Review of Instrumentation and Data Sources National Oceanographic and Atmospheric Administration (NOAA) National Weather Service (NWS)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHAPTER CONTENTS Page CHAPTER 5
CHAPTER CONTENTS Page CHAPTER 5. SPECIAL PROFILING TECHNIQUES FOR THE BOUNDARY LAYER AND THE TROPOSPHERE .............................................................. 640 5.1 General ................................................................... 640 5.2 Surface-based remote-sensing techniques ..................................... 640 5.2.1 Acoustic sounders (sodars) ........................................... 640 5.2.2 Wind profiler radars ................................................. 641 5.2.3 Radio acoustic sounding systems ...................................... 643 5.2.4 Microwave radiometers .............................................. 644 5.2.5 Laser radars (lidars) .................................................. 645 5.2.6 Global Navigation Satellite System ..................................... 646 5.2.6.1 Description of the Global Navigation Satellite System ............. 647 5.2.6.2 Tropospheric Global Navigation Satellite System signal ........... 648 5.2.6.3 Integrated water vapour. 648 5.2.6.4 Measurement uncertainties. 649 5.3 In situ measurements ....................................................... 649 5.3.1 Balloon tracking ..................................................... 649 5.3.2 Boundary layer radiosondes .......................................... 649 5.3.3 Instrumented towers and masts ....................................... 650 5.3.4 Instrumented tethered balloons ....................................... 651 ANNEX. GROUND-BASED REMOTE-SENSING OF WIND BY HETERODYNE PULSED DOPPLER LIDAR ................................................................ -
An LES-Based Airborne Doppler Lidar Simulator and Its Application to Wind Profiling in Inhomogeneous flow Conditions
Atmos. Meas. Tech., 13, 1609–1631, 2020 https://doi.org/10.5194/amt-13-1609-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. An LES-based airborne Doppler lidar simulator and its application to wind profiling in inhomogeneous flow conditions Philipp Gasch1, Andreas Wieser1, Julie K. Lundquist2,3, and Norbert Kalthoff1 1Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany 2Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO 80303, USA 3National Renewable Energy Laboratory, Golden, CO 80401, USA Correspondence: Philipp Gasch ([email protected]) Received: 26 March 2019 – Discussion started: 5 June 2019 Revised: 19 February 2020 – Accepted: 19 February 2020 – Published: 2 April 2020 Abstract. Wind profiling by Doppler lidar is common prac- profiling at low wind speeds (< 5ms−1) can be biased, if tice and highly useful in a wide range of applications. Air- conducted in regions of inhomogeneous flow conditions. borne Doppler lidar can provide additional insights relative to ground-based systems by allowing for spatially distributed and targeted measurements. Providing a link between the- ory and measurement, a first large eddy simulation (LES)- 1 Introduction based airborne Doppler lidar simulator (ADLS) has been de- veloped. Simulated measurements are conducted based on Doppler lidar has experienced rapidly growing importance LES wind fields, considering the coordinate and geometric and usage in remote sensing of atmospheric winds over transformations applicable to real-world measurements. The the past decades (Weitkamp et al., 2005). Sectors with ADLS provides added value as the input truth used to create widespread usage include boundary layer meteorology, wind the measurements is known exactly, which is nearly impos- energy and airport management. -
Evaluation of Three-Beam and Four-Beam Profiler Wind Measurement Techniques Using a Five-Beam Wind Profiler and Collocated Meteorological Tower
AUGUST 2005 A DACHI ET AL. 1167 Evaluation of Three-Beam and Four-Beam Profiler Wind Measurement Techniques Using a Five-Beam Wind Profiler and Collocated Meteorological Tower AHORO ADACHI AND TAKAHISA KOBAYASHI Meteorological Research Institute, Tsukuba, Japan KENNETH S. GAGE AND DAVID A. CARTER NOAA Aeronomy Laboratory, Boulder, Colorado LESLIE M. HARTTEN Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA Aeronomy Laboratory, Boulder, Colorado WALLACE L. CLARK NOAA Aeronomy Laboratory, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado MASATO FUKUDA Japan Meteorological Agency, Chiyoda-ku, Tokyo, Japan (Manuscript received 9 August 2004, in final form 16 December 2004) ABSTRACT In this paper a five-beam wind profiler and a collocated meteorological tower are used to estimate the accuracy of four-beam and three-beam wind profiler techniques in measuring horizontal components of the wind. In the traditional three-beam technique, the horizontal components of wind are derived from two orthogonal oblique beams and the vertical beam. In the less used four-beam method, the horizontal winds are found from the radial velocities measured with two orthogonal sets of opposing coplanar beams. In this paper the observations derived from the two wind profiler techniques are compared with the tower mea- surements using data averaged over 30 min. Results show that, while the winds measured using both methods are in overall agreement with the tower measurements, some of the horizontal components of the three-beam-derived winds are clearly spurious when compared with the tower-measured winds or the winds derived from the four oblique beams. -
Triton Wind Profiler B211334EN-B
Tritonâ Wind Pro®ler Features • High height data — to 200 meters • No permitting required • Extremely low power consumption (7 watts) • Data access and monitoring via secure web portal • Ease of deployment — installed and collecting data within 2 hours • > 99.9 % operational uptime based on more than 800 commercial systems deployed worldwide since April 2008 Tritonâ Wind Pro®ler is a durable, robust, and independent sonic detection and ranging (SODAR) device used for pro®ling wind regimes at a given location. A Resource Assessment 120 meters, high quality filtered data Use Tritons for Every Stage of Your System For Today’s Wind captured by Triton normally exceeds Wind Project: Turbines 90 % (averaged over a 12-month period). • Greenfield prospecting Vaisala Triton Wind Profiler is Triton’s performance has been validated an advanced SODAR that provides wind by studies correlating its measurements • Micrositing and turbine suitability with anemometers at a number of sites. data well above the rotor tip-height of • Wind shear validation today’s large wind turbines. Triton • Hub height wind speed validation captures extensive data on anomalous Monitoring and Data Access wind events such as speed and direction Via Secure Web Portal • Ramp event forecasting shear and turbulence that directly affect Download and analyze your wind data at • Reducing spatial uncertainty wind turbines’ power output — and that any time, from any location via • Power curve testing and nacelle could affect a wind farm’s performance. the Internet. Access ten-minute averages anemometer correlation in real-time over a secure web server, Low Power Consumption and easily read and understand the data. -
Overview of Climate Prediction Center
Overview of Climate Prediction Center Dr. Wayne Higgins, Director Climate Prediction Center / NCEP January 26, 2010 Outline • NCEP within National Weather Service • CPC within NCEP • Ongoing CPC Activities • Climate Prediction Advances • Future Opportunities NCEP within NWS National Centers for Environmental Prediction (NCEP) Organization: Central component of NOAA National Weather Service Mission: NCEP delivers science-based environmental predictions to the nation and the global community. We collaborate with partners and customers to produce reliable, timely, and accurate analyses, guidance, forecasts and warnings for the protection of life and property and the enhancement of the national economy. Aviation Weather Center Space Weather Prediction Center NCEP Central Operations Climate Prediction Center Environmental Modeling Center Storm Prediction Center Hydromet Prediction Center Ocean Prediction Center Tropical Prediction Center Vision: The Nation’s trusted source, first alert and preferred partner for environmental prediction services What Does NCEP Do? “From the Sun to the Sea” • Solar Monitoring, Warnings and Forecasts • Climate Forecasts: Weekly to Seasonal to Interannual • El Nino – La Nina Forecast • Weather Forecasts to Day 7 • Hurricanes, Severe Weather, Snowstorms, Fire Weather • Aviation Forecasts and Warnings • Offshore and High Seas Forecasts and Warnings • Model Development, Implementation and Applications for Global and Regional Weather, Climate, Oceans and now Space Weather • International Partnerships in Ensemble Forecasts -
Observation of Hurricane Georges with a Vhf Wind Profiler and the San Juan Nexrad Radar Over Puerto Rico
2A.6 OBSERVATION OF HURRICANE GEORGES WITH A VHF WIND PROFILER AND THE SAN JUAN NEXRAD RADAR OVER PUERTO RICO Edwin F. Campos1, Monique Petitdidier2 and Carlton Ulbrich3 1 Instituto Meteorológico Nacional, San José, Costa Rica 2 CETP-UVSQ-CNRS, Vélizy, France 3 Clemson University, SC Clemson, USA 1. INTRODUCTION 2. OBSERVING SYSTEM Hurricane Georges originated from a tropical Unique observations with a 46.7 MHz ST radar wave, observed by satellite and upper-air data, where taken during the passage of Hurricane which crossed the west coast of Africa late on 13 Georges over Puerto Rico. The measurements were September. Radiosonde data from Dakar, Senegal carried out at VHF (46.7MHz) with a 2µs pulse, the showed an attendant 35 to 45 knot easterly jet IPP being 1ms. Due to the extreme winds, the between 550 and 650 millibars (mb). By mid- antenna was fixed at constant zenith and azimuth morning of the 21st an upper-level low over Cuba, angles (8.8 degrees from the vertical and about 240 denoted in water vapor imagery, was moving degrees in the azimuth). The first 50 gates are westward away from Georges thereby reducing the consecutive and their sampling starts at 40 µs; the possibility of Georges moving to the northwest, last ten gates correspond to the calibration; the away from Puerto Rico. Later in the afternoon, the sampling of this group starting at 900 µs. The in- shear appeared to diminish and the outflow aloft phase and in-quadrature data are recorded without improved but Georges never fully recovered due in any coherent integration. -
Aviation Weather Services (AC 00-45H)
U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Aviation Weather Services Date: 1/8/18 AC No: 00-45H Initiated by: AFS-400 Change: 1 1 PURPOSE OF THIS ADVISORY CIRCULAR (AC). This AC explains U.S. aviation weather products and services. It provides details when necessary for interpretation and to aid usage. This publication supplements its companion manual, AC 00-6, Aviation Weather, which documents weather theory and its application to aviation. The objective of this AC is to bring the pilot and operator up-to-date on new and evolving weather information and capabilities to help plan a safe and efficient flight, while also describing the traditional weather products that remain. 2 PRINCIPAL CHANGES. This change adds guidance and information on Graphical Forecast for Aviation (GFA), Localized Aviation Model Output Statistics (MOS) Program (LAMP), Terminal Convective Forecast (TCF), Polar Orbiting Environment Satellites (POES), Low-Level Wind Shear Alerting System (LLWAS), and Flight Path Tool graphics. It also updates guidance and information on Direct User Access Terminal Service (DUATS II), Telephone Information Briefing Service (TIBS), and Terminal Doppler Weather Radar (TDWR). This change removes information regarding Area Forecasts (FA) for the Continental United States (CONUS). 1/8/18 AC 00-45H CHG 1 PAGE CONTROL CHART Remove Pages Dated Insert Pages Dated Pages iii thru xii 11/14/16 Pages iii thru xiii 1/8/18 Pages 1-8 and 1-9 11/14/16 Page 1-8 1/8/18 Page 3-57 11/14/16 Pages 3-57 thru -
A 449 MHZ MODULAR WIND PROFILER RADAR SYSTEM by BRADLEY JAMES LINDSETH B.S., Washington University in St
A 449 MHZ MODULAR WIND PROFILER RADAR SYSTEM by BRADLEY JAMES LINDSETH B.S., Washington University in St. Louis, 2002 M.S., Washington University in St. Louis, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Electrical, Computer, and Energy Engineering 2012 This thesis entitled: A 449 MHz Modular Wind Profiler Radar System written by Bradley James Lindseth has been approved for the Department of Electrical, Computer, and Energy Engineering Prof. Zoya Popović Dr. William O.J. Brown Date The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. Lindseth, Bradley James (Ph.D., Electrical Engineering) A 449 MHz Modular Wind Profiler Radar System Thesis directed by Professor Zoya Popović and Dr. William O.J. Brown This thesis presents the design of a 449 MHz radar for wind profiling, with a focus on modularity, antenna sidelobe reduction, and solid-state transmitter design. It is one of the first wind profiler radars to use low-cost LDMOS power amplifiers combined with spaced antennas. The system is portable and designed for 2-3 month deployments. The transmitter power amplifier consists of multiple 1-kW peak power modules which feed 54 antenna elements arranged in a hexagonal array, scalable directly to 126 elements. The power amplifier is operated in pulsed mode with a 10% duty cycle at 63% drain efficiency. -
Relative Forecast Impact from Aircraft, Profiler, Rawinsonde, VAD, GPS-PW, METAR and Mesonet Observations for Hourly Assimilation in the RUC
16.2 Relative forecast impact from aircraft, profiler, rawinsonde, VAD, GPS-PW, METAR and mesonet observations for hourly assimilation in the RUC Stan Benjamin, Brian D. Jamison, William R. Moninger, Barry Schwartz, and Thomas W. Schlatter NOAA Earth System Research Laboratory, Boulder, CO 1. Introduction A series of experiments was conducted using the Rapid Update Cycle (RUC) model/assimilation system in which various data sources were denied to assess the relative importance of the different data types for short-range (3h-12h duration) wind, temperature, and relative humidity forecasts at different vertical levels. This assessment of the value of 7 different observation data types (aircraft (AMDAR and TAMDAR), profiler, rawinsonde, VAD (velocity azimuth display) winds, GPS precipitable water, METAR, and mesonet) on short-range numerical forecasts was carried out for a 10-day period from November- December 2006. 2. Background Observation system experiments (OSEs) have been found very useful to determine the impact of particular observation types on operational NWP systems (e.g., Graham et al. 2000, Bouttier 2001, Zapotocny et al. 2002). This new study is unique in considering the effects of most of the currently assimilated high-frequency observing systems in a 1-h assimilation cycle. The previous observation impact experiments reported in Benjamin et al. (2004a) were primarily for wind profiler and only for effects on wind forecasts. This new impact study is much broader than that the previous study, now for more observation types, and for three forecast fields: wind, temperature, and moisture. Here, a set of observational sensitivity experiments (Table 1) were carried out for a recent winter period using 2007 versions of the Rapid Update Cycle assimilation system and forecast model. -
Aviation Hazards (In 3 Parts) Talking Points, Notes and Extras (Extensive List of Links)
Aviation Hazards (in 3 Parts) Talking Points, Notes and Extras (Extensive List of Links) Part 1 – Aviation Hazards: Page 1 Title/Welcome/Intro Page. Artwork: “Airborne Trailblazer” by Ms. Lane E. Wallace Page 2 Overall Objectives of the Aviation Hazards development plan – all three parts. Page 3 The six(plus) categories that will be covered in the entire module. Page 4 The specific objectives of Part 1. Page 5 William Henry Dines…famous meteorologist of the late 19th through early 20th century. Developed the Pressure Tube (Dines) Anemometer. Did much of his best and most renown work on upper air meteorology – involving kites, (later) balloons and meteorographs (starting in 1901). His meteorographs where famous for being small, lightweight (2oz.) and economical. Member of the Royal Meteorological Society from 1881 until his death in 1928 (president from 1901 through 1902). The “difficulties” he refers to are with regard to both pilot and (forecast) meteorologist – and were: Wind, fog, and clouds. These and other “difficulties” will be addressed throughout the rest of this session. Page 6 (Plus 3) Aviation Weather Center (AWC) – A NOAA/NWS National Support Center that disseminates consistent, timely and accurate weather information for the world airspace system. Disseminates In-flight advisories (AIRMETs, SIGMETs) and provides a portal to much aviation data, such as Aviation Digital Data Service(ADDS). An AIRMET (AIRman's METeorological Information) advises of weather potentially hazardous to all aircraft but that does not meet SIGMET criteria. SIGMETS (Significant Meteorological Information) are issued and amended to warn pilots of weather conditions that are potentially hazardous to all size aircraft and all pilots, such as severe icing or severe turbulence. -
Wind Profilers Added to Vaisala Product Range Remote Sensing
42826Ymi_158VAISALANEWS 14.12.2001 17:53 Sivu 1 158/2002158/2002 Wind Profilers Added to Vaisala Product Range Vaisala expands into remote sensing Remote Sensing Division founded Vaisala MIDAS IV at New Athens International Airport Ready for Olympics 2004 Weather Observation with MAWS enables Study of Pollution in Mountains 42826Ymi_158VAISALANEWS 14.12.2001 17:53 Sivu 2 Contents President’s Column 3 Remote Sensing The Finnish Ultraviolet International Research Center Wind Profilers Added to Vaisala Product Range 4 (FUVIRC) was established at Vaisala Expands into Remote Sensing 6 Sodankylä in Lapland as a joint NOAA CRADA Management Review Board project of the Finnish Meets in Helsinki 7 Meteorological Institute and the Upper Air University of Oulu. Encouraging multidisciplinary UK Met Office Accepts DigiCORA III research, the new center will for Operational Use 8 serve ecosystem research, Broader Automation of Observations in Spain 10 human health studies, and Multidisciplinary Studies on the Effects atmospheric chemistry research. of Ozone Depletion at Sodankylä 13 Surface Weather MAWS Enables the Study of Pollution in Mountains 15 The Vaisala MAWS Automatic Twenty Automatic Weather Stations Donated to Schools 17 Weather Station enables weather observations in Automatic Flood Alert System mountainous areas where acid Protects the People of Son La in Vietnam 18 rain is leading to forest decline. The British Army’s Royal Artillery The National Institute for Acquires Mobile TACMET Systems 20 Environmental Studies of Japan Cooperation between China Meteorological studies the effects of acid rain Administration and Vaisala 21 and fog at Mt. Shirane in Nikko New Present Weather Detector PWD21 National Park, using the data Offers Versatile Measurements 22 collected with MAWS. -
Remote Atmospheric Profiling Systems for Tropospheric Monitoring
NOAA Technical Memorandum ERL WPL-175 NOAA LIBRARY SEATTLE REMOTE ATMOSPHERIC PROFILING SYSTEMS FOR TROPOSPHERIC MONITORING J. C. Kaimal (Editor) Wave Propagation Laboratory . Boulder, Colorado January 1990 NATIONAL OCEANIC AND Environmental Research 1oaa ATMOSPHERIC ADMINISTRATION I Laboratories NOAA Technical Memorandum ERL WPL-175 REMOTE ATMOSPHERIC PROFILING SYSTEMS FOR TROPOSPHERIC MONITORING J. C. Kaimal (Editor) Wave Propagation Laboratory Boulder, Colorado January 1990 PROPERTY'OF NOAA Library E/OC43 7600 Sand Point Way NE Seattle WA 98115-0070 UN IT ED STATES NATIONAL OCEANIC AND Environmental Research DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Laboratories Robert A. Mosbacher John A. Knauss Joseph 0. Fletcher Secretary Under Secretary for Oceans Director and Atmosphere/ Administrator NOTICE Mention o£ a commercial company or product does not constitute an endorsement by NOAA Enviro.nmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized. -:;:; 't1'n!iqcnq ''0\.3 y:.s·uJLJ.~./\O~;l ·.; .;r;k/1 n~~~~ ~ (;o~:r:: ,·: .- · ~\? ./':.. :-..·· :~lt!e~;': For ~ale by 1he N:tlional Technical lnformalion Service, 5285 Pon Royal Road Spnrigfield. \'A 22161 - ii - CONTENTS Acknowledgments . v 1. INTRODUCTION . 1 2. BACKGROUND . 2 2.1 AN/GMD Radiosondes . 2 2.2 Wind Profilers . 3 2.3 Radio Acoustic Sounding Systems (RASS) . 4 2.4 Microwave Radiometers . 4 2.5 High-Resolution Interferometric Sounders (HIS) . 4 2.6 Autocorrelation Radiometers (CORRAO) . 5 2. 7 NOAA Polar-Orbiting Satellites . 5 2.8 NOAA Geostationary Satellites . 5 2.9 Lidars . 5 2.10 Sodars.......................................................... 6 3. PROVEN TECHNOLOGIES . 7 3.1 Wind Profilers .