Equilibrium-Line Altitudes of Late Quaternary Glaciers in the Zardkuh Mountain, Iran
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Teleostei: Cyprinidae)
Iran. J. Ichthyol. (June 2015), 2(2): 71–78 Received: March 01, 2015 © 2015 Iranian Society of Ichthyology Accepted: May 29, 2015 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: http://www.ijichthyol.org Geographic distribution of the genus Chondrostoma Agassiz, 1832 in Iran (Teleostei: Cyprinidae) Arash JOULADEH ROUDBAR1, Hamid Reza ESMAEILI2*, Ali GHOLAMIFARD2, Rasoul ZAMANIAN2, Saber VATANDOUST3 1Department of Fisheries, Faculty of Natural Resources, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran. 2Department of Biology, College of Sciences, Shiraz University, Shiraz, 71454–Iran. 3Department of Fisheries, Babol Branch, Islamic Azad University, Babol, Iran. * Email: [email protected] Abstract: Distribution of the genus Chondrostoma in Iran, which is mostly known from the Caspian Sea, Tigris River, Kor River and Esfahan basins was mapped. The Kura nase, Chondrostoma cyri is reported from Armenia, Georgia and Iran and it is found in the streams and rivers draining to the western coast of the Caspian Sea from the Kuma River in the north southward to the Kura and Aras River basins in the south. The king or Mesopotamian nase, C. regium is widely distributed in Turkey, Iran, Iraq and Syria. It is found in the Qweik and Orontes River basins (Mediterranean Sea basin), the endorheic Esfahan basin and exorheic Tigris- Euphrates and Zohreh River basins (Persian Gulf basin). The Kor nase, C. orientale is distributed only in the endorheic Kor River basin of Iran and prefers medium to large streams and also large rivers. Keywords: Distribution pattern, Fish diversity, Middle East, Iran. Introduction muzzle well arched, with very hard oral lips and a The nases, genus Chondrostoma Agassiz, 1832 sharp border” (Durand et al. -
A New Approach for Parameter Estimation of Autoregressive Models Using Adaptive Network-Based Fuzzy Inference System (ANFIS)
A New Approach for Parameter Estimation of Autoregressive Models Using Adaptive Network-Based Fuzzy Inference System (ANFIS) Hamid R. Safavi, Mohammad Hossein Golmohammadi, Maryam Zekri & Samuel Sandoval-Solis Iranian Journal of Science and Technology, Transactions of Civil Engineering ISSN 2228-6160 Iran J Sci Technol Trans Civ Eng DOI 10.1007/s40996-017-0068-x 1 23 Your article is protected by copyright and all rights are held exclusively by Shiraz University. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Iran J Sci Technol Trans Civ Eng DOI 10.1007/s40996-017-0068-x RESEARCH PAPER A New Approach for Parameter Estimation of Autoregressive Models Using Adaptive Network-Based Fuzzy Inference System (ANFIS) 1 1 2 Hamid R. Safavi • Mohammad Hossein Golmohammadi • Maryam Zekri • Samuel Sandoval-Solis3 Received: 24 June 2016 / Accepted: 7 July 2017 Ó Shiraz University 2017 Abstract Time series modeling plays an important role in new driven method from ANFIS shows that this system can different fields of science and engineering such as be employed as a parameter estimator for time series hydrology and water resources management. -
Paper Template
International Journal of Science and Engineering Investigations vol. 3, issue 24, January 2014 ISSN: 2251-8843 Analysis of Main Zagros Recent Fault Strike-Slip Evidence from Dorud to Dena Rasoul Sharifi Najafabadi1, Behrooz Sahebzadeh2 1Department of Geoscience, Farhangian University, Shahhed Bahonar Campus, Isfahan, Iran 2Department of Geoscience, Farhangian University, Shahhed Motahhari Campus, Zahedan, Iran ([email protected], [email protected]) Abstract- Zagros orogenic belt as a part of Himalaya-Alp The science of geomorphology which is focused on the mountains- range is a young zone exposed to getting short, identification of landforms includes morphology elements and thick and horizontal displacement as the result of crashing factors which cause it [4]. Earth's internal forces during the Arabic and central Iran plates. This happens while final Alp past thousand years have produced the forms on the surface of orogenic movements (pasadnin) haven’t been ended yet. In the the earth by which we can detect unstable regions. These forms other words, the final balance hasn’t been established. Hence, include a network of waterways, the existence of escarpment active tectonic movements are continuing. precipice of stream flow, river slope increase, the shape of the basin, the mountains front, the valleys forms, etc. The analyzing of the geomorphic evidence of active tectonics on a digital elevation model (DEM) using Geographic Fortunately, recent studies due have been of great important ArcView Software and Global Mapper with field observations to utilizing Geographic Information System (GIS) that studies a indicate that Main Zagros Recent Fault (MRF), isn’t an isolated wide geographical spread quickly and inexpensively. -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Journal of Hydrology 464–465 (2012) 216–232 Contents lists available at SciVerse ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Incentives to adopt irrigation water saving measures for wetlands preservation: An integrated basin scale analysis ⇑ Alireza Nikouei a, , Mansour Zibaei a, Frank A. Ward b a Department of Agricultural Economics, Agricultural Faculty, Shiraz University, Shiraz, Iran b Department of Agricultural Economics and Agricultural Business, New Mexico State University, Las Cruces, NM 88003, USA article info summary Article history: Preserving natural wetlands is a growing challenge as the world faces increased demand for water. Received 23 July 2011 Drought, climate change and growing demands by users aggravate the issue. The conflict between irri- Received in revised form 5 July 2012 gated agriculture and wetland services presents a classic case of competition. This paper examines an Accepted 8 July 2012 institutional mechanism that offers an incentive to farmers to adopt water conservation measures, which Available online 20 July 2012 in turn could reduce overall water use in irrigated agriculture within a selected basin. -
Mesoscale Mapping of Sediment Source Hotspots for Dam Sediment Management in Data-Sparse Semi-Arid Catchments
water Discussion Mesoscale Mapping of Sediment Source Hotspots for Dam Sediment Management in Data-Sparse Semi-Arid Catchments Anna Smetanová 1,*, Anne Müller 2, Morteza Zargar 2,3, Mohamed A. Suleiman 4, Faraz Rabei Gholami 5,6 and Maryam Mousavi 3 1 Research Group Ecohydrology and Landscape Evaluation, Technical University Berlin, 10587 Berlin, Germany 2 Institute of Environmental Science and Geography, University of Potsdam, 14467 Potsdam, Germany; [email protected] 3 Avaye Ab Shabnam Consulting Engineering Company, 6133883441 Ahvaz, Iran 4 Dam Complex of Upper Atbara, 11605 Khartoum, Sudan; [email protected] 5 Khuzestan Water and Power Authority, 61355-137 Ahvaz, Iran 6 Iran Water Resources Management Co., 14896 Tehran, Iran * Correspondence: [email protected]; Tel.: +49-3031-473539 Received: 17 December 2019; Accepted: 20 January 2020; Published: 1 February 2020 Abstract: Land degradation and water availability in semi-arid regions are interdependent challenges for management that are influenced by climatic and anthropogenic changes. Erosion and high sediment loads in rivers cause reservoir siltation and decrease storage capacity, which pose risk on water security for citizens, agriculture, and industry. In regions where resources for management are limited, identifying spatial-temporal variability of sediment sources is crucial to decrease siltation. Despite widespread availability of rigorous methods, approaches simplifying spatial and temporal variability of erosion are often inappropriately applied to very data sparse semi-arid regions. In this work, we review existing approaches for mapping erosional hotspots, and provide an example of spatial-temporal mapping approach in two case study regions. The barriers limiting data availability and their effects on erosion mapping methods, their validation, and resulting prioritization of leverage management areas are discussed. -
Hydroelectric Production Using Ab-Terki River Flow Specific Energy
International Journal of Constructive Research in Civil Engineering (IJCRCE) Volume 3, Issue 3, 2017, PP 46-61 ISSN 2454-8693 (Online) DOI: http://dx.doi.org/10.20431/2454-8693.0303005 www.arcjournals.org Hydroelectric Production using Ab-Terki River Flow Specific Energy Saeid Eslamian1, Nicolas R. Dalezios2, Mahboubeh Amoushahi-Khouzani3, Maryam Marani- Barzani4, Amir Gandomkar5, Morteza Khodagholi6, Foroozan Rajaei-Rizi7, Vijay P. Singh8, Shahide Dehghan5,Mohsen Ghane9, Kaveh Ostad-Ali-Askari10*, Morteza Soltani11, Yohannes Yihdego12, Hossein Norouzi13, Hamid-Reza Shirvani-Dastgerdi14 1Department of Water Engineering, Isfahan University of Technology, Isfahan, Iran. 2Laboratory of Hydrology, Department of Civil Engineering, University of Thessaly, Volos, Greece & Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, Athens, Greece. 3Water Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran 4Department of Geography, University of Malaya (UM) ,50603 Kuala Lumpur, Malaysia. 5Department of Geography, Najafabad Branch, Islamic Azad University, Najafabad, Iran 6Isfahan Center for Research of Agricultural Science and Natural Resources, Department of Climate Change & Drought, Isfahan, Iran. 7Water Engineering Department, Shahrekord University, Shahrekord, Iran 8Department of Biological and Agricultural Engineering & Zachry Department of Civil Engineering, Texas A and M University, 321 Scoates Hall, 2117 TAMU, College Station, Texas 77843-2117, U.S.A. -
The Behavior of Iranian Restructured Electricity Market in Supply Function Equilibrium Framework
International Journal of Academic Research in Business and Social Sciences January 2014, Vol. 4, No. 1 ISSN: 2222-6990 The Behavior of Iranian Restructured Electricity Market in Supply Function Equilibrium Framework Majid Motamedi M.A Student in Executive Master of Business Administration, Payam Noor University of Qeshm Email: [email protected] Shahram Moeeni PhD Student of Economics, University of Isfahan Email: [email protected] Salman Gharakhani M.A. in Economics, University of Isfahan Email: [email protected] Iman Keyfarokhi PhD Student of Economics, University of Isfahan Email: [email protected] DOI: 10.6007/IJARBSS/v4-i1/521 URL: http://dx.doi.org/10.6007/IJARBSS/v4-i1/521 Abstract The Iranian electricity industry has been restructured following the global experiences. The main objective of restructuring is transition from natural monopoly towards competition in order to improve efficiency. Currently, the Iranian electricity market is performing as imperfect competition and Pay-as-Bid (PAB) auctions are the major trade mechanism in this market. This paper proves that Supply Function Equilibrium (SFE) is an appropriate approach to analyze behavior of the Iranian electricity market. Isfahan electricity market has been considered as a case study in which SFE is applied regarding marginal cost estimation as well as demand uncertainty. The derived SFE indicates that there is major difference between SFE and Nash equilibrium. Keywords: Restructuring, Game theory, Supply Function Equilibrium, Pay-as-Bid, Electricity market, Iran. JEL Classification: C70, D21, D40, L13, Q41. 1.Introduction In much of the twentieth century electricity users across the world had to buy electric energy from the Utility which held the monopoly to supply electricity. -
Environmental Laws and Legislation
113 Foreword Department of the Environment ducation and Planning is the division within Iran’s DoE responsible for the State of Environment reporting and has recently published its first report on this subject. We are pleased that the second SoE report for Iran is prepared within E the framework of a valuable joint venture between the Department of Environment and the United Nations Environ- ment Programme (UNEP) in collaboration with Shahid Beheshti University. This is a reflection of the excellent and ever-ex- panding cooperation between the Islamic Republic of Iran and UNEP. Towards the fulfillment of its duties and obligations, the Department of the Environment is determined to promote its under- lying philosophy, which requires accurate scientific information for any decision made on the protection of the environment. To this purpose, it has initiated an integrated statistical system for the environment, which some of its components have already been put into practice. This report is the result of efforts by the DoE in collaboration with several government ministries and other organizations whose activities lie in various fields such as energy, petroleum, roads and transportation, ports and shipping, agriculture and industry. Such cross-sectoral collaboration in itself reflects an important procedural aspect of sustainable development and the obligation of governments to operate in a more collaborative manner. The activities of the above-mentioned ministries and organizations have considerable impacts on the environment through their utilization of both renewable and non-renewable resources. We would like to thank these institutions for extending their support and providing the necessary data for this en- deavor. -
Conservation and Sustainable Development Program of Central
In The Name of God Photo by: Hassan Moghimi Choghakhor Wetland, Chaharmahal and Bakhtiari Province Conservation and Sustainable Development Program of Central Zagros Mountains (C+SD P of CZM) Inspired by Conservation of Biodiversity in the Central Zagros Landscape Project with the participation of all Relevant Stakeholders at National Level and in Isfahan, Chaharmahal and Bakhtiari, Fars and Kohgiluyeh and Boyer-Ahmad Provinces Contents 1. Introduction.................................................................................................................................................................7 2. Zagros Mountains......................................................................................................................................................8 3. Central Zagros Mountains.......................................................................................................................................9 4. Values of the Central Zagros Mountains.............................................................................................................9 Map1: The Central Zagros Range......................................................................................................11 5. Values of the Central Zagros Mountains..........................................................................................................10 6. Biodiversity Threats: ............................................................................................................................................13 7. -
List of Rivers of Iran
Sl. No Name Flowing into 1 Abhar River Endorheic basins (Namak Lake) 2 Aji Chay Endorheic basins (Lake Urmia) 3 Alamlou River Endorheic basins (Lake Urmia) 4 Alamut River Endorheic basins (Caspian Sea) 5 Alwand River The Persian Gulf 6 Aras River Endorheic basins (Caspian Sea) 7 Atrek River Endorheic basins (Caspian Sea) 8 Bahmanshir, the original mouth of the Karun The Persian Gulf 9 Bahu Kalat River (or Dashtiari River or Silup River) Gulf of Oman 10 Bakhtiari River The Persian Gulf 11 Balha River Endorheic basins (Caspian Sea) 12 Bampur River Endorheic basins (Hamun-e Jaz Murian) 13 Barandouz River Endorheic basins (Lake Urmia) 14 Barun River Endorheic basins (Caspian Sea) 15 Chaloos River Endorheic basins (Caspian Sea) 16 Chankula River The Persian Gulf 17 Cheshmeh Kileh River Endorheic basins (Caspian Sea) 18 Dez River The Persian Gulf 19 Do Hezar River Endorheic basins (Caspian Sea) 20 Dozdan River Gulf of Oman 21 Gabrik River Gulf of Oman 22 Gadar River Endorheic basins (Lake Urmia) 23 Ghaie River Endorheic basins (Lake Urmia) 24 Gharasu River Endorheic basins (Caspian Sea) 25 Gowdeh River The Persian Gulf 26 Haffar, The Persian Gulf 27 Halil River Endorheic basins (Hamun-e Jaz Murian) 28 Haraz River Endorheic basins (Caspian Sea) 29 Harirud Endorheic basins(Karakum Desert) 30 Helleh The Persian Gulf 31 Helmand River Endorheic basins (Sistan Basin) 32 Jagin River Gulf of Oman 33 Jajrood River Endorheic basins (Namak Lake) 34 Jarahi The Persian Gulf 35 Karaj River Endorheic basins (Namak Lake) 36 Karkheh River The Persian Gulf 37 -
India (Bharat) - Iran (Persia) and Aryans Part - 2
INDIA (BHARAT) - IRAN (PERSIA) AND ARYANS PART - 2 Dr. Gaurav A. Vyas This book contains the rich History of India (Bharat) and Iran (Persia) Empire. There was a time when India and Iran was one land. This book is written by collecting information from various sources available on the internet. ROOTSHUNT 15, Mangalyam Society, Near Ocean Park, Nehrunagar, Ahmedabad – 380 015, Gujarat, BHARAT. M : 0091 – 98792 58523 / Web : www.rootshunt.com / E-mail : [email protected] Contents at a glance : PART - 1 1. Who were Aryans ............................................................................................................................ 1 2. Prehistory of Aryans ..................................................................................................................... 2 3. Aryans - 1 ............................................................................................................................................ 10 4. Aryans - 2 …............................………………….......................................................................................... 23 5. History of the Ancient Aryans: Outlined in Zoroastrian scriptures …….............. 28 6. Pre-Zoroastrian Aryan Religions ........................................................................................... 33 7. Evolution of Aryan worship ....................................................................................................... 45 8. Aryan homeland and neighboring lands in Avesta …...................……………........…....... 53 9. Western -
Selected Aspects of Iran's Hydrological Security
Przegląd Strategiczny 2019, Issue 12 Anna SAKSON-BOULET DOI : 10.14746/ps.2019.1.21 Adam Mickiewicz University in Poznań https://orcid.org/0000-0002-4014-7483 SELECTED ASPECTS OF IRAN’S HYDROLOGICAL SECURITY The demand for water in Iran is growing dynamically in agriculture and industry, as well as in households. Due to the uneven distribution of rainfall over time (annually, half occurs in winter, outside the agricultural season) and space (annual rainfall ranges from 50 mm in desert areas to 2000 mm in mountainous areas and along the Caspian Sea coast), groundwater constitutes the main resource of water in many regions of the country (Food and Agriculture Organization, 2009a: 3). However, 70 percent of groundwater potential has already been used (Laylin, 2018: 9). Out of 609 aquifers, 309 are overexploited, which has led to a ban on their use (Iran’s, 2018). Although water is a renewable resource, this does not mean that it is inexhaustible. Excessive ex- ploitation of aquifers reduces the level of groundwater until it is completely depleted. The purpose of this article is to analyze Iran’s hydrological security, defined as “the capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for sustaining socio-economic development, for ensuring pro- tection against water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability” (United Nations University, Institute for Water, Environment and Health, 2013: 1). Hydrological security under- stood in this way encompasses the following dimensions: 1) physical access to water; 2) the use of clean, safe drinking water; 3) sustainable management of water resources that does not lead to their anthropo- genic degradation, and prevents or reduces the risk of natural disasters such as floods and droughts.