Aragonite-To-Calcite Transformation During Fresh-Water Diagenesis of Carbonates: Insights from Pore-Water Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Aragonite-To-Calcite Transformation During Fresh-Water Diagenesis of Carbonates: Insights from Pore-Water Chemistry Aragonite-to-calcite transformation during fresh-water diagenesis of carbonates: Insights from pore-water chemistry DAVID A. BUDD Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309 ABSTRACT 1968; Back and Hanshaw, 1970; Plummer and others, 1976), dolomitiza- tion (Gebelein and others, 1980; Patterson and Kinsman, 1982), and Dissolved strontium and calcium concentrations in fresh-water burial diagenesis (Prezbindowski, 1981). lenses (FWL) and associated mixing zones (MZ) on two small, Holo- Pore-water chemistry is used in this study to examine the diagenetic cene ooid-sand islands in the Schooner Cays, Bahamas, were moni- alteration of Holocene ooid sands in thin, transient fresh-water lenses on tored during a 1-yr period to quantitatively analyze the transformation two small 700-yr-old islands in the Schooner Cays, Bahamas (Fig. 1). The of aragonite to calcite. The observed characteristics of this mass dissolution of aragonite and precipitation of calcite on these islands have transfer are functions of climate and hydrology. been established petrographically (Budd, 1984). The objective of this study Aragonite-to-calcite transformation in all hydrologic zones is is to quantify the aragonite-to-calcite transformation, determine its distri- primarily associated with meteoric recharge. The transformation oc- bution in time and space, and examine the effects of climate and hydrology curs throughout the FWL and in the MZ to relative salinities of 19% on transformation rates and mechanisms. This is accomplished by using and 36% sea water on the two islands. Rates of transformation are aqueous calcium, strontium, and chlorine concentrations to determine the rapid in all zones and are greatest in the FWL. A limestone composed magnitude, rate, and efficiency of the aragonite-to-calcite transformation, of 100% calcite should form from an aragonite precursor within where the transformation occurs within the hydrologic system, when it 4,700 to 15,600 yr in the FWL, and within 8,700 to 60,000 yr in the occurs with respect to the hydrologic cycle, and what drives it. upper MZ. Efficiencies of transformation can vary between hydrologic zones HYDROGEOLOGIC FRAMEWORK due to PCO2 effects; yet, the efficiency of the entire system (FWL + MZ) is high (87%). This indicates that most CaC03 derived from Geology aragonite dissolution is reprecipitated as calcite somewhere in the fresh-water system or upper mixing zone. The two islands studied, Wood and Water Cays, are situated in the CO2 effects, fresh-water-sea-water mixing, and the differing sol- southeastern portion of the Schooner Cays oolitic tidal bar belt (Fig. 1). ubilities between aragonite and calcite all drive the mass transfer. The The islands are about 625 m and 200 m long, respectively, and both are latter is the most significant, accounting for up to nine times more about 150 m wide. Elevations average 0.5 to 1.5 m above sea level on the mass transfer than C02 effects and at least ten times more mass interior of each island, and each island is bordered by a 1.0- to 2.5-m-high transfer than fresh-water-sea-water mixing. Differing solubilities dune ridge. Seismic refraction profiles indicate an average of 10.7 m of should also cause mass transfer to occur throughout the hydrologic Holocene sediment below each island (Sagasta, 1984), and vibracores cycle, but it apparently becomes ineffective after the rainy season, reveal that at least the upper 5.8 m of this sediment is oolitic sand (Curtis, possibly due to the inhibition of calcite precipitation. 1985). Island surfaces are sparsely vegetated, and no true soil zone exists on either island. Mineralogic and petrographic analyses of these sediments INTRODUCTION reveal an average depositional mineralogy of greater than 95% aragonite (Budd, 1984). Calcite-cemented rocks contain 55%-95% aragonite and Hydrochemical studies of pore water in sediments and sedimentary 45%-5% low-Mg calcite. The simple mineralogy of these sediments allows rocks can be used to monitor and model on-going diagenetic processes. a precise quantification of the aragonite-to-calcite transformation that is Examining diagenetic processes in this manner yields insights into those not easily done in mineralogically more complex aquifers. processes that are not available from studying diagenetic products alone. This is because pore fluids record diagenetic reactions occurring during Hydrology their residence time in the system, whereas solid phases exhibit the cumula- tive effects of diagenesis. Pore-water studies have been successfully applied Ground water from Wood and Water Cays was monitored periodi- to carbonate diagenetic systems in all types of hydrochemical settings, cally for a year between July, 1981, and August, 1982, utilizing a series of including marine diagenesis of sediments (Berner, 1966; Baker and others, observation wells. The hydrology is summarized here; see Budd (1984) for 1982; Morse and others, 1985), meteoric diagenesis (Harris and Matthews, a more complete discussion. Additional material for this article (Table A) may be secured free of charge by requesting Supplementary Data 8819 from the GSA Documents Secretary. Geological Society of America Bulletin, v. 100, p. 1260-1270, 13 figs., 2 tables, August 1988. 1260 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/100/8/1260/3380428/i0016-7606-100-8-1260.pdf by guest on 29 September 2021 ARAGONITE-TO-CALCITE TRANSFORMATION 1261 Figure 1. Location of the study area and iow-altitude aerial photograph of Wood Cay. Long dimension of the island is 625 m; view is to the north. Pore-water samples were collected after first emptying the pipe of I OOLITIC TIDAL standing water. A downhole bailer device or suction applied to tygon ' BAR BELT tubing was used to collect the water. Each sample represents a mixture of ISLANDS water from around the base of the pipe. No impervious seals, such as cement, were placed around the pipes, therefore, some minor mixing of water down the length of the pipes may have occurred. Fresh-water lenses on Wood and Water Cays are transient due to The pH was measured in the field using a Sargent-Welch 401 porta- the seasonal distribution of rainfall (Fig. 2). The thickness, volume, and ble pH meter with a 0-14 scale and combination electrode. No corrections areal extent of the fresh-water lenses are greatest immediately after the were applied to pH values. Total alkalinity was measured in the field by rainy season which ends by November (Fig. 2). Maximum observed the electrometric acid tritration technique of Barnes (1964). Repetitive thickness, as defined by the 1.0 ppt isohaline (2.9% sea water), was 1.25 m analyses indicate a precision of ±2% for alkalinity. Temperature was meas- on Water Cay and 1.0 m on Wood Cay. The sizes of the fresh-water lenses ured downhole (±0.1 °C). Acidified and unacidified filtered samples were on both islands decrease drastically during the dry season that extends prepared for cation and chloride analyses, respectively, as well as a filtered from December through early summer. sample treated with zinc acetate for sulfate analysis. The fresh-water-sea-water mixing zones (2.9%-90% sea water) on Chloride concentrations were determined by titration with silver ni- each island range in thickness from 2 to 3 m and are always much thicker trate (Skougstad and others, 1979). Sulfate was analyzed indirectly by the than the overlying fresh-water lenses. The thickness of the mixing zones titration technique of Howarth (1978). Concentrations of major cations does not vary seasonally as greatly as does the thickness of the fresh-water (Ca++, Na+, Mg++, K+, and Sr++) were determined by atomic adsorption lenses. High permeabilities (4 to 180 darcies), large tidal ranges spectrometry. Solutions and standards for calcium determinations were (10-20 cm at water table in center of islands; adjacent marine averages spiked with 1% lanthium chloride solutions to eliminate interferences 90 cm) and low hydraulic heads (3-18 cm) on both islands result in (Skougstad and others, 1979). Strontium analyses were done by the meth- reduced fresh-water flow, greater tidal dispersion, and relatively thick od of addition (Volborth, 1969). Analytical precision, as determined mixing zones. against standards, was ±2% for CI", Na+, K+, and Mg++; ±3% for Ca++; ++ ±5% for Sr ; and ±10% for S04=. PORE-WATER CHEMISTRY The distribution and activities of all aqueous species, the partial pres- sure of CO2, ion-activity products, and saturation states (log IAP/K) of Methods carbonate minerals were calculated using the aqueous equilibrium model PHREEQE (Parkhurst and others, 1980). The thermodynamic equilib- Water wells were established on Wood and Water Cays by drilling rium constants of Plummer and Busenberg (1982) were used for calcite, 2-in. holes with a portable drill and then inserting open-ended PVC pipes. aragonite, and dolomite. All other thermodynamic data were from the A well site consisted of two to four such pipes set to different depths and MINTEQ data base (Felmy and others, 1984). Activity coefficients were open to the aquifer only at their base. A total of 42 pipes were emplaced: calculated using the Truesdell and Jones (1973) extension to the Debye- 29 on Wood Cay in 15 well sites, and 13 on Water Cay in 6 well sites. Huckel equation for high ionic strengths. Considering uncertainties in the After drilling, but prior to sampling, the ground water around each analyses and equilibrium calculations, uncertainties in saturation indices well was given at least 12 days to re-establish a hydrochemical equilib- and PCO2 values are about ±0.1 and ±0.05 log units, respectively. rium. Consistent conductivity readings were recorded within 5 to 6 days of Chloride, calcium, and strontium concentrations, calculated PCO2 drilling. Water samples were collected in July and November, 1981, and values, and the log of aragonite saturation indices are given in Table A.1 in April and August, 1982.
Recommended publications
  • Aragonite Formation in Confinements: a Step Toward Understanding Polymorph Control COMMENTARY Yifei Xua,B,C and Nico A
    COMMENTARY Aragonite formation in confinements: A step toward understanding polymorph control COMMENTARY Yifei Xua,b,c and Nico A. J. M. Sommerdijka,b,c,1 Calcium carbonate (CaCO3) is one of the most com- unclear but were generally attributed to the interac- mon minerals on Earth; it not only forms rocks like tion between the acidic functional groups of the limestone or marble but is also a main component of biomacromolecules and the mineral components. Ad- biominerals such as pearls, the nacre of seashells, and ditionally, it was reported that a macromolecular sea-urchin skeletons (1). Despite many years of re- hydrogel-like 3D network is formed before the miner- search, the polymorphism of CaCO3 is still far from alization of nacre (11), which may play a role in the being understood. CaCO3 has three anhydrous crys- crystallization process by confining the crystallization talline forms: calcite, aragonite, and vaterite, with a to defined small volumes. Nonetheless, confinement decreasing thermodynamic stability under aqueous has never been directly correlated with aragonite for- ambient conditions (calcite > aragonite > vaterite) mation in biominerals, although its capability of con- (2). While vaterite is rare in nature, calcite and arago- trolling crystal orientation and polymorphism has nite are both frequently found in rocks or biominerals been shown in many recent reports (12–15). (1). A well-known example is the aragonite structure of Now, Zeng et al. (5) explore for the first time the nacre (3), where the organization of the crystals leads impact of confinement on aragonite formation. By to extraordinary mechanical performance. However, precipitating CaCO3 within the cylindrical pores of in synthetic systems, crystallization experiments only track-etched membranes (Fig.
    [Show full text]
  • Characteristics and Crystal Structure of Calcareous Deposit Films Formed by Electrodeposition Process in Artificial and Natural Seawater
    coatings Article Characteristics and Crystal Structure of Calcareous Deposit Films Formed by Electrodeposition Process in Artificial and Natural Seawater Jun-Mu Park 1, Myeong-Hoon Lee 1 and Seung-Hyo Lee 2,* 1 Division of Marine Engineering, Korea Maritime and Ocean University, Busan 49112, Korea; [email protected] (J.-M.P.); [email protected] (M.-H.L.) 2 Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University, Busan 49112, Korea * Correspondence: [email protected] Abstract: In this study, we tried to form the calcareous deposit films by the electrodeposition process. The uniform and compact calcareous deposit films were formed by electrodeposition process and their crystal structure and characteristics were analyzed and evaluated using various surface analytical techniques. The mechanism of formation for the calcareous deposit films could be confirmed and the role of magnesium was verified by experiments in artificial and natural seawater solutions. The highest amount of the calcareous deposit film was obtained at 5 A/m2 while current densities between 1–3 A/m2 facilitated the formation of the most uniform and dense layers. In addition, the adhesion characteristics were found to be the best at 3 A/m2. The excellent characteristics of the calcareous deposit films were obtained when the dense film of brucite-Mg(OH)2 and metastable aragonite-CaCO3 was formed in the appropriate ratio. Citation: Park, J.-M.; Lee, M.-H.; Lee, Keywords: electrodeposition process; calcareous deposit films; aragonite crystal structure; seawater S.-H. Characteristics and Crystal Structure of Calcareous Deposit Films Formed by Electrodeposition Process in Artificial and Natural Seawater.
    [Show full text]
  • The Crystallization Process of Vaterite Microdisc Mesocrystals Via Proto-Vaterite Amorphous Calcium Carbonate Characterized by Cryo-X-Ray Absorption Spectroscopy
    crystals Communication The Crystallization Process of Vaterite Microdisc Mesocrystals via Proto-Vaterite Amorphous Calcium Carbonate Characterized by Cryo-X-ray Absorption Spectroscopy Li Qiao 1, Ivo Zizak 2, Paul Zaslansky 3 and Yurong Ma 1,* 1 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; [email protected] 2 Department Structure and Dynamics of Energy Materials, Helmholtz-Zentrum-Berlin, 14109 Berlin, Germany; [email protected] 3 Department for Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; [email protected] * Correspondence: [email protected] Received: 27 July 2020; Accepted: 23 August 2020; Published: 26 August 2020 Abstract: Investigation on the formation mechanism of crystals via amorphous precursors has attracted a lot of interests in the last years. The formation mechanism of thermodynamically meta-stable vaterite in pure alcohols in the absence of any additive is less known. Herein, the crystallization process of vaterite microdisc mesocrystals via proto-vaterite amorphous calcium carbonate (ACC) in isopropanol was tracked by using Ca K-edge X-ray absorption spectroscopy (XAS) characterization under cryo-condition. Ca K-edge X-ray absorption near edge structure (XANES) spectra show that the absorption edges of the Ca ions of the vaterite samples with different crystallization times shift to lower photoelectron energy while increasing the crystallization times from 0.5 to 20 d, indicating the increase of crystallinity degree of calcium carbonate. Ca K-edge extended X-ray absorption fine structure (EXAFS) spectra exhibit that the coordination number of the nearest neighbor atom O around Ca increases slowly with the increase of crystallization time and tends to be stable as 4.3 ( 1.4).
    [Show full text]
  • New Aragonite 87Sr/86Sr Records of Mesozoic Ammonoids and Approach to the Problem of N, O, C and Sr Isotope Cycles in the Evolution of the Earth” by Yuri D
    VOLUMINA JURASSICA, 2018, XVI (1): – Comments on “New aragonite 87Sr/86Sr records of Mesozoic ammonoids and approach to the problem of N, O, C and Sr isotope cycles in the evolution of the Earth” by Yuri D. Zakharov, Sergei I. Dril, Yasunari Shigeta, Alexander M. Popov, Eugenij Y. Baraboshkin, Irina A. Michailova and Peter P. Safronov [Sedimentary Geology, 364 (2018): 1–13] Mikhail A. ROGOV1 Keywords: ammonoids, Sr isotopes, erroneous determination. Abstract. Comments are provided on a published paper on 87Sr/86Sr records of Mesozoic ammonoids [Yuri D. Zakharov, Sergei I. Dril, Yasunari Shigeta, Alexander M. Popov, Eugenij Y. Baraboshkin, Irina A. Michailova, and Peter P. Safronov, New aragonite 87Sr/86Sr re- cords of Mesozoic ammonoids and approach to the problem of N, O, C and Sr isotope cycles in the evolution of the Earth, Sedimentary Geology, 364 (2018): 1–13], where insufficiently or erroneously dated materials have been used. The names of the Jurassic ammonites used in the discussed article are erroneous, and these names are sometimes allocated wrong stratigraphic and geographic information. For example, “Procerites funatus” from the Callovian of the Ryazan region following its features and mode of preservation should be re-as- signed to the Volgian Kachpurites cheremkhensis from the Yaroslavl area. These problems partly result from the study of specimens deliv- ered from fossil dealers. Therefore, the interpretation of the differences in Lower Albian ammonite Sr isotope values as function of their habitat depths given by these authors should rather be explained by their different geologic age. Due to the significant oscillation of Sr isotope values in marine carbonates through time and the uniformity of the stron- tium isotope compositions of different basins, Sr-isotope chemostratigraphy provides a powerful tool for correlation.
    [Show full text]
  • Refinement of the Crystal Structure of the Aragonite Phase of Caco3
    JOURNAL OF RESEAR CH of the N a tional Bureau of Standards - A. Physics and Chemistry Vol. 75A No. 1, January - February 197 1 Refinement of the Crystal Structure of the Aragonite Phase of CaC0 3 B. Dickens and J. S. Bowen* Institute for Materials Research National Bureau of Standards Washington, D.C . 20234 (July 31, 1970) Arago nit e (C aCO ,,) c ry stalli zes in th e unit cell a = 4.9598(5) /\ . 6 = 7.9641(9) A, and c= 5.7379(6) A at 25 °C with four form ula we ights in space-group Pm cn. The structure has been re fin ed to N".= 0.024. N= 0.040 using 765 x- ray reAections from a sin gJe crystal. The Ca ion is coordinat ed to nin e oxygens with Ca .. ° distances III the range 2.414(2) A to 2.653(1) A. The two un ique C- O di s ta nces in th e CO" group are 1.288(2) ;\ (o n the mirror plan e) and 1. 283(1) A. T he two un ique O- C-o a ngles are 119.6(2 )" (acro ss the mirror plane) and 120.1 3(8)". The dis tances a nd angles in th e CO" "roup are not signifi cantl y d iffe rent at the 95 pe rcent confidence level. " Key word s; Calcium carbonates; carbonates; crystal s tructure; s in gle c rys t.al x- ray diffracti on. 1. Introduction density, 2.944 g ' cm- 3 ; Crystal: material available was heavily twinned; a s ma lJ wedge was th e largest crystal Aragonite (CaCO:d is found in nature as a mineral fragment found whi ch showed no evidence of twinning and is an important biomineral because of its presence under optical and x·ray examination; this wedge was in coral, clam shells, gall stones, and otoliths.
    [Show full text]
  • Tunicates with Composite Calcareous Skeletons
    Journal of Paleontology, 94(4), 2020, p. 748–757 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2019.109 A rare case of an evolutionary late and ephemeral biomineralization: tunicates with composite calcareous skeletons Jobst Wendt Fachbereich Geowissenschaften der Universität Tübingen, Germany <[email protected]> Abstract.—In contrast to almost all other invertebrate phyla that constructed biomineralized skeletons during the “Cambrian explosion” and maintained them during the entire fossil record, ascidian tunicates evolved this protective and stabilizing advantage only during the Permian, although soft-bodied representatives of this subphylum made their first appearance already in the early Cambrian. It remains enigmatic why these compound calcareous skeletons persisted only until the Late Triassic, subsequently followed by less-rigid internal skeletons from the Lower Jurassic onwards, which consist of scattered isolated spicules only. In addition to recently described aragonitic ascidian exoskeletons from the Permian and Triassic, new discoveries of similar, but colonial ascidian compound endoskeletons in the lower Carnian exhibit a short-living branch of this group, which moreover contain the first indubitable calcareous spi- cules. The latter are embedded in the solid endoskeleton, which is composed of polygonal aragonitic plates with smooth outer and zigzag lined inner boundaries. They consist of irregular, parallel (orthogonal), or fan-shaped (clinogonal) arrangements of acicular aragonite crystals.
    [Show full text]
  • Rapid Progression of Ocean Acidification in the California
    Reports With atmospheric CO2 likely to in- crease further, it is important to assess Rapid Progression of Ocean how the California CS will evolve in the future and what levels of ocean Acidification in the California Current acidification it might experience in the coming decades. This is especially relevant since the California CS consti- System tutes one of the most productive eco- systems in the world with a high Nicolas Gruber,1* Claudine Hauri,1 Zouhair Lachkar,1 Damian Loher,1 Thomas L. Frölicher,2 3 biodiversity (14, 15) and important Gian‐Kasper Plattner commercial fisheries (16), yet may be 1Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, particularly prone to reaching wide- Switzerland. spread undersaturation soon due to its 2AOS Program, Princeton University, Princeton, NJ, USA. low initial pH and Ωarag. Global ocean 3 models have failed so far to recognize Climate and Environmental Physics, University of Bern, Bern, Switzerland. ocean acidification in Eastern Bounda- *To whom correspondence should be addressed. E-mail: [email protected] ry Upwelling Systems (17), since their coarse resolution is insufficient to re- Nearshore waters of the California Current System (California CS) already today solve the local dynamics responsible have a low carbonate saturation state, making them particularly susceptible to for bringing the waters with low pH ocean acidification. Here, we use eddy-resolving model simulations to study the and Ωarag to the surface (9, 18, 19). We potential development of ocean acidification in this system up to 2050 under the overcome this limitation here by using SRES A2 and B1 scenarios.
    [Show full text]
  • Mallorca, Spain) Bogdan P
    International Journal of Speleology 43 (2) 143-157 Tampa, FL (USA) May 2014 Available online at scholarcommons.usf.edu/ijs/ & www.ijs.speleo.it International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Linking mineral deposits to speleogenetic processes in Cova des Pas de Vallgornera (Mallorca, Spain) Bogdan P. Onac1,*, Joan J. Fornós2, Antoni Merino3, Joaquín Ginés4, and Jacqueline Diehl1 1School of Geosciences, University of South Florida, 4202 E. Fowler Ave., NES 107, Tampa, FL 33620 USA 2Departament de Ciències de la Terra. Universitat de les Illes Balears, Ctra. de Valldemossa km 7.5. 07122 Palma de Mallorca, Illes Balears, Spain 3Grup Espeleològic de Llubí, FBE, Illes Balears, Spain 4Federació Balear d’Espeleologia. C/ Uruguai s/n, Palma Arena. 07010 Palma de Mallorca, Illes Balears, Spain Abstract: Cova des Pas de Vallgornera (CPV) is the premier cave of the Balearic Archipelago. Over 74 km of passages develop within two carbonate lithofacies (reef front and back reef), which ultimately control the patterns of the cave and to some degree its mineral infilling. The diversity of speleothem-forming minerals is four times greater around or within hypogene- related features (vents, rims, cupolas), compared to any other vadose passages in the cave. The mineralogy of speleothems (crusts, nodules, crystals, earthy masses) associated with hypogene features in the seaward upper maze of Sector F is characterized by the presence of aragonite, ankerite, huntite, clay minerals, and quartz. In the Tragus and Nord sectors, however, the dominant mineral is dolomite, along with aragonite, celestine, huntite, clay minerals, and quartz. Calcite is by far the most ubiquitous mineral throughout the cave.
    [Show full text]
  • Retention of Aqueous Ba2+ Ions by Calcite and Aragonite
    Geochemical Journal, Vol. 41, pp. 379 to 389, 2007 Retention of aqueous Ba2+ ions by calcite and aragonite over a wide range of concentrations: Characterization of the uptake capacity, and kinetics of sorption and precipitate formation Ö. TUNUSOGLU˘ , T. SHAHWAN* and A. E. EROGLU˘ Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir, Turkey (Received November 28, 2006; Accepted July 24, 2007) The uptake of aqueous Ba2+ ions by abiogenic calcite and aragonite was studied over a wide range of concentration; 1.0 × 101, 5.0 × 101, 1.0 × 102, 5.0 × 102, 1.0 × 103, 5.0 × 103, and 1.0 × 104 mg/L. The uptake process was characterized using ICP-AES, XRPD, SEM/EDS, and FTIR techniques. Up to the initial concentration of 5.0 × 102 mg/L, the uptake of Ba2+ ions was fast and obeyed Lagergren’s kinetic model. The equilibrium data were adequately described using Freundlich isotherm model. The overgrowth of BaCO3 (witherite) took place at higher concentrations, in a kinetically slow process 2+ and enhanced the uptake of Ba ions. Quantitative XRPD was used to evaluate the fractions of precipitated BaCO3 on calcite and aragonite minerals and monitor their variation with time. At all the studied concentrations, aragonite showed higher removal capacity of Ba2+ and faster uptake kinetics than did calcite. The precipitated crystals appeared to predomi- nantly possess olivary-like morphology with an average particle size of 1–2 µm. EDS was used to reveal the elemental quantities of Ba and Ca after BaCO3 formation on calcite and aragonite surfaces. FTIR spectroscopy was employed to analyze the vibrational modes in carbonate mixtures upon incorporation of Ba2+ by sorption and precipitation mecha- nisms.
    [Show full text]
  • The Raman Spectra of Aragonite, Strontianite and Witherite
    THE RAMAN SPECTRA OF ARAGONITE, STRONTIANITE AND WITHERITE BY D. KRiSHNAMURTI, F.A.Sc. (Memoir No. 121 from the Raman Research Institute, Bangalore-6) Received June 6, 1960 I. INTRODUCT1ON IN view of their isomorphism a comparative study of the Raman spectra of aragonite, strontianite and witherite is of interest. The vibration spectrum of the aragonite structure was discussed theoretically by Bhagavantam and Venkatarayudu (1939) and also by Couture (1947). Amongst the earlier experimental investigations on this subject the most complete are those of Couture (1947) and of R. S. Krishnan (1950) on aragonite, of T. S. Krishnan (1956) on strontianite and of Narayanan and Lakshmanan (1958) on witherite. Nevertheless, it was thought desirable to reinvestigate the subject and the present study has in fact revealed some new features of interest and shown the necessity fora reinterpretation of some of the observed facts. The present study has also enabled the various features observed in the three cases to be correlated with the differences in detail of the crystal structures. We shall in the following first briefly summafizc the results of the theoreticat analysis and discuss thereafter the experimental facts. 2. THE DYNAMICS OF THE ARAGONITE LATTICE The three substances crystallize in the holohedral class of the ortho- rhombic system and belong to the space-group D~~ and contain four molecules per unit cell. The following salient features of the structure are of interest and help in our discussion of the observed facts. The structure of these crystals can be imagined asa distorted version of a hexagonal close-packed lattice of cations by compression along the y and z axes, the carbonate group lying at the centre of the hexagonal cell and between six cations (Bragg, 1924).
    [Show full text]
  • ARAGONITE Is Your Friend Magnetic Water
    ARAGONITE is your friend After 7 years with No Treatment After 7 years with HALO ION Magnetic Water Conditioning - Explained When water is subjected to temperature change (delta T), pressure change (delta P), friction and turbulence, dissolved minerals, primarily calcium carbonate (CaCO3) and magnesium carbonate (MgCO3), will precipitate out of solution and deposit on heat transfer surfaces of plumbing systems and equipment in the form of a rock-like buildup, commonly called lime/scale. At the molecular level, the negatively and positively charged ions of these minerals are attracted to and bond tightly together with one another, thus forming the lime/scale deposit known as calcite. These mineral deposits act as a great insulator and require more energy to heat or cool water in many different types of residential, commercial, institutional, and industrial applications. As water passes through the HALO IONʼs treatment chamber, it is subjected to a series of reversing-polarity, permanent magnetic fields, which interrupts the natural scale forming characteristics of CaCO and MgCO by temporarily altering their ionic charge identity. 3 3 Instead of being attracted to one another, the molecules are caused to act like ions of similar charges and repel one another as they precipitate out of solution. This leaves the molecules in a physical state of suspension known as aragonite (an amorphous mud-like or powdery form), which will flow through a plumbing system or drop to a low area within equip- ment so that it can easily be blown down or bled off. Aragonite can also be removed by other physical means such as centrifugal separation and filtration equipment.
    [Show full text]
  • Understanding Ocean Acidification
    Understanding Ocean Acidification Summary Prior Knowledge Five lessons at increasing This curriculum module is designed for students who are taking high levels of sophistication school chemistry. Students should already have some experience with the incorporate real data from following: NOAA to help students Understanding and reading the pH scale. understand the phenomenon Knowledge of the carbon cycle. of Ocean Acidification. Using scientific notation to express large and small values. Grade Level: 10 – 12 Reading chemical equations. Aligned to National Standards in Mathematics and Science, Table of Contents Ocean Literacy Essential Principles, Climate Literacy The Basics of Ocean Acidification........................................................... 2 Essential Principles and Lesson Overview......................................................................................3 selected state standards. See page 6. Using the Technology...............................................................................5 This curriculum module was National Education Standards.................................................................. 6 developed for the NOAA Ocean Data Education (NODE) Project by Level 1: Measuring Ocean pH..................................................................9 Caroline Joyce, Todd Viola and Andrew Amster in collaboration with the NOAA Coral Reef Conservation Level 2: The Ocean-Carbon Connection................................................ 19 Program (http://coralreef.noaa.gov) and the National Oceanographic
    [Show full text]