Anticoagulants for the Control of Rats and Mice

Total Page:16

File Type:pdf, Size:1020Kb

Anticoagulants for the Control of Rats and Mice Journal of the Department of Agriculture, Western Australia, Series 4 Volume 4 Number 6 June, 1963 Article 12 1-1-1963 Anticoagulants for the control of rats and mice C D. Gooding Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4 Part of the Other Animal Sciences Commons, and the Other Pharmacology, Toxicology and Environmental Health Commons Recommended Citation Gooding, C D. (1963) "Anticoagulants for the control of rats and mice," Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 4 : No. 6 , Article 12. Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol4/iss6/12 This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact [email protected]. ANTICOAGULANTS FOR THE CONTROL OF RATS AND MICE By C. D. GOODING ATELY there have been many requests for information on suitable poisons to use L in baiting rats and mice. Most enquirers have stated that they "tried a certain brand of bait" and found that the rats only "ate it up and kept coming back for more." This article on Warfarin—as a rat and mouse poison—is presented to clear up some of the problems of rodent poisoning. WHAT IS THE BEST POISON TO USE? There now seems to be only two main About two years ago an types of poison used in any quantity for article in the Journal of Agri­ rodent poisoning throughout the world. culture dealt with rat and These are: mouse control in terms of the 1.—The Sodium fluoroacetate group (in­ animals themselves, public cluding 1080). health hazards and control These are not permitted for rat and measures for the city dweller mouse poisoning in Australia at present. and the farmer. However, they are used extensively by authorities in Great Britain and the U.S.A. The control measures dealt in situations where the danger of their with were:— being accidently eaten by humans is negligible. • Fumigation Although more spectacular in their effect on a rodent population, it is hard • Exclusion to say whether they are any more efficient for rat and mouse control than— • Trapping 2.—The Warfarin Derivative group. • Poisoning The average farmer or householder wanting to control rats or mice will search around for a bait material which will drop the bodies close to where the bait is laid. If you are interested in In this way he will be quite sure that he these aspects of the problem has at least killed some of the rodents. I suggest you read the article However this is not usually a good meas­ which is available as Depart­ ure of success and probably means that he ment of Agriculture Bulletin has missed killing most of the population. No. 2803. Rats are intelligent animals with reason­ ing ability and when they see their com­ panions dying near to the bait material 388 Journal of Agruculture Vol 4 No 6, 1963 The brown rat (Rattus norvegicus) is common throughout the world. (Picture by courtesy H.M.S.O. England) (and quick acting poisons generally pro­ and degenerative processes which occur in duce violent reactions), they invariably the body. If blood clotting is weakened by nove to some other feeding area. Warfarin the presence of dicourmarol (or War­ does not cause a violent reaction in the farin) to the point where it cannot con­ animal, or death close to the bait. This tinue, then the animal simply bleeds to is why it has been accepted throughout death internally. The end result is much the world as the best poison for rat and the same as that produced by anaemia— mouse control. it is slow and painless as far as man can ascertain. The animals go away to die quietly and do not upset the remaining WHAT IS WARFARIN? population, which carries on eating until The chemical name for Warfarin is they too succumb to the poison. 3- (oc acetonylbenzyl) -4-hydroxycouramin. This indicates that it is a relative of dicourmarol—a compound well known for HOW IS WARFARIN USED? its effect on the clotting of blood. For the warehouse keeper or person with In the presence of dicourmarol, clotting a big area to treat, there is a concentrated time is greatly increased. Warfarin has form available which can be mixed with exactly the same effect on all warm 20 times its own weight of a carrier such blooded animals (or birds) which eat it. as crushed cereal grain. For the average If eaten over a period of days the rate of householder, proprietary lines containing clotting is gradually reduced. Warfarin are available through most gen­ Clotting is not only important for the eral stores and stock agents. healing of external wounds, but also for It is impossible to say without some repair of the numerous tissue breakdowns knowledge of the layout of the area to be 389 Journal of Agruculture Vol 4 No 6, 1963 Stored csreal grain damaged by rats and (Picture by courtesy H.M.S.O. England) treated, and the rodent population, how It is most important to treat the whole much bait material should be used. As area simultaneously to prevent reinfesta- with most sedentary animals and birds, tion from adjoining parts of the establish­ each family group of mice occupy and ment. seldom move out of a well defined territory. To calculate the amount of bait to buy All their feeding is generally done within it can be assumed that one mouse will eat this territory, which may be quite small— up to 2 oz. and one rat about half a pound in fact only a few square yards in area. of bait before it dies. It is obvious that This fact becomes most important when the householder who buys only a 4 oz. planning the distribution of baiting points. packet to treat a home or shed overrun Unless the bait is available within the with mice is doomed to failure. If rats feeding range or territory of every rodent are present the position is even more some will escape. ludicrous. In ordinary households it is suggested that 2 to 4 oz. of bait be placed in each room where the pests are known to exist. The baits should be examined every morn­ HOW LONG TO POISON ing and if all the bait has been eaten then It takes about five to seven days to kill the quantity should be doubled. After two the pests. A single massive dose of War­ cr three days it should be possible to deter­ farin would probably have little effect, mine how much bait is needed at each whereas a small amount eaten each day point. for five to seven days will kill. This is the In storage rooms or sheds it has some­ most important point for householders and times been found that more than one bait­ other users of Warfarin bait to remember. ing station is needed; common sense will Warfarin bait should be left exposed usually tell you how many should be used. until all feeding has stopped. Some people Bait should be taken from the points make it available to the rodents at all where it is not eaten and removed to t:'mes so that any new influx of the pests another locality. can feed as soon as they enter the premises. Journal of Agruculture Vol 4 No 6, 1963 Unbeatable Value! YOUR RAILWAYS SERVE you BEST FOR TRAVEL Modern passenger trains with comfortable buffet lounges and two-berth sleeping compartments ensure safe restful travel. FOR GOODS Next morning delivery of Goods to most centres. FOR LIVESTOCK Travels better and arrives in "bloom" condition when con­ signed by rail. FOR PERISHABLES UNBEATABLE Perishables conveyed in FOR Modern iced cooled, refrigerated and louvred vans. strength FOR PARCELS Parcels cost less by rail. adaptability FDR EL YOUR THAHSPORT and price! REQUIREMENTS The low cost of Bouchers steel frame farm buildings will surprise you. Standard com­ ponents keep costs down and allow you to extend your building at will. Write today to Bouchers for more information on USE Machinery, Hay and Shearing Sheds. YOUR INDUSTRIES LTD. RAILWAYS PHONE 24 1041 Scarborough Beach Ra\, Osborne Park 'lease mention the "Journal o» Agriculture of W.A.," when writing to advertisers Journal of Agruculture Vol 4 No 6, 1963 SICKLE BFR/\r%ID to earn you extra profits get them from your Wesformers Branch Liquid Arsenic and Rotenone dips that give effective control over keds, lice, itchmite. paradip liquid Sickle Brand 'PARADIP' is easy to use—it's just a matter of pouring info the bath and stirring. PARADIP' is con­ centrated for lower freighting costs and economical usage, and it is unaffected by hard or soft water. double action powder CONVENIENTLY PACKED IN A PAIL READY FOR EASY MIXING. Sickle Brand 'DOUBLE ACTION' sheep dip mixes easily and remains in even suspension throughout the bath for the duration of a dipping operation. Its efficiency is unaffected by hard water. WMONWEALTH FERTILISERS & CHEMICALS LTD. 3ISTRIBUTED if W ESFARMERS Journal of Agruculture Vol 4 No 6, 1963 A nest of young house mice. (Picture by courtesy H.M.S.O. England) In this way they have been able to keep of children. Safe places are behind cup­ their properties virtually clear. boards, under temporary shields nailed to Strict attention to the disposal of food the wall or skirting boards, or in boxes wastes is most important.
Recommended publications
  • 1080 Sodium Fluoroacetate
    Wild dog facts 1080-Sodium fluoroacetate 1080 (sodium fluoroacetate) is used to control wild The owner must ensure that signs are put up dogs, feral pigs, foxes, cats and rabbits in immediately before any 1080 baits are put out Queensland. It occurs naturally in a number of on the property. native plant species including Acacia georginae The signs must be placed at all entrances to (Georgina gidgee) and members of the the property and at the extremities of property Gastrolobium and Oxylobium genera. Sodium boundaries that front a public thoroughfare. fluoroacetate is a fluffy white material at room This must be done even if the adjoining temperature, which forms colourless solutions property is carrying out 1080 baiting. with water and is normally odourless. Signs must remain in place for a period of 4 weeks after baits are laid and permanent How to access 1080 signs are required for on-going or extended baiting program. Only authorised persons can supply 1080 baits to landholders.The use of 1080 is subject to strict Toxicity of 1080 regulatory control according to which: Dogs and foxes are highly susceptible to Minimum distances 1080, and the small amount required to No baits are to be laid within 5 m of a fenced target these species poses a minimal threat boundary. to non-target species. Feral pigs and rabbits No baits are to be laid within 50 m of the are also susceptible, although higher doses centre line of a declared road. are required. Table 1 compares the No baits are to be laid within 20 m of susceptibility of different animals to 1080.
    [Show full text]
  • Federal Law and Vertebrate Pest Control
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Proceedings of the 1st Vertebrate Pest Vertebrate Pest Conference Proceedings Conference (1962) collection February 1962 FEDERAL LAW AND VERTEBRATE PEST CONTROL Justus C. Ward Director, Pesticides Regulation Division, Agricultural Research Service, U.S. Department of Agriculture Follow this and additional works at: https://digitalcommons.unl.edu/vpcone Part of the Environmental Health and Protection Commons Ward, Justus C., "FEDERAL LAW AND VERTEBRATE PEST CONTROL" (1962). Proceedings of the 1st Vertebrate Pest Conference (1962). 25. https://digitalcommons.unl.edu/vpcone/25 This Article is brought to you for free and open access by the Vertebrate Pest Conference Proceedings collection at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Proceedings of the 1st Vertebrate Pest Conference (1962) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FEDERAL LAW AND VERTEBRATE PEST CONTROL By: Justus C. Ward, Director, Pesticides Regulation Division, Agricultural Research Service, U.S. Department of Agriculture Presented at the Vertebrate Pest Control Conference, Sacramento, California, February 6 and 7, 1 962 Shortly after the passage of the Federal Insecticide Act of 1910> mammal control specialists in the Bureau of Biological Survey began to consider a similar law to cover the chemicals with which they were concerned. Work on the project went slowly a nd spasmodically, but reached the point of having a Federal Rodenticide Act available for study and possible revision in 1928. At this time, the mammal control chemicals in use were limited to strychnine -- alkaloid and sulphate -arsenic, barium carbonate, th allium sulphate, phosphorus, s odium and calcium cyanide, carbon disulphide, and red squill.
    [Show full text]
  • Sodium Fluoroacetate
    United States Prevention, Pesticides EPA 738-R-95-025 Environmental Protection And Toxic Substances September 1995 Agency (7508W) Reregistration Eligibility Decision (RED) Sodium Fluoroacetate UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES CERTIFIED MAIL Dear Registrant: I am pleased to announce that the Environmental Protection Agency has completed its reregistration eligibility review and decisions on the pesticide chemical sodium fluoroacetate. The enclosed Reregistration Eligibility Decision (RED) contains the Agency's evaluation of the data base of this chemical, its conclusions of the potential human health and environmental risks of the current product's use, and its decisions and conditions under which this use and products will be eligible for reregistration. The RED includes the data and labeling requirements for products for reregistration. It may also include requirements for additional data (generic) on the active ingredients to confirm the risk assessments. To assist you with a proper response, read the enclosed document entitled "Summary of Instructions for Responding to the RED". This summary also refers to other enclosed documents which include further instructions. You must follow all instructions and submit complete and timely responses. The first set of required responses are due 90 days from the date of this letter. The second set of required responses are due 8 months from the date of this letter. Complete and timely responses will avoid the Agency taking the enforcement action of suspension against your products. If you have questions on the product specific data requirements or wish to meet with the Agency, please contact the Special Review and Reregistration Division representative Frank Rubis at (703) 308-8008.
    [Show full text]
  • 1080 Characteristics of Use
    1080 – Characteristics and use The following information provides details on the characteristics of sodium fluoroacetate (1080) and its use in Western Australia 1080 is an extremely dangerous toxin with no effective antidote. Great care is required with its use Sodium fluoroacetate (commonly known 1080-baiting programs also have a long as ‘1080’) is used extensively as a vertebrate history of proven safety in Australia and New pesticide in Australia and New Zealand. With Zealand. In Western Australia, for example, care, and provided the directions for use are there have been few reports of concerns with followed, 1080 can be safely used to control human safety, environmental persistence, vertebrate pests with few potential risks to accumulation in the food chain, or adverse non-target animals or the environment. In impacts on non-target species. many instances, 1080-baiting programs are Why control vertebrate pests? the only viable strategies available for broad- Introduced vertebrates such as rabbits, foxes, acre control of vertebrate pests. wild dogs, and feral pigs have a significant 1080 was introduced into Australian rabbit and profound impact on agricultural control programs in the early 1950s. Since production and biodiversity in Australia, then, it has been shown to be highly effective including much of WA. These impacts include against a number of pest species, particularly soil erosion, crop and pasture losses, the foxes, rabbits, wild dogs and feral pigs. Well- spread of weeds, degradation of on-farm planned and executed 1080-baiting programs bush remnants, damage to tree plantations, usually achieve rapid, high-level population prevention of native plant regeneration and knockdowns.
    [Show full text]
  • The Use of Sodium Cyanide in Wildlife Damage Management
    Human Health and Ecological Risk Assessment for the Use of Wildlife Damage Management Methods by USDA-APHIS-Wildlife Services Chapter VII THE USE OF SODIUM CYANIDE IN WILDLIFE DAMAGE MANAGEMENT May 2017 Peer Reviewed Final October 2019 THE USE OF SODIUM CYANIDE IN WILDLIFE DAMAGE MANAGEMENT EXECUTIVE SUMMARY USDA-APHIS Wildlife Services (WS) uses sodium cyanide (NaCN) to manage coyotes, red foxes, gray foxes, arctic foxes, and wild dogs that prey upon livestock, poultry, and federally designated threatened and endangered species or animals that are vectors of disease. This human health and ecological risk assessment is an evaluation of the risks to human health, nontarget animals, and the environment from NaCN use by WS. WS uses the M-44, the name for the ejector device that delivers a single dose NaCN from a capsule, to target canids. The M-44 is spring-activated and is actuated when an animal pulls up on the capsule holder; a plunger propelled by the spring breaks through a capsule with dry NaCN to deliver the contents into the mouth of an animal. The WS applicator baits the M-44 capsule holder sides to attract target canids. Sodium cyanide reacts rapidly with moisture in the mouth or mucus membranes of the nose and eyes to form hydrogen cyanide (HCN), a toxicant. One NaCN capsule contains enough cyanide to be lethal to animals through oral contact, inhalation contact, and moist dermal pathway contact. WS annually averaged the known take of 13,959 target canids and 362 nontarget species with NaCN between FY11 and FY15, recording 1,548,000 Method Nights with M-44s in 17 States.
    [Show full text]
  • Diagnosing the Cause of Failure to Eradicate Introduced Rodents on Islands: Brodifacoum Versus Diphacinone and Method of Bait Delivery
    Conservation Evidence (2011) 8, 100-106 www.ConservationEvidence.com Diagnosing the cause of failure to eradicate introduced rodents on islands: brodifacoum versus diphacinone and method of bait delivery John Parkes *, Penny Fisher & Guy Forrester Landcare Research, PO Box 40, Lincoln 7640, New Zealand *Corresponding author e-mail: [email protected] SUMMARY Two types of anticoagulant rodenticides have proven successful at eradicating invasive rats and mice from islands. Brodifacoum is the most commonly used and has a low failure rate both when delivered from the air and from ground-based systems. It does, however, present a risk to non-target animals such as birds. When such risk is not acceptable or cannot be mitigated, diphacinone has been favoured by some managers because it is less toxic to birds and less persistent in rodents. However, unlike brodifacoum, diphacinone requires a rodent to eat several baits over several days to ingest a lethal dose. This increases the risk that not all rodents will be killed. When data on attempts to eradicate rats and mice for both aerial and ground-based methods are combined, brodifacoum has a significantly lower failure rate at 17% (54 of 322 attempts) than diphacinone at 33% (13 of 39 attempts). The difference is more significant when just rats are considered. Ground-based methods show similar failure rates for both rodenticides, but to date the very few attempts using aerially sown diphacinone baits have had a high failure rate compared with that for brodifacoum. BACKGROUND Nevertheless, a large number of islands still have exotic rodents and invasion of rodent-free The rodents associated with human islands remains an ongoing problem (Russell colonization, house mouse Mus musculus , et al.
    [Show full text]
  • The Compounds Used As Rodenticides Are Tremendously Varied in Their Chemical Structure and Mechanism of Action
    THE PHARMACOLOGY OF RODENTICIDES S. A. PEOPLES, School of Veterinary Medicine, University of California, Davis, Colifomio The compounds used as rodenticides are tremendously varied In their chemical structure and mechanism of action. With a few exceptions, these agents are generally poisonous to all animals, Including man, and a great deal of study has been directed to their toxicity In animals other than rodents. However, the development of new compounds as Norbormlde and certain antlfertlllty drugs which are highly selective In their action may justify the hope that the Ideal rodenticlde free of secondary toxic hazards will soon be available. Until this happy announcement Is made, a review of the pharmacology of the older com­ pounds Is In order to enable us to understand the limitations on their effectiveness and hazard. The tremendous chemical variety of the compounds precludes any obvious systematic grouping of the compounds for discussion so that I have arbitrarily divided them Into Inorganic, Organic, and Fumigants. The discussion of each one Is limited to the primary pharmacological mechanism of the toxic action and will only briefly mention Interesting but non-essential side effects. ORGANIC AGENTS The Anticoagulants The discovery that dlcoumarol was the active agent in the hemorrhagic disease caused by spoiled sweet clover has led to the synthesis of two series of compounds derived from coumarln (Olcoumarol, Coumachlor, Warfarin) and I, 3 lndandlone (Plndone or Plval). These chemical compounds differ In solubility, rate of absorption and duration of action but not In their basic mechanism of action. Their basic chemical structure is sufficiently similar to vitamin K that they competitively Interfere with Its conversion to prothrombln In the liver.
    [Show full text]
  • Retaining Or Retrieving Older and Trying to Identify Novel Rodenticides
    Retaining or Retrieving Older and Trying to Identify Novel Rodenticides Charles Eason Centre of Wildlife Management and Conservation, Lincoln University, Lincoln, and Connovation Research Ltd., Auckland, New Zealand Elaine Murphy Dept. of Conservation, Christchurch, New Zealand Shona Sam, James Ross, and Helen Blackie Centre of Wildlife Management and Conservation, Lincoln University, Lincoln, New Zealand Ray Henderson PestTech, Canterbury, New Zealand Lee Shapiro and Duncan MacMorran Connovation Research Ltd., Auckland, New Zealand Troy Gibson and Neville Gregory Royal Veterinary College, Hertfordshire, United Kingdom Daniel Conole, David Rennison, and Margaret Brimble University of Auckland, Auckland, New Zealand ABSTRACT: Anticoagulant compounds are likely to play an important role in the control of commensal rodents for crop protection and conservation for the foreseeable future. However, there are concerns regarding their persistence and the development of more widespread resistance. We are seeking to retrieve and retain older alternatives as well as developing novel rodenticides. Our three- pronged approach is, firstly, to improve the performance of older non-anticoagulant rodenticides, such as sodium fluoroacetate (1080) and zinc phosphide; secondly to optimise the performance of 1st-generation anticoagulants; and thirdly, to identify alternatives to anticoagulant rodenticides with the same mode of action as para-aminopropiophenone (PAPP), which was registered in New Zealand as a predacide in April 2011. Zinc phosphide was also registered in New Zealand for the first time in 2011, and combinations of ultra-low-dose cholecalciferol with first generation anticoagulants are being advanced to provide the performance characteristics of a 2nd-generation anticoagulant with a lower risk of bioaccumulation and secondary poisoning. KEY WORDS: 1080, cyanide, New Zealand, PAPP, para-aminopropiophenone, rodenticides, vertebrate pesticides Proc.
    [Show full text]
  • HRE05002-004.Pdf(PDF, 1.7
    1080 Reassessment Application October 2006 Appendix C Source: Landcare Research (1964). Control of poisons. Royal Society of Health Journal 84, 52-53. Keywords: poisons/non-target species/fluoroacetamide/livestock Occupational Health Bulletin: Sodium Fluoroacetate Compound 1080. New Series No 1 (revision of Vol.6 No 11, July 1962). 1967. Wellington, Department of Health. Ref Type: Pamphlet Keywords: sodium fluoroacetate/fluoroacetate/1080 (1969). Fluoroacetate. In 'Clinical toxicology of commercial products'. (M. Gleason, R. Gosselin, H. Hodge, and R. SmithEds. ) pp. 116-117. (The Williams & Wilkins: Baltimore.) Keywords: fluoroacetate/sodium fluoroacetate/diagnosis/treatment/acute toxicity Poisonings. 20. 1976. Surveillance 1976 No.4. Ref Type: Report Keywords: poisoning/1080/analysis/muscle/liver/livestock/witholding period Abstract: 1080 poisoning was in the public eye in Canterbury when sheep died after they were returned to a block pronounced "safe" after poisoning operations. About 160 ewes died out of 800, and 1080 poisoning was confirmed. It is reported that errors were made in the analysis of bait tested to determine if it was safe to stock. Recently a workshop on 1080 analysis was held at Invermay AHL. These are the recommendations for sampling: 1) Take the samples from the animals which are first to die in the outbreak even though they may be more autolysed. 2) The best specimens in order of preference are muscle, stomach contents then liver 1080 poisoning. 26. 1976. Surveillance 1976 No. 4. Ref Type: Report Keywords: 1080/poisoning/birds/persistence in animals/non-target species/secondary poisoning/humans Abstract: Recently, Canada geese around Lake Benmore were poisoned by oats impregnated with 1080 Diagnosis of 1080 poisoning in dogs.
    [Show full text]
  • Two Killers That Need to Go an Essay by Brooks Fahy, Executive Director of Predator Defense, and Diana Cornelius, Deputy Director of Predator Defense, May 2008
    Two Killers That Need to Go An essay by Brooks Fahy, Executive Director of Predator Defense, and Diana Cornelius, Deputy Director of Predator Defense, May 2008 We now we have the opportunity to outlaw two Quick Facts about Compound horrific poisons that threaten American wildlife, 1080 and M-44 Poisons companion animals, people and our national security. • Compound 1080 and M-44s are H.R. 4775, the Compound 1080 and M-44 Elimination extremely dangerous and inhumane. Act, is now before Congress. Both poisons—sodium • Compound 1080 is one of the deadliest fluoroacetate (commonly known as Compound 1080) poisons on earth and has no antidote. and sodium cyanide (the toxicant in devices called M- • Compound 1080 is a potential terrorist threat to water and food supplies. 44s) are used by the U.S. Department of Agriculture’s • These poisons are not selective—they Wildlife Services program to kill native predators that often kill non-target species including are perceived as threats to livestock. Formerly called endangered species and pets. Animal Damage Control, Wildlife Services kills some • People have been seriously harmed by M-44s and Compound 1080; at least 100,000 native predators each year such as coyotes, 16 people have died from exposure to mountain lions, wolves, bobcats, foxes, bears, Compound 1080. raccoons, and badgers. • Paradoxically, killing coyotes increases their numbers. Read letter by wildlife Wildlife Services’ love affair with poisons began with ecologist Dr. Robert Crabtree on the Coyote page of our website at the program’s inception in the early 1900s and http://www.predatordefense.org. extends beyond their use of sodium cyanide and • Rather than killing predators, ranchers Compound 1080.
    [Show full text]
  • 3017.0001 the Fluorides of the Actinide Elements
    ADVANCES IN FLUORINE CHEMISTRY VOLUME 2 EDITOR8 M. STACEY, F.R.S. A,Iaso~t Professor and tIead qf Deparlment of Chemistry, University of Birmingham J. C. TATLOW, Ph.D., D.Sc. Professor of Organic Chemistry, University of Birmingham A. G. SHARPE, M.A., Ph.D. Universi!~ Lecturer in Chemisto,, Cambridge WASHINGTON BUTTERWORTHS 1961 3017.0001 THE FLUORIDES OF THE ACTINIDE ELEMENTS Templeton, D. H. and Dauben, C. H. J. Amer. Chem. Soc. 1953, 75, 4560 Carniglia, S. C. and Cunningham, B. B. J. Amer. Chem. Soc. 1955, 77, 1451 Westrum, E. F. and Eyring, L. J. Amer. Chem. Soc. 1951, 73, 3396 Feay, D. C. Some Chemical Properties of Curium, Thesis, University of California. See also U.S.A.E.C. Report, UCRL-2547, 1954 Eyring, L., Cunningham, B. B. and Lohr, H. R. J. Amer. CAem. Soc. 1952, 74, 1186 Yakovlev, G. N. and Kosyakov, V. N. Proc. 2nd U.N. Co~fc. Pc’a@d Uses Atomic Energy, Geneva, 1958, paper 2127, 28, 373, 1958 Asprey, L. B. and Keenan, T. K. J. Inorg. Nuclear Chem. 1958, 7, 27 Asprey, L. B., Ellinger, F. H. and Zacl~ariasen, W. H. J. Amer. Chem. Soc. 1954, 76, 5235 Wallmann, J. C., Crane, W. W. T. and Cunningttam, B. 13. J. Amer. Chem. Soc. 1951, "/3, 493 Asprey, L. B., Ellinger, F. H., Fried, S. and Zachariasen, W. H. J. Ame~’. CheDz. Soc. 1957, ~, 5825 Asprey, L. B. and Ellinger, F. H. U.S.A.E.C. Report, AECD-3627, declassified 1954 Crane, W. W. T. U.S.A.E.C.
    [Show full text]
  • Evaluation-Attractants-Toxins-For-Improved-Target-Specificity-Control-Feral-Pigs
    Evaluation of Attractants and Toxins for Improved Target Specificity in the Control of Feral Pigs Report to the National Feral Animal Control Program P.G. Elsworth, J.L. Mitchell, R.W. Parker Robert Wicks Pest Animal Research Centre Department of Natural Resources and Mines Inglewood Qld 4387 August, 2004 1 Table of Contents Summary………………………………………………………..………3 Introduction…………………………………………………………...4 Current baiting techniques……………………………………4 Bait Substrate…….…….……………………………….4 Bait Attractants….……..…….….……………………...5 Toxins……………………….……….…………………..5 Delivery………………………………………………….6 Behavioural differences…… ………………..…………………6 Methods…………………………………………………………………9 Animal Ethics……… …………………………………………….9 Animal care and maintenance………………………………….9 A Target Specific Pig Bait…………………………………….9 Attractants trial…………………………………………….9 No-choice trial……………………………………………..9 Choice trial………………….………...…………………10 Non-target trial……………………………………..……10 Additional Toxins……………………………………………..11 Warfarin paddock trial…………………………………..11 Cyanide pen trial………………………………………..12 Results………………………………………………………………...13 Attractants Trial…………………………………………………13 No-choice Trial………………………………………………….15 Choice Trial……………………………………………………..15 Non-target Trial…………………………………………………16 Warfarin Paddock Trial…… …………………………………..21 Cyanide Pen Trial………………………………………………21 Discussion………………… …………………………………………24 Acknowledgements…………………………………………………25 References……………………………………………………………26 2 Summary Feral pigs (Sus scrofa) are an environmental and economic pest across Queensland. Current baiting programs primarily use meat baits
    [Show full text]