Biology and Host Preferences of Cryptorhynchus Melastomae

Total Page:16

File Type:pdf, Size:1020Kb

Biology and Host Preferences of Cryptorhynchus Melastomae Biology and Host Preferences of Cryptorhynchus melastomae (Coleoptera: Curculionidae), a Possible Biocontrol Agent for Miconia calvescens (Melastomataceae) in Hawaii Author(s): Elisabeth Reichert, M. Tracy Johnson, Eduardo Chacón, Robert S. Anderson, and Terry A. Wheeler Source: Environmental Entomology, 39(6):1848-1857. 2010. Published By: Entomological Society of America DOI: 10.1603/EN10029 URL: http://www.bioone.org/doi/full/10.1603/EN10029 BioOne (www.bioone.org) is an electronic aggregator of bioscience research content, and the online home to over 160 journals and books published by not-for-profit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. BIOLOGICAL CONTROL-WEEDS Biology and Host Preferences of Cryptorhynchus melastomae (Coleoptera: Curculionidae), a Possible Biocontrol Agent for Miconia calvescens (Melastomataceae) in Hawaii ELISABETH REICHERT,1 M. TRACY JOHNSON,2 EDUARDO CHACO´ N,3 4 1,5 ROBERT S. ANDERSON, AND TERRY A. WHEELER Environ. Entomol. 39(6): 1848Ð1857 (2010); DOI: 10.1603/EN10029 ABSTRACT The introduced plant Miconia calvescens (Melastomataceae) poses a grave threat to HawaiiÕs native ecosystems and biodiversity. One potential candidate for classical biological control is Cryptorhynchus melastomae (Coleoptera: Curculionidae: Cryptorhynchinae), a stem-boring weevil from Central and South America. This weevil feeds on M. calvescens in its native Costa Rica and has been successfully reared under greenhouse conditions. Comparison of its environmental conditions in Costa Rica with those in the Miconia infested areas of Hawaii indicates the latter is a suitable habitat for C. melastomae. C. melastomae has one or two generations per year. Adults feed on new stems, petioles, leaf buds, veins, and lamina, whereas larvae mine the stem until pupation. Adults appear to prefer saplings for oviposition and feeding. Under greenhouse conditions both adults and larvae can seriously damage and kill small M. calvescens. Preliminary host testing indicates that C. melastomae may be family speciÞc on Melastomataceae. However, because Hawaii lacks native melastomes and has many other serious melastome weeds, a family speciÞc insect may be suitable as a biocontrol agent in this case. KEY WORDS biological control, invasive species, Costa Rica, life history, host-speciÞcity Invading species are an ongoing global dilemma and tation, cause erosion and landslides, and alter nutrient heavily visited oceanic islands are particularly suscep- and water regimes (Meyer and Florence 1996). Cur- tible to these invasions (Vitousek et al. 1997). Invasive rent methods used to manage M. calvescens are re- weeds are an especially problematic group, with more moval of trees by hand or applying aerial herbicides to than half the ßora of some islands made up of intro- those that are inaccessible. These methods are time duced plants (Vitousek et al. 1997). The Hawaiian consuming, expensive and often difÞcult because of Islands are no exception, of 2,781 plant species in- the rough terrain (Loope 1997). cluded in the 2001Ð2002 Hawaiian Biological Survey, Classical biological control has proven to be an 1,176 (42.3%) are nonindigenous (Eldredge and Even- effective way to manage invading weeds (Crawley huis 2003). 1989, Van Driesche 1994), and may be a suitable al- Currently, the weed of highest priority for control ternative or addition to current control methods for M. in Hawaii is Miconia calvescens DC (Melastomata- calvescens. Weevils (Coleoptera: Curculionidae) are ceae) (Invasive Species Committees of Hawaii and often chosen for release as classical biological control Coordinating Group on Alien Pest Species 2003), a agents and have been effective in many parts of the small tree native to tropical Central and South Amer- world (OÕBrien 1995). The prospects for Þnding suit- ica. Introduced to Hawaii in 1961 as an ornamental able biocontrol agents for M. calvescens are increased (Medeiros et al. 1997, Meyer 1996) it now occurs on by the lack of native melastomes in Hawaii, thus low- the islands of Oahu, Hawaii, Maui, and Kauai. In its ering the risk of signiÞcant nontarget interactions. introduced range M. calvescens forms dense monospe- Cryptorhynchus melastomae Champion (Coleoptera: ciÞc stands that are believed to displace native vege- Curculionidae: Cryptorhynchinae) is a stem-boring weevil originally described from Panama, Costa Rica, Nicaragua, and Guatemala (Champion 1906), but now 1 Department of Natural Resource Sciences, Macdonald Campus, known to be more widely distributed in Central Amer- McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada. 2 Institute of PaciÞc Islands Forestry, USDA Forest Service PaciÞc ica and northern South America (OÕBrien and Wibmer Southwest Research Station, Volcano, HI 96785. 1982). Although cryptorhynchine weevils are usually 3 Escuela de Biologõ´a, Universidad de Costa Rica, San Jose´, Costa associated with dead plant material, some, including C. Rica. melastomae, feed on live plants. This species feeds on 4 Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, K1P 6P4, Canada. M. calvescens in its native Costa Rica and is one of 5 Corresponding author, e-mail: [email protected]. several potential agents being considered for biocon- 0046-225X/10/1848Ð1857$04.00/0 ᭧ 2010 Entomological Society of America December 2010 REICHERT ET AL.: BIOLOGY OF Cryptorhynchus melastomae 1849 trol (Badenes-Perez et al. 2008). C. melastomae is a Ramon, Alajuela (N 10Њ12Ј49”,W84Њ34Ј22”) in Sep- fairly large robust (8Ð10 mm long, 3.8Ð5.3 mm wide) tember 2004 (despite a lack of M. calvescens in the area weevil. Its head, prothorax and a triangular section at but after Þnding local evidence of C. melastomae at- the base of the elytra are covered in fulvous or reddish- tacking M. theizans (Bonpl.) Cogn.). All seedlings brown scales, while the rest of the elytra are covered were grown in the UCRs greenhouses in San Pedro, in white or brownish-white scales. C. melastomae ap- San Jose´ (N 09Њ56Ј15”,W84Њ02Ј58”) or transplanted on pears to live in low to mid elevations of wet forests and multiple occasions from other known M. calvescens disturbed areas. Many cryptorhynchines are primarily sites. M. calvescens at the time of this study ranged from active at night. Over 200 species of Neotropical Cryp- very small seedlings to reproducing trees at these sites, torhynchus have been identiÞed; however, this genus allowing observations on all life stages. has become a storehouse for cryptorhynchines with All out-planted M. calvescens were inspected for C. uncertain relationships and many of the species may melastomae weekly at El Angel (Ϸ300 seedlings/ not be closely related (Anderson 2008). No species trees) and biweeklyÐmonthly at San Ramon and Tur- have been identiÞed as close relatives of C. melas- rialba (Ϸ50 and 100 seedlings/trees, respectively) in tomae. MayÐJuly 2005 and JanuaryÐMay 2006. Sites were also The purposes of this study were to examine the checked occasionally during the remaining months of geographic distribution, habitat requirements, and life 2005Ð2006. history of C. melastomae; to conduct a preliminary M. calvescens (and other Melastomataceae) were assessment of its host-speciÞcity; and to develop rear- individually examined during daylight hours for C. ing methods to facilitate its further evaluation as a melastomae and signs of its feeding damage. Upper and potential biological control agent for M. calvescens in lower surfaces of leaves were checked for resting Hawaii. adults and feeding damage to veins and lamina. Peti- oles, branches, and stems/trunks were inspected for resting adults, adult feeding damage, eggs, and the Materials and Methods occurrence of small breathing/feeding holes indica- Distribution and Habitat Requirements. A database tive of internal feeding by larvae and larger emergence of 317 specimen records of C. melastomae was com- holes suggesting developing pupae inside. Vegetation piled using ChampionÕs (1906) original description near the stem base was also checked for concealed and the following collections: Instituto Nacional de adults. Any potential parasitoids of C. melastomae Biodiversidad, Costa Rica (INBio); Arthropods of were brought back to the lab for rearing and identi- La Selva project, Costa Rica (ALAS); University of Þcation. Binoculars were used to search taller trees for Costa Rica Insect Museum (UCR), National Mu- individuals and feeding damage. seum of Costa Rica (NMCR), Smithsonian Tropical When located, adults were observed for 2Ð5 min Research Institute, Panama (STRI), Canadian Mu- depending on their behavior and then placed in a seum of Nature, Ottawa, Canada (CMN); and the plastic vial with a small M. calvescens leaf segment and personal collection of Dr. Charles OÕBrien. Voucher brought back to the lab for sexing using a dissecting specimens collected during this project are
Recommended publications
  • Adult Postabdomen, Immature Stages and Biology of Euryommatus Mariae Roger, 1856 (Coleoptera: Curculionidae: Conoderinae), a Legendary Weevil in Europe
    insects Article Adult Postabdomen, Immature Stages and Biology of Euryommatus mariae Roger, 1856 (Coleoptera: Curculionidae: Conoderinae), a Legendary Weevil in Europe Rafał Gosik 1,*, Marek Wanat 2 and Marek Bidas 3 1 Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie–Skłodowska University, Akademicka 19, 20-033 Lublin, Poland 2 Museum of Natural History, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; [email protected] 3 ul. Prosta 290 D/2, 25-385 Kielce, Poland; [email protected] * Correspondence: [email protected] Simple Summary: Euryommatus mariae is a legendary weevil species in Europe, first described in the 19th century and not collected through the 20th century. Though rediscovered in the 21st century at few localities in Poland, Austria, and Germany, it remains one of the rarest of European weevils, and its biology is unknown. We present the first descriptions of the larva and pupa of E. mariae, and confirm its saproxylic lifestyle. The differences and similarities between immatures of E. mariae and the genera Coryssomerus, Cylindrocopturus and Eulechriopus are discussed, and a list of larval characters common to all Conoderitae is given. The characters of adult postabdomen are described and illustrated for the first time for diagnostic purposes. Our study confirmed the unusual structure of the male endophallus, equipped with an extremely long ejaculatory duct enclosed in a peculiar fibrous conduit, not seen in other weevils. We hypothesize that the extraordinarily long Citation: Gosik, R.; Wanat, M.; Bidas, and spiral spermathecal duct is the female’s evolutionary response to the male’s extremely long M.
    [Show full text]
  • Coleoptera: Curculionidae: Lixinae) Accepted: 23-02-2015
    Journal of Entomology and Zoology Studies 2015; 3 (2): 54-56 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Ultrastructural analysis of endophallus in several JEZS 2015; 3 (2): 54-56 species of the genus Larinus Dejean, 1821 © 2015 JEZS Received: 01-02-2015 (Coleoptera: Curculionidae: Lixinae) Accepted: 23-02-2015 Mahmut Erbey Mahmut Erbey, Selami Candan Department of Biology, Faculty of Art and Science, Ahi Evran Abstract University, Kırşehir, Turkey. The ultrastructures of the endophallus in eight species of the genus Larinus Dejean, 1821 (Larinus scolymi, L. grisescens, L. iaceae, L. latus, L. minutus, L. onopordi, L. sturnus, and L. turbinatus) Selami Candan (Coleoptera: Curculionidae: Lixinae) are investigated. The endophallus was obtained from the aedeagi by Department of Biology, Faculty of Science, Gazi University, dissection. The structures were drawn under a light microscope. The ultrastructures of endophallus (or Ankara, Turkey. internal sac) consisting of spines, teeth and papillae were investigated with a scanning electron microscope. Similarities and differences between all species investigated are discussed. The ultrastructures found, e.g. spines, teeth, papillae and hairs are recognised as important for taxonomy, and can be used for separation of the morphologically similar species. Keywords: Coleoptera, Curculionidae, Lixinae, Larinus, endophallus (internal sac), SEM 1. Introduction In Coleoptera, the male genitalia and associated membranes have been used since long important characters in taxonomy, but the functioning of internal membranes are not yet well understood. Their relative position in the connecting membrane and the genital membrane folding patterns have never been thoroughly investigated [1]. Genital structures provide, in many cases, taxonomically useful characters for distinguishing organisms at species and subspecies level [2].
    [Show full text]
  • A Revised List of the Weevil Subfamily Ceutorhynchinae
    J. Asia-Pacific Entomol. 7(2): 143 -169 (2004) www.entornology.or.kr A Revised List of the Weevil Subfamily Ceutorhynchinae (Coleoptera; Curculionidae) of the Korean Fauna, with Contribution to the Knowledge of the Fauna of Neighbouring Countries Boris A. Korotyaev and Ki-Jeong Hong' Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia I Central Post-Entry Quarantine Station, National Plant Quarantine Service, Suwon 442-400, Korea Abstract 58 species are recorded from Korea based preceding publications (Hong et al., 1999a, 1999b; on re-examination ofthe previously reported material Hong et al., 2000; Hong et Korotyaev, 2002) and and study ofa new one. Six new species (Rutidosorna investigation ofadditional material on distribution and koreanurnKorotyaev et Hong, sp. n., Calosirus kwoni host plants of the Ceutorhynchinae in Korea have Korotyaev et Hong, sp. n., MJgulones kwoni Korotyaev provided new data on this fauna. Although still quite et Hong, sp. n., Augustinus koreanus Korotyaev et incomplete, these data stimulate some speculations on Hong, sp. n., Ceutorhynchoides koreanus Korotyaev the ecological and geographical characteristics of the et Hong, sp. n. and Mecysrnoderes koreanus Korotyaev Korean fauna. We hope that some preliminary con­ et Hong, sp. n.) are described from Korea, and siderations reported herein may facilitate further study 5 species [Pelenomus waltoni (Boheman, 1843), ofthis group in Korea and the entire Far East. Several Ceutorhynchus scapularis Gyllenhal, 1837,Hadroplontus new species are described from the neighbouring ancora (Roelofs, 1875), Thamiocolus kerzhneri countries apparently vicar to the Korean species or Korotyaev, 1980 and Glocianus fennicus (Faust, probably occurring in Korea but not found yet.
    [Show full text]
  • Coleoptera) (Excluding Anthribidae
    A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCULIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis TAMI ANNE CARLOW Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1997 Major Subject; Entomology A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCVLIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATYPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis by TAMI ANNE CARLOW Submitted to Texas AgcM University in partial fulltllment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Horace R. Burke (Chair of Committee) James B. Woolley ay, Frisbie (Member) (Head of Department) Gilbert L. Schroeter (Member) August 1997 Major Subject: Entomology A Faunal Survey and Zoogeographic Analysis of the Curculionoidea (Coleoptera) (Excluding Anthribidae, Platypodinae, and Scolytinae) of the Lower Rio Grande Valley of Texas. (August 1997) Tami Anne Carlow. B.S. , Cornell University Chair of Advisory Committee: Dr. Horace R. Burke An annotated list of the Curculionoidea (Coleoptem) (excluding Anthribidae, Platypodinae, and Scolytinae) is presented for the Lower Rio Grande Valley (LRGV) of Texas. The list includes species that occur in Cameron, Hidalgo, Starr, and Wigacy counties. Each of the 23S species in 97 genera is tteated according to its geographical range. Lower Rio Grande distribution, seasonal activity, plant associations, and biology. The taxonomic atTangement follows O' Brien &, Wibmer (I og2). A table of the species occuning in patxicular areas of the Lower Rio Grande Valley, such as the Boca Chica Beach area, the Sabal Palm Grove Sanctuary, Bentsen-Rio Grande State Park, and the Falcon Dam area is included.
    [Show full text]
  • New Genus of the Tribe Ceutorhynchini (Coleoptera: Curculionidae) from the Late Oligocene of Enspel, Southwestern Germany, With
    Foss. Rec., 23, 197–204, 2020 https://doi.org/10.5194/fr-23-197-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. New genus of the tribe Ceutorhynchini (Coleoptera: Curculionidae) from the late Oligocene of Enspel, southwestern Germany, with a remark on the role of weevils in the ancient food web Andrei A. Legalov1,2 and Markus J. Poschmann3 1Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Frunze Street, 11, Novosibirsk 630091, Russia 2Altai State University, Lenina 61, Barnaul 656049, Russia 3Generaldirektion Kulturelles Erbe RLP, Direktion Landesarchäologie/Erdgeschichte, Niederberger Höhe 1, 56077 Koblenz, Germany Correspondence: Andrei A. Legalov ([email protected]) Received: 10 September 2020 – Revised: 19 October 2020 – Accepted: 20 October 2020 – Published: 23 November 2020 Abstract. The new weevil genus Igneonasus gen. nov. (type and Rott) are situated in Germany (Legalov, 2015, 2020b). species: I. rudolphi sp. nov.) of the tribe Ceutorhynchini Nineteen species of Curculionidae are described from Sieb- (Curculionidae: Conoderinae: Ceutorhynchitae) is described los, Kleinkembs, and Rott (Legalov, 2020b). The weevils from the late Oligocene of Fossillagerstätte Enspel, Ger- from Enspel are often particularly well-preserved with chitin many. The new genus differs from the similar genus Steno- still present in their exoskeleton (Stankiewicz et al., 1997). carus Thomson, 1859 in the anterior margin of the prono- Some specimens from Enspel have been previously figured tum, which is not raised, a pronotum without tubercles on (Wedmann, 2000; Wedmann et al., 2010; Penney and Jepson, the sides, and a femur without teeth. This weevil is the largest 2014), but a detailed taxonomic approach was still lacking.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • ANNUAL REPORT 2020 Plant Protection & Conservation Programs
    Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County .
    [Show full text]
  • (Coleoptera) from European Eocene Ambers
    geosciences Review A Review of the Curculionoidea (Coleoptera) from European Eocene Ambers Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Frunze Street 11, 630091 Novosibirsk, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenina Prospekt 36, 634050 Tomsk, Russia Received: 16 October 2019; Accepted: 23 December 2019; Published: 30 December 2019 Abstract: All 142 known species of Curculionoidea in Eocene amber are documented, including one species of Nemonychidae, 16 species of Anthribidae, six species of Belidae, 10 species of Rhynchitidae, 13 species of Brentidae, 70 species of Curcuionidae, two species of Platypodidae, and 24 species of Scolytidae. Oise amber has eight species, Baltic amber has 118 species, and Rovno amber has 16 species. Nine new genera and 18 new species are described from Baltic amber. Four new synonyms are noted: Palaeometrioxena Legalov, 2012, syn. nov. is synonymous with Archimetrioxena Voss, 1953; Paleopissodes weigangae Ulke, 1947, syn. nov. is synonymous with Electrotribus theryi Hustache, 1942; Electrotribus erectosquamata Rheinheimer, 2007, syn. nov. is synonymous with Succinostyphlus mroczkowskii Kuska, 1996; Protonaupactus Zherikhin, 1971, syn. nov. is synonymous with Paonaupactus Voss, 1953. Keys for Eocene amber Curculionoidea are given. There are the first records of Aedemonini and Camarotini, and genera Limalophus and Cenocephalus in Baltic amber. Keywords: Coleoptera; Curculionoidea; fossil weevil; new taxa; keys; Palaeogene 1. Introduction The Curculionoidea are one of the largest and most diverse groups of beetles, including more than 62,000 species [1] comprising 11 families [2,3]. They have a complex morphological structure [2–7], ecological confinement, and diverse trophic links [1], which makes them a convenient group for characterizing modern and fossil biocenoses.
    [Show full text]
  • Chicago Joins New York in Battle with the Asian Longhorned Beetle Therese M
    Chicago Joins New York in Battle with the Asian Longhorned Beetle Therese M. Poland, Robert A. Haack, Toby R. Petrice USDA Forest Service, North Central Research Station, 1407 S. Harrison Rd., Rm. 220, E. Lansing, MI 48823 The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), was positively iden- would follow New York’s lead tified on 13 July 1998 attacking trees in an area of and that infested trees would northern Chicago known as Ravenswood. Previ- be cut, chipped, burned and ously, the only known North American occur- replaced by new trees at the rence of this Asian cerambycid beetle was in the city’s expense. Amityville area and the Brooklyn area of Long The city of Chicago ben- Island, New York, where it was discovered in efited greatly from New August 1996 (Haack et al. 1996, Cavey et al. York’s experience in imple- 1998). In New York, this woodborer has attacked menting its eradication program. With an excellent species of maple (Acer), horsechestnut (Aesculus well as 1 square mile each in Addison and in leadership team and organization, the city of hippocastanum), birch (Betula), poplar (Populus), Summit. Extensive surveys were conducted out Chicago obtained public cooperation and support willow (Salix), and elm (Ulmus) (Haack et al. to 1 ¼ miles past the outer boundary of known for the eradication program from the outset. The 1997). Because of the potential for longterm infested trees at all three locations. Survey crews media provided excellent, factual and accurate ecological and economic damage an aggressive were composed of APHIS inspectors, federal, information through extensive television, newspa- eradication program that involves locating, re- state and city employees as well as APHIS trained per, and radio coverage.
    [Show full text]
  • (Coleoptera: Curculionidae) for the Control of Salvinia
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Introduction and Establishment of Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) for the Control of Salvinia minima Baker (Salviniaceae), and Interspecies Interactions Possibly Limiting Successful Control in Louisiana Katherine A. Parys Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Parys, Katherine A., "Introduction and Establishment of Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) for the Control of Salvinia minima Baker (Salviniaceae), and Interspecies Interactions Possibly Limiting Successful Control in Louisiana" (2011). LSU Doctoral Dissertations. 1565. https://digitalcommons.lsu.edu/gradschool_dissertations/1565 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INTRODUCTION AND ESTABLISHMENT OF CYRTOBAGOUS SALVINIAE CALDER AND SANDS (COLEOPTERA: CURCULIONIDAE) FOR THE CONTROL OF SALVINIA MINIMA BAKER (SALVINIACEAE), AND INTERSPECIES INTERACTIONS POSSIBLY LIMITING SUCCESSFUL CONTROL IN LOUISIANA. A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology By Katherine A. Parys B.A., University of Rhode Island, 2002 M.S., Clarion University of Pennsylvania, 2004 December 2011 ACKNOWLEDGEMENTS In pursing this Ph.D. I owe many thanks to many people who have supported me throughout this endeavor.
    [Show full text]
  • Disruption of Coniferophagous Bark Beetle (Coleoptera: Curculionidae: Scolytinae) Mass Attack Using Angiosperm Nonhost Volatiles: from Concept to Operational Use
    The Canadian Entomologist (2021), 153,19–35 Published on behalf of the doi:10.4039/tce.2020.63 Entomological Society of Canada ARTICLE Disruption of coniferophagous bark beetle (Coleoptera: Curculionidae: Scolytinae) mass attack using angiosperm nonhost volatiles: from concept to operational use Dezene P.W. Huber1* , Christopher J. Fettig2 , and John H. Borden3 1Faculty of Environment, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada, 2Pacific Southwest Research Station, United States Department of Agriculture Forest Service, 1731 Research Park Drive, Davis, California, 95618, United States of America, and 3JHB Consulting, 6552 Carnegie Street, Burnaby, British Columbia, V5B 1Y3, Canada *Corresponding author. Email: [email protected] (Received 24 June 2020; accepted 22 September 2020; first published online 13 November 2020) Abstract Although the use of nonhost plants intercropped among host crops has been a standard agricultural prac- tice for reducing insect herbivory for millennia, the use of nonhost signals to deter forest pests is much more recent, having been developed over the past several decades. Early exploratory studies with synthetic nonhost volatile semiochemicals led to targeted electrophysiological and trapping experiments on a variety of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) across three continents. This work disclosed a suite of antennally and behaviourally active nonhost volatiles, which are detected in common across a range of coniferophagous bark beetles. It also established the fact that dispersing bark and ambro- sia beetles detect nonhost signals while in flight and avoid nonhost trees without necessarily landing on them. Later work showed that groups of synthetic nonhost volatiles, sometimes combined with insect- derived antiaggregants, are effective in protecting individual trees and forest stands.
    [Show full text]
  • NFBR Issue 38.Pdf
    NFBR Newsletter 38 NATIONAL FEDERATION FOR BIOLOGICAL RECORDING NEWSLETTER 38 March 2009 Find out more about the Natural History Museum collections on page 12 March 2009 NFBR Honorary Officers and Council Members following 2008 AGM Chair: Trevor James Paul Harding (co-opted) Biological Records Centre, CEH Monks Wood, 60 Boxworth Road, Elsworth, Cambridge Abbots Ripton, Huntingdon, Cambridgeshire, PE28 CB23 4JQ. 2LS. Tel: 01487 772410 Email: [email protected] Tel: 01954 267218 Email: [email protected] Vice-Chair: Adam Rowe Martin Hicks South East Wales Biodiversity Records Centre Hertfordshire Biological Records Centre 13 St Andrews Crescent, Cardiff, CF10 3DB. County Hall, Pegs Lane, Hertford Tel: 029 2064 1110 Hertfordshire, SG13 8DN. Tel: 01992 555220 Email: [email protected] Email: [email protected] Secretary: Darwyn Sumner Les Hill (co-opted)* 122 Link Road, Anstey, Leicestershire Butterfly Conservation LE7 7BX Manor Yard, East Lulworth. Wareham, Dorset BH20 Tel. 0116 212 5075 5QP. Tel. 01929 400209 Email [email protected] Email: [email protected] Membership Secretary & Treasurer: Damian McFerran (co-opted) John Newbould Centre for Environmental Data and Recording, Stonecroft, 3 Brookmead Close, Sutton Poyntz, Ulster Museum, Botanic Gardens, Belfast Weymouth, DT3 6RS.Tel: 01305 837384 BT9 5AB. Tel: 028 9038 3154 Email: [email protected] Email: [email protected] Newsletter Editor: Carolyn Steele Patrick Milne Home FRICS Dorset Environmental Records Centre, Library BRISC representative (co-opted) Headquarters, Colliton Park, Dorchester, Dorset Craigow, Milnathort, Kinross-shire KY13 0RP. Tel: DT1 1XJ. Tel: 01305 225081 01577 863 758 Email: [email protected] Acting Website Manager: Craig Slawson Simon Pickles Staffordshire Ecological Record North & East Yorkshire Ecological Data Centre, The Wolseley Centre, Wolseley Bridge, Stafford, 5 College Street, York YO1 7JF.
    [Show full text]