Scalable Model-Based Robustness Testing: Novel Methodologies and Industrial Application

Total Page:16

File Type:pdf, Size:1020Kb

Scalable Model-Based Robustness Testing: Novel Methodologies and Industrial Application Scalable Model-based Robustness Testing: Novel Methodologies and Industrial Application Shaukat Ali Thesis submitted for the degree of Ph.D. Department of Informatics Faculty of Mathematics and Natural Sciences University of Oslo September 2011 © Shaukat Ali, 2011 Series of dissertations submitted to the Faculty of Mathematics and Natural Sciences, University of Oslo No. 1154 ISSN 1501-7710 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Cover: Inger Sandved Anfinsen. Printed in Norway: AIT Oslo AS. Produced in co-operation with Unipub. The thesis is produced by Unipub merely in connection with the thesis defence. Kindly direct all inquiries regarding the thesis to the copyright holder or the unit which grants the doctorate. Abstract Embedded systems, as for example communication and control systems, are being increasingly used in our daily lives and hence require thorough and systematic testing before their actual use. Many of these systems interact with their environment and, therefore, their functionality is largely dependent on this environment whose behavior can be unpredictable. Robustness testing aims at testing the behavior of a system in the presence of faulty situations in its operating environment (e.g., sensors and actuators). In such situations, the system should gracefully degrade its performance instead of abruptly stopping execution. To systematically perform robustness testing, one option is to resort to Model-Based Robustness Testing (MBRT), which is a systematic, rigorous, and automated way of conducting robustness testing. However, to successfully apply MBRT in industrial contexts, new technologies need to be developed to scale to the complexity of real industrial systems. This thesis presents a solution for MBRT on industrial systems, including scalable robustness modeling and executable test case generation. One important contribution of this thesis is a scalable RobUstness Modeling Methodology (RUMM), which is achieved using Aspect-Oriented Modeling (AOM). It is a complete, automated, and practical methodology that covers all features of state machines and aspect concepts necessary for MBRT. Such methodology, relying on a standard (Unified Modeling Language or UML) and using the target notation as the basis to model the aspects themselves, is expected to make the practical adoption of robustness modeling easier in industrial contexts. The applicability of the methodology is demonstrated using an industrial case study. Results showed that the approach significantly reduced modeling effort (98% on average), improved separation of concerns, and eased model evolution. The approach is further empirically evaluated using two controlled experiments involving human subjects and results showed that the proposed methodology significantly improves the readability of models as compared to modeling using standard UML notations. Another important contribution of this thesis is an efficient approach for solving constraints (written in Objects Constraint Language (OCL)) on the operating environment of a system, which is mandatory for emulating faulty situation in the environment for the purpose of MBRT. A set of novel heuristics is devised for various OCL constructs, which are required for the application of search algorithms. The heuristics have been empirically evaluated on an industrial case study for robustness testing and the results showed to be i very promising and significantly better than the existing works in the literature on OCL constraint solvers. A final contribution of the thesis is robustness test case generation from the models developed using RUMM. Test case generation also includes scripts generation for environment emulation, which is mandatory for automated robustness testing again using an industrial case study. In preliminary experiments, the execution of test cases found one critical, robustness fault in a deployed industrial system. ii Acknowledgements First of all, I would like to thank my supervisors Lionel Briand and Andrea Arcuri. Without their deep knowledge in software engineering and constant guidance throughout my PhD, this work couldn’t have been possible. Lionel is an excellent supervisor and his profound knowledge and passion for research has instilled in me a passion to conduct quality research. Andrea is an outstanding supervisor and his immense knowledge about search algorithms and statistics have provided me an opportunity to grasp these topics very quickly. I would also like to thank Erik Arisholm, who was my supervisor during earlier part of the PhD. I always had good discussions with him. I would also like to thank Simula Research Laboratory (SRL) and Simula School of Research and Innovation (SSRI) for funding my PhD and providing an excellent multicultural research environment. I would like to thank Marius Liaaen from Cisco, whose intense passion for model-based testing enabled me to successfully apply and evaluate my model-based methodologies in Cisco. I would also like to thank Suneth Walawege from Cisco, who is also a friend, for helping in modeling Cisco's case study and running experiments. I would like to specially thank my best friend Tao Yue, for her unconditional support in everything. Particularly, during my PhD she helped in conducting controlled experiments in Pakistan and China. Special thanks to my best friend and office mate, Aiko Yamashita for providing an excellent company in the office and outside. She has been a wonderful friend in many different ways. I would also like to thank my best friends in Simula, Rajwinder Panesar-Walawege, Zohaib Zafar, and Hadi Hemmati for all the good discussions at work and fun times in general. Last but not least, I would also like to thank my parents, brother, and sisters for their love, support, and care. iii List of papers The following papers are included in this thesis: Paper 1. A Systematic Review of the Application and Empirical Investigation of Search-based Test-Case Generation S. Ali, L. Briand, H. Hemmati, and R. K. Panesar-Walawege Published in the IEEE Transactions on Software Engineering (TSE), vol 36, no 6, pp. 742-762, 2010 Paper 2. Modeling Robustness Behavior Using Aspect-Oriented Modeling to Support Robustness Testing of Industrial Systems S. Ali, L. Briand, and H. Hemmati Accepted for a publication in the Journal of Software and Systems Modeling (SOSYM), Springer, 2011. Paper 3. Does Aspect-Oriented Modeling Help Improve the Readability of UML State Machines? S. Ali, T. Yue, and L. Briand Submitted to the the Journal of Software and Systems Modeling (SOSYM), Springer, 2011. Paper 4. Solving OCL Constraints for Test Data Generation in Industrial Systems with Search Techniques S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand. Submitted to ACM Transactions on Software Engineering and Methodology (TOSEM), 2011 Paper 5. An Industrial Application of Robustness Testing using Aspect-Oriented Modeling, UML/MARTE, and Search Algorithms S. Ali, L. Briand, A. Arcuri, and S. Walawege. In: ACM/IEEE 14th International Conference on Model Driven Engineering Languages and Systems (Models 2011), ACM/IEEE, 2011. The five papers are self-contained and thus some information might be redundant across the papers. Different abbreviations may have been used in the papers. iv My contributions For all papers except the first paper, I was the main contributor. My supervisors contributed in all phases of the work. For Paper 1, all authors equally contributed to the paper. In case of Paper 2, I was main contributor for the idea, implementation, and case study design and application. The controlled experiments reported in Paper 3 are conducted in collaboration with Tao Yue and Lionel Briand. I was responsible for creating the experiment material, experiment execution, data collection and analysis, and writing of the paper. Tao Yue and Lionel Briand were involved throughout the process. In Paper 4, I was the main contributor, but got help from supervisors (Andrea Arcuri and Lionel Briand) and collaborator Mohammad Zohaib Zafar. In the last paper, I was the main contributor for the idea, implementation, and case study design and application. In addition, during my PhD study, I also contributed in other papers which are not included in this thesis. Paper 6 is not included since the journal version of the paper (Paper 4) is included in this thesis. Paper 7 is excluded since it is a result of an equal contribution from all authors and is a basic framework which was needed to conduct the research reported in this thesis. Paper 8 and Paper 9 are not directly related to this PhD thesis, but are preliminary extensions to the work presented in the thesis. Paper 10 is an additional controlled experiment, which was conducted to evaluate the modeling methodology presented in Paper 2. The paper was submitted to a conference at the time of submission of this thesis for evaluation. Paper 6. A Search-based OCL Constraint Solver for Model-based Test Data Generation S. Ali, M. Z. Iqbal, A. Arcuri, L. Briand In: Proceedings of the 11th International Conference on Quality Software (QSIC 2011), pp. 41-50, IEEE, 2011. Paper 7. Model Transformations as a Strategy to Automate Model-Based Testing - A Tool and Industrial Case Studies. S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. Briand v Technical Report 2010-01, Simula Research Laboratory Paper 8. Automated Transition from Use Cases to UML State Machines to Support State-based Testing. T. Yue, S. Ali, and L. Briand. In:
Recommended publications
  • Estimating Parallel Runtimes for Randomized Algorithms in Constraint Solving Charlotte Truchet, Alejandro Arbelaez, Florian Richoux, Philippe Codognet
    Estimating parallel runtimes for randomized algorithms in constraint solving Charlotte Truchet, Alejandro Arbelaez, Florian Richoux, Philippe Codognet To cite this version: Charlotte Truchet, Alejandro Arbelaez, Florian Richoux, Philippe Codognet. Estimating par- allel runtimes for randomized algorithms in constraint solving. Journal of Heuristics, Springer Verlag, 2015, pp.1-36. <10.1007/s10732-015-9292-3>. <hal-01248168> HAL Id: hal-01248168 https://hal.archives-ouvertes.fr/hal-01248168 Submitted on 24 Dec 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Journal of Heuristics manuscript No. (will be inserted by the editor) Estimating Parallel Runtimes for Randomized Algorithms in Constraint Solving Charlotte Truchet · Alejandro Arbelaez · Florian Richoux · Philippe Codognet the date of receipt and acceptance should be inserted later Abstract This paper presents a detailed analysis of the scalability and par- allelization of Local Search algorithms for constraint-based and SAT (Boolean satisfiability) solvers. We propose a framework to estimate the parallel perfor- mance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics.
    [Show full text]
  • Aggregation and Garbage Collection for Online Optimization⋆
    Aggregation and Garbage Collection for Online Optimization? Alexander Ek1;2[0000−0002−8744−4805], Maria Garcia de la Banda1[0000−0002−6666−514X], Andreas Schutt2[0000−0001−5452−4086], Peter J. Stuckey1;2[0000−0003−2186−0459], and Guido Tack1;2[0000−0003−2186−0459] 1 Monash University, Australia fAlexander.Ek,Maria.GarciadelaBanda,Peter.Stuckey,[email protected] 2 Data61, CSIRO, Australia [email protected] Abstract Online optimization approaches are popular for solving op- timization problems where not all data is considered at once, because it is computationally prohibitive, or because new data arrives in an on- going fashion. Online approaches solve the problem iteratively, with the amount of data growing in each iteration. Over time, many problem variables progressively become realized, i.e., their values were fixed in the past iterations and they can no longer affect the solution. If the solv- ing approach does not remove these realized variables and associated data and simplify the corresponding constraints, solving performance will slow down significantly over time. Unfortunately, simply removing realized variables can be incorrect, as they might affect unrealized de- cisions. This is why this complex task is currently performed manually in a problem-specific and time-consuming way. We propose a problem- independent framework to identify realized data and decisions, and re- move them by summarizing their effect on future iterations in a compact way. The result is a substantially improved model performance. 1 Introduction Online optimization tackles the solving of problems that evolve over time. In online optimization problems, in some areas also called dynamic or reactive, the set of input data is only partially known a priori and new data, such as new customers and/or updated travel times in a dynamic vehicle routing problem, continuously or periodically arrive while the current solution is executed.
    [Show full text]
  • Model-Based Optimization for Effective and Reliable Decision-Making
    Model-Based Optimization for Effective and Reliable Decision-Making Robert Fourer [email protected] AMPL Optimization Inc. www.ampl.com — +1 773-336-2675 DecisionCAMP Bolzano, Italy — 18 September 2019 Model-Based Optimization DecisionCAMP — 18 September 2019 1 Model-Based Optimization for Effective and Reliable Decision-Making Optimization originated as an advanced between the human modeler’s formulation mathematical technique, but it has become an and the solver software’s needs. This talk accessible and widely used decision-making introduces model-based optimization by tool. A key factor in the spread of successful contrasting it to a method-based approach optimization applications has been the that relies on customized implementation of adoption of a model-based approach: A rules and algorithms. Model-based domain expert or operations analyst focuses implementations are illustrated using the on modeling the problem of interest, while AMPL modeling language and popular the computation of a solution is left to solvers. The presentation concludes by general-purpose, off-the-shelf solvers; surveying the variety of modeling languages powerful yet intuitive modeling software and solvers available for model-based manages the difficulties of translating optimization today. Dr. Fourer has over 40 years’ experience in institutes, and corporations worldwide; he is studying, creating, and applying large-scale also author of a popular book on AMPL. optimization software. In collaboration with Additionally, he has been a key contributor to the colleagues in Computing Science Research at NEOS Server project and other efforts to make Bell Laboratories, he initiated the design and optimization services available over the Internet, development of AMPL, which has become one and has supported development of open-source of the most widely used software systems for software for operations research through his modeling and analyzing optimization problems, service on the board of the COIN-OR with users in hundreds of universities, research Foundation.
    [Show full text]
  • MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 2 AMPL and CPLEX, Assignment 1
    AMPL CPLEX Simple problem Assignment 1 References MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 2 AMPL and CPLEX, Assignment 1 Zuzana Sabartov´aˇ 2014{03{21 Lecture 2 Linear and Integer Optimization with Applications AMPL CPLEX Simple problem Assignment 1 References Overview 1 AMPL 2 CPLEX 3 Simple problem 4 Assignment 1 5 References Lecture 2 Linear and Integer Optimization with Applications AMPL CPLEX Simple problem Assignment 1 References AMPL Algebraic modeling language for linear and nonlinear optimization problems Formulate optimization models and examine solutions Manage communication with an appropriate solver Natural syntax Separation of model and data Discrete or continuous variables Support for sets and set operators Built in arithmetic functions Looping, if-then-else commands Lecture 2 Linear and Integer Optimization with Applications AMPL CPLEX Simple problem Assignment 1 References Solvers that work with AMPL CPLEX - linear and quadratic problems in continuous and integer variables Gurobi - linear and quadratic problems in continuous and integer variables CONOPT - nonlinear problems MINOS - linear and nonlinear problems CONDOR, Gecode, IPOPT, MINLP, SNOPT ... Lecture 2 Linear and Integer Optimization with Applications AMPL CPLEX Simple problem Assignment 1 References Overview 1 AMPL 2 CPLEX 3 Simple problem 4 Assignment 1 5 References Lecture 2 Linear and Integer Optimization with Applications AMPL CPLEX Simple problem Assignment 1 References CPLEX Optimization software package for solving linear
    [Show full text]
  • Software Tools Supporting Integration
    Software Tools Supporting Integration Tallys Yunes Abstract This chapter provides a brief survey of existing software tools that enable, facilitate and/or support the integration of different optimization techniques. We fo- cus on tools that have achieved a reasonable level of maturity and whose published results have demonstrated their effectiveness. The description of each tool is not in- tended to be comprehensive. We include references and links to detailed accounts of each tool for the interested reader, and we recommend that the reader consult their developers and/or vendors for the latest information about upgrades and improve- ments. Our purpose is to summarize the main features of each tool, highlighting what it can (or cannot) do, given the current version at the time of writing. We con- clude the chapter with suggestions for future research directions. 1 Introduction This chapter provides a brief survey of existing software tools that enable, facilitate and/or support the integration of different optimization techniques. By optimization techniques we mean linear programming (LP), mixed-integer linear programming (MILP), non-linear programming (NLP), constraint programming (CP), local search (LS), large neighborhood search (LNS), and their derivatives. Integration can occur in many ways and at different levels. It ranges from a simple information exchange between two solvers implementing two versions of the same mathematical model, to a full-fledged synchronization of multiple methods that interact closely during an iterative search procedure. Decomposition methods such as branch-and-price (B&P) [12] and Benders decomposition [14] also lend themselves to effective integrated approaches and are, therefore, also covered here.
    [Show full text]
  • Constraint Programming
    Constraint Programming Justin Pearson Uppsala University 1st July 2016 Special thanks to Pierre Flener, Joseph Scott and Jun He CP MiniZinc Strings Other Final Outline 1 Introduction to Constraint Programming (CP) 2 Introduction to MiniZinc 3 Constraint Programming with Strings 4 Some recent, and not so Recent Advances 5 Final Thoughts Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Constraint Programming in a Nutshell Slogan of CP Constraint Program = Model [ + Search ] CP provides: high level declarative modelling abstractions, a framework to separate search from from modelling. Search proceeds by intelligent backtracking with intelligent inference called propagation that is guided by high-level modelling constructs called global constraints. Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Outline 1 Introduction to Constraint Programming (CP) Modelling Propagation Systematic Search History of CP 2 Introduction to MiniZinc 3 Constraint Programming with Strings 4 Some recent, and not so Recent Advances 5 Final Thoughts Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Constraint-Based Modelling Example (Port tasting, PT) Alva Dan Eva Jim Leo Mia Ulla 2011 2003 2000 1994 1977 1970 1966 Constraints to be satisfied: Equal jury size: Every wine is evaluated by 3 judges. Equal drinking load: Every judge evaluates 3 wines. Fairness: Every port pair has 1 judge in common. Uppsala University Justin Pearson Constraint Programming CP MiniZinc Strings Other Final Constraint-Based Modelling Example (Port tasting, PT) Alva Dan Eva Jim Leo Mia Ulla 2011 3 3 3 2003 3 3 3 2000 3 3 3 1994 3 3 3 1977 3 3 3 1970 3 3 3 1966 3 3 3 Constraints to be satisfied: Equal jury size: Every wine is evaluated by 3 judges.
    [Show full text]
  • Cesar Castillo 10140959
    DEFINICIÓN DE UNA ARQUITECTURA RESTFUL ORIENTADA AL RECURSO (RESOURCE-ORIENTED ARCHITECTURE - ROA) EN LA CONSTRUCCIÓN DE UN WEB SERVICE QUE ALOJA ALGORITMOS SOLUCIONADORES (SOLVERS) ORIENTADOS A PROBLEMAS DE PROGRAMACIÓN LINEAL COMO SERVICIOS CESAR MANUEL CASTILLO RODRÍGUEZ UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS MAESTRÍA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN PEREIRA 2017 DEFINICIÓN DE UNA ARQUITECTURA RESTFUL ORIENTADA AL RECURSO (RESOURCE-ORIENTED ARCHITECTURE - ROA) EN LA CONSTRUCCIÓN DE UN WEB SERVICE QUE ALOJA ALGORITMOS SOLUCIONADORES (SOLVERS) ORIENTADOS A PROBLEMAS DE PROGRAMACIÓN LINEAL COMO SERVICIOS CESAR MANUEL CASTILLO RODRÍGUEZ Trabajo de grado presentado como reQuisito para optar al título de MAGISTER EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN Director JORGE IVAN RIOS PATIÑO UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS MAESTRÍA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN PEREIRA 2017 NOTA DE ACEPTACIÓN _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ FIRMA JURADO Pereira, ____ de ________ de____ 3 CONTENIDOS pág 1.PRESENTACIÓN DEL PROYECTO.............................................................. 8 1.1 INTRODUCCIÓN........................................................................................ 8 1.2 PLANTEAMIENTO DEL PROBLEMA......................................................... 9 1.3 JUSTIFICACIÓN........................................................................................
    [Show full text]
  • Minizinc Handbook Release 2.3.1
    MiniZinc Handbook Release 2.3.1 Peter J. Stuckey, Kim Marrio, Guido Tack Jul 10, 2019 Contents 1 Overview 3 1.1 Introduction 5 1.1.1 Structure ....................................... 5 1.1.2 How to Read This ................................... 6 1.2 Installation 7 1.2.1 Microsoft Windows .................................. 7 1.2.2 Linux .......................................... 8 1.2.2.1 Snap ...................................... 8 1.2.2.2 AppImage ................................... 8 1.2.2.3 Archive .................................... 9 1.2.3 Apple macOS ..................................... 9 1.2.4 Adding Third-party Solvers .............................. 9 1.3 First steps with MiniZinc 11 1.3.1 The MiniZinc IDE ................................... 11 1.3.2 The MiniZinc command line tool .......................... 16 2 A MiniZinc Tutorial 19 2.1 Basic Modelling in MiniZinc 21 2.1.1 Our First Example ................................... 21 2.1.2 An Arithmetic Optimisation Example ........................ 25 2.1.3 Datafiles and Assertions ............................... 26 2.1.4 Real Number Solving ................................. 29 2.1.5 Basic structure of a model .............................. 31 2.2 More Complex Models 35 2.2.1 Arrays and Sets .................................... 35 2.2.2 Global Constraints .................................. 45 2.2.3 Conditional Expressions ............................... 46 2.2.4 Enumerated Types .................................. 48 2.2.5 Complex Constraints ................................. 50
    [Show full text]
  • Modeling with Metaconstraints and Semantic Typing of Variables
    Submitted for publication. Updated on November 13, 2013. Modeling with Metaconstraints and Semantic Typing of Variables Andre Cire, John N. Hooker Tepper School of Business, Carnegie Mellon University, [email protected], [email protected] Tallys Yunes School of Business Administration, University of Miami, [email protected] Recent research in the area of hybrid optimization shows that the right combination of different technologies, which exploits their complementary strengths, simplifies modeling and speeds up computation significantly. A substantial share of these computational gains comes from better communicating problem structure to solvers. Metaconstraints, which can be simple (e.g. linear) or complex (e.g. global) constraints endowed with extra behavioral parameters, allow for such richer representation of problem structure. They do, nevertheless, come with their own share of complicating issues, one of which is the identification of relationships between auxiliary variables of distinct constraint relaxations. We propose the use of additional semantic information in the declaration of decision variables as a generic solution to this issue. We present a series of examples to illustrate our ideas over a wide variety of applications. Key words : modeling; hybrid methods; metaconstraints; semantics 1. Introduction Recent research in the area of hybrid optimization shows that the right combination of different technologies can simplify modeling and speed up computation substantially, over a wide range of problem classes (surveyed in Hooker 2012). These gains come from the complementary strengths of the techniques being combined, such as mathematical pro- gramming, constraint programming, local search, and propositional satisfiability. Search, inference, and relaxation lie at the heart of these techniques, and can be adjusted to ex- ploit the structure of a given problem.
    [Show full text]
  • Modeling with Metaconstraints and Semantic Typing of Variables
    Submitted for publication. Updated on June 19, 2015. Modeling with Metaconstraints and Semantic Typing of Variables Andre A. Cire Department of Management, University of Toronto Scarborough, [email protected] John N. Hooker Tepper School of Business, Carnegie Mellon University, [email protected] Tallys Yunes School of Business Administration, University of Miami, [email protected] Recent research in hybrid optimization shows that a combination of technologies that exploits their complementary strengths can significantly speed up computation. The use of high-level metaconstraints in the problem formulation can achieve a substantial share of these computational gains by better communicating problem structure to the solver. During the solution process, however, metaconstraints give rise to reformulations or relaxations that introduce auxiliary variables, and some of the variables in one metaconstraint's reformulation may be functionally the same as or related to variables in another metaconstraint's reformulation. These relationships must be recognized to obtain a tight overall relaxation. We propose a modeling scheme based on semantic typing that systematically addresses this problem while providing simpler, self-documenting models. It organizes the model around predicates and declares variables by associating each with a predicate through a keyword that is analogous to a database query. We present a series of examples to illustrate this idea over a wide variety of applications. Key words : modeling; hybrid methods; metaconstraints; semantics 1. Introduction Recent research in the area of hybrid optimization shows that the right combination of different technologies can simplify modeling and speed up computation substantially, over a wide range of problem classes (surveyed in Hooker 2012).
    [Show full text]
  • Algorithms for the Restricted Linear Coloring Arrangement Problem Bachelor’S Thesis in Informatics Engineering
    Algorithms for the Restricted Linear Coloring Arrangement Problem Bachelor's Thesis in Informatics Engineering Department of Computer Science Author: Joan Llop Palao Director: Mar´ıaJos´eSerna Iglesias Defence date: Thursday 04th July 2019 Abstract The aim of this project is to develop efficient algorithms for solving or approximating the Minimum Restricted Linear Coloring Arrangement Problem. It is the first approach to its algorithms, and we will face the problem from different perspectives: constraint programming, backtracking, greedy, and genetic algorithms. As a second goal we are interested in providing theoretical results for particular graphs. Acknowledgements I would like to thank Professor Maria Serna from the Department of Computer Science of UPC for having proposed the project and for having directed my Bachelor's Thesis. This project would not have been possible without her contribution and guidance. I would also like to thank Professor Pierre Flener from the Department of Information Technol- ogy of Uppsala University for his great lectures in the Combinatorial Optimisation and Constraint Programming course. Also, executing the algorithms for the project might have been impossible without using the Uppsala University computers. Therefore, I would like to express my deep grat- itude to Professor Pierre Flener and to the Uppsala University for having helped me. I would like to offer my special thanks to my parents and sister for their understanding. Contents 1 Project Definition7 1.1 Introduction.........................................8 1.1.1 The Problem....................................8 1.1.2 Goals of the project and scope.......................... 10 1.1.3 Interest of the problem............................... 10 1.1.4 State of the art..................................
    [Show full text]
  • What Is Constraint Programming (CP)?
    ConstraintProgramming Extensions.jl An MOI/JuMP extension for constraint programming Thibaut Cuvelier — CentraleSupélec (université Paris-Saclay) What is constraint programming (CP)? ▪ Way of formulating combinatorial problems ▪ CP doesn’t really work for continuous problems (exception: Ibex, e.g.) ▪ Initial focus in CP was on feasibility, but optimisation is also possible ▪ Quite different from mathematical optimisation: ▪ No duality, no convexity, no linear/continuous relaxation, no differentiability at all ▪ More generic set of constraints, not just equations and inequalities ▪ Real focus on discrete aspect of the problem ▪ Mathematical optimisation’s support for combinatorial problems is more an afterthought ▪ CP has had many successes in operational research: ▪ Scheduling, time tabling, resource allocation An example of CP model: solving Sudokus ▪ Variables: ▪ 푑푖푗: digit for cell 푖, 푗 , a number between 1 and 9 ▪ Constraints: ▪ Known digits (hints) ▪ Each digit appears once in each row: alldifferent 푑푖푗 ∀푗 , ∀푖 ▪ Each digit appears once in each column: alldifferent 푑푖푗 ∀푖 , ∀푗 ▪ Each digit appears once in each block: 푑3푠,3푡 푑3푠,3푡+1 푑3푠,3푡+2 alldifferent 푑3푠+1,3푡 푑3푠+1,3푡+1 푑3푠+1,3푡+2 , 푠 ∈ 0,1,2 , 푡 ∈ 0,1,2 푑3푠+1,3푡 푑3푠+1,3푡+1 푑3푠+1,3푡+2 ▪ What about your typical MIP model ? ConstraintProgrammingExtensions.jl • What is the state of CP in Julia? • What is the state of the package? • What comes next? • What is missing in Julia/MOI/JuMP? • What is enabled with this package? What is the state of CP in Julia? ▪ Quite a few CP solvers
    [Show full text]