Bromelain: an Overview of Industrial Application and Purification Strategies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enzymes Handling/Processing
Enzymes Handling/Processing 1 Identification of Petitioned Substance 2 3 This Technical Report addresses enzymes used in used in food processing (handling), which are 4 traditionally derived from various biological sources that include microorganisms (i.e., fungi and 5 bacteria), plants, and animals. Approximately 19 enzyme types are used in organic food processing, from 6 at least 72 different sources (e.g., strains of bacteria) (ETA, 2004). In this Technical Report, information is 7 provided about animal, microbial, and plant-derived enzymes generally, and more detailed information 8 is presented for at least one model enzyme in each group. 9 10 Enzymes Derived from Animal Sources: 11 Commonly used animal-derived enzymes include animal lipase, bovine liver catalase, egg white 12 lysozyme, pancreatin, pepsin, rennet, and trypsin. The model enzyme is rennet. Additional details are 13 also provided for egg white lysozyme. 14 15 Chemical Name: Trade Name: 16 Rennet (animal-derived) Rennet 17 18 Other Names: CAS Number: 19 Bovine rennet 9001-98-3 20 Rennin 25 21 Chymosin 26 Other Codes: 22 Prorennin 27 Enzyme Commission number: 3.4.23.4 23 Rennase 28 24 29 30 31 Chemical Name: CAS Number: 32 Peptidoglycan N-acetylmuramoylhydrolase 9001-63-2 33 34 Other Name: Other Codes: 35 Muramidase Enzyme Commission number: 3.2.1.17 36 37 Trade Name: 38 Egg white lysozyme 39 40 Enzymes Derived from Plant Sources: 41 Commonly used plant-derived enzymes include bromelain, papain, chinitase, plant-derived phytases, and 42 ficin. The model enzyme is bromelain. -
Cellulases: Characteristics, Sources, Production, and Applications
8 CELLULASES: CHARACTERISTICS, SOURCES, PRODUCTION, AND APPLICATIONS Xiao-Zhou Zhang and Yi-Heng Percival Zhang 8.1 INTRODUCTION lulases: (1) endoglucanases (EC 3.2.1.4), (2) exogluca- nases, including cellobiohydrolases (CBHs) (EC Cellulose is the most abundant renewable biological 3.2.1.91), and (3) β -glucosidase (BG) (EC 3.2.1.21). To resource and a low-cost energy source based on energy hydrolyze and metabolize insoluble cellulose, the micro- content ($3–4/GJ) ( Lynd et al., 2008 ; Zhang, 2009 ). The organisms must secrete the cellulases (possibly except production of bio-based products and bioenergy from BG) that are either free or cell-surface-bound. Cellu- less costly renewable lignocellulosic materials would lases are increasingly being used for a large variety of bring benefi ts to the local economy, environment, and industrial purposes—in the textile industry, pulp and national energy security ( Zhang, 2008 ). paper industry, and food industry, as well as an additive High costs of cellulases are one of the largest obsta- in detergents and improving digestibility of animal cles for commercialization of biomass biorefi neries feeds. Now cellulases account for a signifi cant share of because a large amount of cellulase is consumed for the world ’ s industrial enzyme market. The growing con- biomass saccharifi cation, for example, ∼ 100 g enzymes cerns about depletion of crude oil and the emissions of per gallon of cellulosic ethanol produced ( Zhang et al., greenhouse gases have motivated the production of bio- 2006b ; Zhu et al., 2009 ). In order to decrease cellulase ethanol from lignocellulose, especially through enzy- use, increase volumetric productivity, and reduce capital matic hydrolysis of lignocelluloses materials—sugar investment, consolidated bioprocessing ( CBP ) has been platform ( Bayer et al., 2007 ; Himmel et al., 1999 ; Zaldi- proposed by integrating cellulase production, cellulose var et al., 2001 ). -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Molecular Insights Into Bromelain Application in Industry and Health Care
Biosc.Biotech.Res.Comm. Special Issue Vol 13 No 15 (2020) Pp-36-46 Molecular Insights into Bromelain Application in Industry and Health Care Sushma S. Murthy and T. Bala Narsaiah 1Research Scholar, Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuram-515002, Andhra Pradesh, India 2Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuram-515002, Andhra Pradesh, India ABSTRACT Bromelain is a cysteine protease derived from the stem and fruit of the pineapple. It has a significant role in pharmacological and clinical applications. Studies have shown Bromelain to be a potent photoactive compound that has a wide application in industry. It has also been shown to be effective in treatment of cancer, inflammation, and allergies. It has a distinct immunomodulatory activity which forms an important strategy in its utilization as a therapeutic agent. Bromelain plays a significant role at molecular level by regulating the expression of proteins that are potential therapeutic targets. Bromelain is used extensively worldwide as an herbal medicine as it promises good efficacy and has no side effects. This paper reviews the general characteristics of Bromelain, its separation process, and its use in industries and healthcare as a therapeutic agent. The present review identifies that there is lack of knowledge pertaining to the mode of action of Bromelain in inhibiting transcriptional factors and in controlling cancer. An in-detail analysis in this area might help in expanding the therapeutic scope of Bromelain. KEY WORDS: BROMELAIN, CANCER, PHARMacOLOGICAL actiVITY, SEpaRatiON, TRANSCRIPTION FactORS. INTRODUCTION because of its wide benefits to the human system. The stem part of the plant, which is inexpensive and is usually The Bromelain protease is isolated from the stem and discarded, has a high concentration of bromelain and fruit of Pineapple (Ananas comosus,). -
Collection of Information on Enzymes a Great Deal of Additional Information on the European Union Is Available on the Internet
European Commission Collection of information on enzymes A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int). Luxembourg: Office for Official Publications of the European Communities, 2002 ISBN 92-894-4218-2 © European Communities, 2002 Reproduction is authorised provided the source is acknowledged. Final Report „Collection of Information on Enzymes“ Contract No B4-3040/2000/278245/MAR/E2 in co-operation between the Federal Environment Agency Austria Spittelauer Lände 5, A-1090 Vienna, http://www.ubavie.gv.at and the Inter-University Research Center for Technology, Work and Culture (IFF/IFZ) Schlögelgasse 2, A-8010 Graz, http://www.ifz.tu-graz.ac.at PROJECT TEAM (VIENNA / GRAZ) Werner Aberer c Maria Hahn a Manfred Klade b Uli Seebacher b Armin Spök (Co-ordinator Graz) b Karoline Wallner a Helmut Witzani (Co-ordinator Vienna) a a Austrian Federal Environmental Agency (UBA), Vienna b Inter-University Research Center for Technology, Work, and Culture - IFF/IFZ, Graz c University of Graz, Department of Dermatology, Division of Environmental Dermatology, Graz Executive Summary 5 EXECUTIVE SUMMARY Technical Aspects of Enzymes (Chapter 3) Application of enzymes (Section 3.2) Enzymes are applied in various areas of application, the most important ones are technical use, manufacturing of food and feedstuff, cosmetics, medicinal products and as tools for re- search and development. Enzymatic processes - usually carried out under mild conditions - are often replacing steps in traditional chemical processes which were carried out under harsh industrial environments (temperature, pressures, pH, chemicals). Technical enzymes are applied in detergents, for pulp and paper applications, in textile manufacturing, leather industry, for fuel production and for the production of pharmaceuticals and chiral substances in the chemical industry. -
Biocatalysis, Enzyme Engineering and Biotechnology G
P1: SFK/UKS P2: SFK BLBS102-c07 BLBS102-Simpson March 21, 2012 11:12 Trim: 276mm X 219mm Printer Name: Yet to Come 7 Biocatalysis, Enzyme Engineering and Biotechnology G. A. Kotzia, D. Platis, I. A. Axarli, E. G. Chronopoulou, C. Karamitros, and N. E. Labrou Preface Enzyme Utilisation in Industry Enzyme Structure and Mechanism Enzymes Involved in Xenobiotic Metabolism and Nomenclature and Classification of Enzymes Biochemical Individuality Basic Elements of Enzyme Structure Phase I The Primary Structure of Enzyme Phase II The Three-Dimensional Structure of Enzymes Phase III Theory of Enzyme Catalysis and Mechanism Acknowledgements Coenzymes, Prosthetic Groups and Metal Ion Cofactors References Kinetics of Enzyme-Catalysed Reactions Thermodynamic Analysis Abstract: Enzymes are biocatalysts evolved in nature to achieve Enzyme Dynamics During Catalysis the speed and coordination of nearly all the chemical reactions that Enzyme Production define cellular metabolism necessary to develop and maintain life. Enzyme Heterologous Expression The application of biocatalysis is growing rapidly, since enzymes The Choice of Expression System offer potential for many exciting applications in industry. The ad- Bacterial Cells vent of whole genome sequencing projects enabled new approaches Mammalian Cells for biocatalyst development, based on specialised methods for en- Yeast zyme heterologous expression and engineering. The engineering of Filamentous Fungi enzymes with altered activity, specificity and stability, using site- Insect Cells directed mutagenesis and directed evolution techniques are now Dictyostelium discoideum Trypanosomatid Protozoa well established. Over the last decade, enzyme immobilisation has Transgenic Plants become important in industry. New methods and techniques for en- Transgenic Animals zyme immobilisation allow for the reuse of the catalysts and the Enzyme Purification development of efficient biotechnological processes. -
Microbial Cellulases: a Review on Strain Development, Purification, Characterization and Their Industrial Applications
Open Access Journal of Bacteriology and Mycology Review Article Microbial Cellulases: A Review on Strain Development, Purification, Characterization and their Industrial Applications Sher H1,2, Zeb N1,3, Zeb S4, Ali A4, Aleem B1, Iftikhar F1, Rahman SU1 and Rashid MH1,2* Abstract 1National Institute for Biotechnology and Genetic In this advance era, the enzymes are considered as a core kernel of white Engineering (NIBGE), Faisalabad, Pakistan biotechnology and their demand is increasing day by day. According to report 2Pakistan Institute of Engineering and Applied Sciences published in Research and Markets (ID: 5009185), the estimated global market (PIEAS), Islamabad, Pakistan for industrial enzymes were USD 10.0 billion in 2019, which is continuously 3Department of Biotechnology and Microbiology, Women increasing as it is expected to reach about USD 14.7 billion by 2022. Among University Mardan, KP, Pakistan all enzymes, cellulases are the major group of enzymes act synergistically in 4Department of Microbiology, Abdul Wali Khan breakdown of cellulose, that facilitates its conversion to various value-added University Mardan, KP, Pakistan products and also offer several other important applications at industrial scale. #First two authors contributed equally The hyper production of cellulases are required to overcome their demand of *Corresponding author: Muhammad Hamid Rashid, global market. Cellulases production can be enhanced by strain improvement as Industrial Biotechnology Division, National Institute well as using advance fermentation -
Guide to Biotechnology 2008
guide to biotechnology 2008 research & development health bioethics innovate industrial & environmental food & agriculture biodefense Biotechnology Industry Organization 1201 Maryland Avenue, SW imagine Suite 900 Washington, DC 20024 intellectual property 202.962.9200 (phone) 202.488.6301 (fax) bio.org inform bio.org The Guide to Biotechnology is compiled by the Biotechnology Industry Organization (BIO) Editors Roxanna Guilford-Blake Debbie Strickland Contributors BIO Staff table of Contents Biotechnology: A Collection of Technologies 1 Regenerative Medicine ................................................. 36 What Is Biotechnology? .................................................. 1 Vaccines ....................................................................... 37 Cells and Biological Molecules ........................................ 1 Plant-Made Pharmaceuticals ........................................ 37 Therapeutic Development Overview .............................. 38 Biotechnology Industry Facts 2 Market Capitalization, 1994–2006 .................................. 3 Agricultural Production Applications 41 U.S. Biotech Industry Statistics: 1995–2006 ................... 3 Crop Biotechnology ...................................................... 41 U.S. Public Companies by Region, 2006 ........................ 4 Forest Biotechnology .................................................... 44 Total Financing, 1998–2007 (in billions of U.S. dollars) .... 4 Animal Biotechnology ................................................... 45 Biotech -
International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 31-35
International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 31-35 Contents lists available at Science-Gate International Journal of Advanced and Applied Sciences Journal homepage: http://www.science-gate.com/IJAAS.html Tertiary structure prediction of bromelain from Ananas Comosus using comparative modelling method Fatahiya Mohamed Tap 1, Fadzilah Adibah Abd Majid 2, *, Nurul Bahiyah Ahmad Khairudin 1 1Chemical Energy Conversion and Applications Group, Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia 2Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia ARTICLE INFO ABSTRACT Article history: Bromelain is a general name for a family of sulfhydryl which can be found in Received 21 February 2017 the proteolytic enzyme group from pineapples (Ananas Comosus). This study Received in revised form focuses on the prediction of three dimensional structures (3D) of stem 2 October 2017 bromelain using the method of comparative modelling. The amino acid Accepted 8 October 2017 sequence of bromelain was obtained from the NCBI database was used as a tool to search for proteins with known 3D structures related to the target Keywords: sequence. Suitable template was chosen based on >30% sequence similarity Bromelain and lowest e-value. Based on these criteria, 1YAL was selected as the best Comparative modelling template with 55% of sequence similarity and 9x10-52 of e-value. Sequence alignment © 2017 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction industrial and pharmacology area, therefore it is essential to maintain and improve bromelain *Bromelain can be derived from stem and fruit of properties in conformation and catalytic activity in pineapples. -
The Application of Biotechnology to Industrial Sustainability – a Primer
THE APPLICATION OF BIOTECHNOLOGY TO INDUSTRIAL SUSTAINABILITY – A PRIMER ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT 2 FOREWORD This short paper is based on the OECD publication, “The Application of Biotechnology to Industrial Sustainability”. The Task Force on Biotechnology for Sustainable Industrial Development of the OECD’s Working Party on Biotechnology contributed to this primer which was prepared by the Chairman of the Task Force, Dr. John Jaworski, Industry Canada, Canada. Special thanks are due to Dr. Mike Griffiths (OECD Consultant) as well as to those who contributed to the case studies set out in the publication on which the primer is based. 3 TABLE OF CONTENTS FOREWORD.................................................................................................................................................. 3 TABLE OF CONTENTS ............................................................................................................................... 4 EXECUTIVE SUMMARY ............................................................................................................................ 5 Introduction................................................................................................................................................. 6 What is Industrial Sustainability? ............................................................................................................... 6 Moving Toward More Sustainable Industries............................................................................................ -
The Activity of Bromelain Enzyme from Pineapple (Ananas Comosus (L) Merr): a Review
IOSR Journal Of Pharmacy (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 Volume 11, Issue 6 Series. I (June 2021), PP. 27-32 www.iosrphr.org The Activity of Bromelain Enzyme from Pineapple (Ananas Comosus (L) Merr): A Review Soni Muhsinin1*, Pratiwi Anggraeni Putri1, Dadang Juanda1,Rahma ziska1 1Faculty of Pharmacy, Bhakti Kencana University, Bandung, West Java, Indonesia * Received 08 June 2021; Accepted 21 June 2021 Abstract: Background:Bromelain is a protein-digesting enzyme that can accelerate a hydrolysis reaction of protein. This enzyme has a form like a yellowish-white powder. To determine how to isolate this enzyme, it is first necessary to know the location of the enzyme in the source. Furthermore, similar types of enzymes from different sources will have different activity values. The purpose of this literature review is to conduct a literature search on the activity of the bromelain enzyme contained in pineapple (Ananas Comosus (L) Merr) in the pharmaceutical sector. Materials and Methods: The method used is the collection of library research data that has been published through search engines such as Google Scholar, PubMed, and ScienceDirect. Results: Various studies have shown that bromelain from pineapple peel extract has antibacterial activity that can inhibit the growth of Streptococcus mutants and Enterococcus faecalis. Furthermore, this pineapple peel extract has antifungal activity against the growth of Pityrosporum ovale and Candida albicans. Then the pineapple fruit extract has an anti-inflammatory effect on osteoarthritis patients. Then the pineapple peel extract has a coagulation effect that can prolong the bleeding time, and finally, the pineapple weevil extract can induce apoptosis in squamous carcinoma cell cultures. -
Concentrate of Proteolytic Enzymes Enriched in Bromelain
20 September 2012 EMA/648483/2012 Committee for Medicinal Products for Human Use (CHMP) Assessment report NexoBrid Concentrate of proteolytic enzymes enriched in bromelain Procedure No. EMEA/H/C/002246 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8416 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2012. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 5 1.1. Submission of the dossier.................................................................................... 5 1.2. Steps taken for the assessment of the product ....................................................... 6 2. Scientific discussion ................................................................................ 7 2.1. Introduction ...................................................................................................... 7 2.2. Quality aspects .................................................................................................. 9 2.3. Non-clinical aspects .......................................................................................... 20 2.4. Clinical aspects ................................................................................................ 29 2.5.