On Uniform Exponential Growth for Linear Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effective Arguments in Unipotent Dynamics
EFFECTIVE ARGUMENTS IN UNIPOTENT DYNAMICS M. EINSIEDLER AND A. MOHAMMADI Dedicated to Gregory Margulis Abstract. We survey effective arguments concerning unipotent flows on locally homogeneous spaces. 1. Introduction In the mid 1980's Margulis resolved the long standing Oppenheim con- jecture by establishing a special case of Raghunathan's conjecture. Further works by Dani and Margulis in the context of the Oppenheim conjecture and Ratner's full resolution of Raghunathan's conjectures have become a corner stone for many exciting applications in dynamics and number theory. Let us briefly recall the setup. Let G be a connected Lie group and let Γ ⊂ G be a lattice (i.e. a discrete subgroup with finite covolume) and X = G=Γ. Let H ⊂ G be a closed subgroup of G. This algebraic setup gives hope for the following fundamental dynamical problem. Describe the behavior of the orbit Hx for every point x 2 X. However, without further restrictions on H this question cannot have any meaningful answer, e.g. if G is semisimple and H is a one parameter R- diagonalizable subgroup of G, then the time one map is partially hyperbolic (and in fact has positive entropy and is a Bernoulli automorphism) and the behavior of orbits can be rather wild giving rise to fractal orbit closures, see e.g. [47]. There is however a very satisfying answer when H is generated by unipotent subgroups, e.g. when H is a unipotent or a connected semisimple subgroup; in these cases Ratner's theorems imply that closure of all orbits are properly embedded manifolds, see x5. -
Young Geometric Group Theory V
Young Geometric Group Theory V Karlsruhe, Germany Monday, the 15th of February, 2016 – Friday, the 19th of February, 2016 Contents 1 Minicourse speakers 1 2 Other speakers 4 3 Poster session 10 4 Research statements 12 5 List of participants 129 Mon, Feb. 15th Tue, Feb. 16th Wed Feb. 17th Thu, Feb. 18th Fri, Feb. 19th 08:30 - 09:00 registration registration 09:00 - 09:50 Iozzi 1 Mosher 2 Iozzi 2 Vogtmann 3 Iozzi 4 10:00 - 10:50 Mosher 1 Vogtmann 2 Bridson 4 Mosher 4 Vogtmann 4 11:00 - 11:30 coffee and tea coffee and tea coffee and tea coffee and tea coffee and tea 11:30 - 12:20 Bou-Rabee / Mann Dowdall / Meiri Mosher 3 Horbez / Puder Touikan 12:30 - 14:20 lunch lunch lunch lunch lunch and registration 14:30 - 15:20 Vogtmann 1 Bridson 2 j Iozzi 3 15:30 - 16:00 coffee and tea coffee and tea excursion coffee and tea 16:00 - 16:50 Bridson 1 Bridson 3 j Hull / Wade 17:00 - 17:50 tutorials/discussions tutorials/discussions j tutorials/discussions 19:00 - — poster session 1 Minicourse speakers Martin Bridson (University of Oxford, UK) Profinite recognition of groups, Grothendieck Pairs, and low- dimensional orbifolds I shall begin by discussing the history of the following general problem: to what extent is a residually-finite group determined by its set of finite quotients (equivalently, its profinite completion)? A precise instance of this question was posed by Grothendieck in 1970: he asked if there could exist pairs of finitely presented, residually finite groups H < G such that the inclusion map induces an isomorphism of profinite completions but H is not isomorphic to G. -
Orbital Counting Via Mixing and Unipotent Flows
Clay Mathematics Proceedings Volume 8, 2008 Orbital counting via Mixing and Unipotent flows Hee Oh Contents 1. Introduction: motivation 1 2. Adeles: de¯nition and basic properties 5 3. General strategy on orbital counting 8 4. Equidistribution of semisimple periods via unipotent flows 11 5. Well-rounded sequence and Counting rational points 14 6. Mixing and Hecke points 20 7. Bounds toward the Ramanujan conjecture on the automorphic spectrum 22 8. Counting via mixing and the wavefront property 25 9. A problem of Linnik: Representations of integers by an invariant polynomial II 29 References 32 This note is an expanded version of my lectures given at the Clay summer school in 2007. 1. Introduction: motivation Let X be a projective algebraic variety de¯ned over Q, that is, X is the set of (equivalence classes of) zeros of homogeneous polynomials with coe±cients in Q. The set X(Q) of rational points in X consists of rational zeros of the polynomials. The following is a classical question in number theory: \understand the set X(Q) of rational points": More detailed questions can be formulated as follows: (1) Is X(Q) non-empty? (2) If non-empty, is X(Q) in¯nite? (3) If in¯nite, is X(Q) Zariski dense in X? (4) If Zariski dense, setting XT := fx 2 X(Q) : \ size"(x) < T g; what is the asymptotic growth rate of #XT as T ! 1? °c 2008 Clay Mathematics Institute 1 2 HEE OH (5) Interpret the asymptotic growth rate of #XT in terms of geometric invariants of X (6) Describe the asymptotic distribution of XT as T ! 1? A basic principle in studying these questions is that (1.1) \the geometry of X governs the arithmetic of X": A good example demonstrating this philosophy is the Mordell conjecture proved by Faltings [30]: Theorem 1.2. -
EMISSARY M a T H Ema T I Cal Sc Ien C Es R E Sea R C H I Nsti Tute
Spring 2015 EMISSARY M a t h ema t i cal Sc ien c es R e sea r c h I nsti tute www.msri.org Dynamics on Moduli Spaces of Geometric Structures Bill Goldman and Franc¸ois Labourie This spring’s program concen- space of Euclidean structures trates on dynamical systems on S2 is empty. In contrast, arising from the classification the 2-torus T 2 has many Eu- of locally homogeneous ge- clidean structures. The corre- ometric structures on mani- sponding moduli space natu- folds. rally identifies with the quo- tient of the upper halfplane 2 What is a Geometric H by PGL(2;Z), the group Structure? of integral homographies, as depicted in the tiling figure Geometry concerns spatial re- on the left. This quotient en- lationships and quantitative joys a rich and well-studied hy- measurements, whereas topol- perbolic geometry of its own, ogy concerns the loose orga- which had been described in nization of points. Every geo- the mid-nineteenth century. metric space has an underlying topological structure. Given a Some Historical topological manifold Σ, and Background some geometry modeled on a homogeneous space X, can the The subject’s roots indeed go local geometry of X (invariant back to the nineteenth century. under G) be put on the topol- Following Sophus Lie and Fe- 2 ogy of Σ? If so, in how many PGL(2;Z)-invariant tiling of the upper halfplane H . lix Klein’s work on continuous ways? How does one under- groups of symmetry, the Er- stand the different ways of locally imparting the G-invariant geom- langen program focused on the idea that a classical geometry (such etry of X into Σ? The resulting moduli space (roughly speaking, as Euclidean geometry or projective geometry) is just the study the space of geometric structures on Σ) often has a rich geometry of the G-invariant objects on a homogeneous space X.