseded by a new version Superseded Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2021. Reproduction is authorised provided the source is acknowledged. Table of content 1. Introduction ....................................................................................................................... 3 1.1. Terms of reference ........................................................................................................... 3 1.2. Approach ........................................................................................................................ 3 1.3. Target groups of the protocol and templates ......................................................................... 4 1.4. Organization of the ESVAC project ...................................................................................... 4 1.5. Web based delivery of data ................................................................................................ 5 2. ESVAC sales data ............................................................................................................... 5 2.1.
    [Show full text]
  • Topical Antibiotics
    Topical antibiotics Microbiological point of view [email protected] • Topical antibiotics • Efficacy • Antibiotic resistance – Propionibacteria/acne • Tetracyclines • macrolides – Staphylococci/impetigo • Fusidic acid • Mupirocin • Epilogue Topical antibiotics in dermatology • Bacitracin • Chloramphénicol • Clindamycin • Erythromycin • Fusidic acid • Gentamicin • Miconazol • Mupirocin • Neomycin • Polymyxin B • Sulfamides • Tétracyclines • Benzoyle peroxyde • Azelaic acid + “bactéries (filtrat polyvalent) + huile de foie de morue 125 mg + sulfanilamide 200 mg/1 g “ Topical antibiotics in ophtalmology / ORL • Bacitracine • Chloramphénicol • Fusidic acid • Gentamicin • Gramicidin* • Quinolones: o-,nor-, cipro-, lome- floxacin* • Neomycin • Polymyxin B • Rifamycin* • Sulfamides • Tétracyclines • Trimethoprim* • Tobramycin* • Tyrothricine* Topical antibiotics: efficacy • Impetigo: mupirocin & fusidic acid*: + ** • Acne: + ~ benzoyl peroxyde • Chronic suppurative otitis media*: + ** • Acute bacterial conjunctivitis*: + * (Cochrane review) ** better than antiseptics Topical antibiotics: resistance • Propionibacterium spp: resistance to erythromycin: – mutation in the genes encoding 23S ribosomal RNA (3 phenotypes) resistance to tetracycline: – Mutation of the gene encoding 16S ribosomal RNA Propionibacteria Distribution and differentiation of human commensal propionibacterium P. acnes P. avidum P. granulosum P. propionicum distribution Skin +++ +++ +++ - Eye + - - +++ Mouth ++ - + +++ Gut +++ - - - differentiation Esculin - + - - Catalase +
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Third ESVAC Report
    Sales of veterinary antimicrobial agents in 25 EU/EEA countries in 2011 Third ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role Guiding principles The European Medicines Agency is the European Union • We are strongly committed to public and animal (EU) body responsible for coordinating the existing health. scientific resources put at its disposal by Member States • We make independent recommendations based on for the evaluation, supervision and pharmacovigilance scientific evidence, using state-of-the-art knowledge of medicinal products. and expertise in our field. • We support research and innovation to stimulate the The Agency provides the Member States and the development of better medicines. institutions of the EU the best-possible scientific advice on any question relating to the evaluation of the quality, • We value the contribution of our partners and stake- safety and efficacy of medicinal products for human or holders to our work. veterinary use referred to it in accordance with the • We assure continual improvement of our processes provisions of EU legislation relating to medicinal prod- and procedures, in accordance with recognised quality ucts. standards. • We adhere to high standards of professional and Principal activities personal integrity. Working with the Member States and the European • We communicate in an open, transparent manner Commission as partners in a European medicines with all of our partners, stakeholders and colleagues. network, the European Medicines Agency: • We promote the well-being, motivation and ongoing professional development of every member of the • provides independent, science-based recommenda- Agency.
    [Show full text]
  • Effect of Chlortetracycline on Salmonella and the Fecal Flora Of
    POSTER PRESENTATIONs Anatum (16.1 %, 9 farms) followed by Rissen (14.5 %, 7 farms), Typhimurium (11.3 %, 7 farms), Derby (9.7 %, 3 farms), Tilburg (8.1 %, 2 farms), Goldcoast (8.1 %, 1 farm), Typhimurium variant 4,5,12:i:- (6.5 %, 4 farms). Serotypes Bovismorbificans, Bredeney, Diarizonae, Grumpensis, Infantis, Kapemba, Kedougou, Ohio, Seftenberg and Virchow were also isolated although less than three times each. Antimicrobial susceptibility analysis showed that the highest level of resistance was against tetracycline (68.8 %). Sulphonamides and their combination with trimethoprim were only active against 67.7 % and 53.1 % of the strains, respectively. Regarding b-lactams, 41.6 % of the strains were resistant to ampicillin and 18.7 % were resistant to the combination of amoxycillin and clavulanic acid. Finally, 17.7 % of strains were resistant to cloramphenicol. Sixty-two percent of the strains showed resistance to three or more antimicrobial agents and 46 % were resistant to five or more drugs. The maximum number of compounds to which one strain was resistant was 10 (corresponding to a 4,5,12:i:- strain. In addition 3 strains were resistant to eight or nine compounds. None of the strains was resistant to colistin or ceftriaxone and 12 strains were susceptible to all antimicrobial agents tested (serotypes Anatum, Goldcoast, Kapemba and Ohio). These results indicate that sub-clinical infection with Salmonella can be produced by multi-drug resistant strains. In addition, with very few exceptions, most of the detected serotypes were able to be resistant to more than three drugs. This fact suggests that antimicrobial resistance in Salmonella isolates from pigs is not an exclusive property of a given serotype, for instance Typhimurium, but a widespread characteristic.
    [Show full text]
  • Effects of Chlortetracycline and Copper Supplementation on Levels of Antimicrobial Resistance in the Feces of Weaned Pigs
    EFFECTS OF CHLORTETRACYCLINE AND COPPER SUPPLEMENTATION ON LEVELS OF ANTIMICROBIAL RESISTANCE IN THE FECES OF WEANED PIGS by GETAHUN EJETA AGGA DVM, Addis Ababa University, 2003 MSc, Utrecht University, 2008 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine KANSAS STATE UNIVERSITY Manhattan, Kansas 2013 Abstract The use of antibiotics in food animals is of major concern as a purported cause of antimicrobial resistance (AMR) in human pathogens; as a result, alternatives to in-feed antibiotics such as heavy metals have been proposed. The effect of copper and CTC supplementation in weaned pigs on AMR in the gut microbiota was evaluated. Four treatment groups: control, copper, chlortetracycline (CTC), and copper plus CTC were randomly allocated to 32 pens with five pigs per pen. Fecal samples (n = 576) were collected weekly from three pigs per pen over six weeks and two Escherichia coli isolates per sample were tested phenotypically for antimicrobial and copper susceptibilities and genotypically for the presence of tetracycline (tet), copper (pcoD) and ceftiofur (blaCMY-2) resistance genes. CTC-supplementation significantly increased tetracycline resistance and susceptibility to copper when compared with the control group. Copper supplementation decreased resistance to most of the antibiotics, including cephalosporins, over all treatment periods. However, copper supplementation did not affect minimum inhibitory concentrations of copper or detection of pcoD. While tetA and blaCMY-2 genes were associated with a higher multi-drug resistance (MDR), tetB and pcoD were associated with lower MDR. Supplementations of CTC or copper alone were associated with increased tetB prevalence; however, their combination was paradoxically associated with reduced prevalence.
    [Show full text]