Acid Sensing Ion Channel 1A Is a Key Mediator of Cardiac Ischemia-Reperfusion Injury Meredith A

Total Page:16

File Type:pdf, Size:1020Kb

Acid Sensing Ion Channel 1A Is a Key Mediator of Cardiac Ischemia-Reperfusion Injury Meredith A bioRxiv preprint doi: https://doi.org/10.1101/869826; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Acid sensing ion channel 1a is a key mediator of cardiac ischemia-reperfusion injury Meredith A. Redd1,9,15, Sarah E. Scheuer2,3,4,15, Natalie J. Saez1, Ling Gao2, Mark Hicks2,4,5, Jeanette E. Villanueva2,4, Melissa E. Reichelt6, Jason N. Peart7, Louise E. See Hoe8,9, Han S. Chiu1, Xiaoli Chen1, Yuliangzi Sun1, Jacky Y. Suen8,9, Robert J Hatch10, Ben Rollo10, Mubarak A,H. Alzubaidi1, Snezana Maljevic10, Greg A. Quaife-Ryan11, Walter G. Thomas6, James E. Hudson11, Enzo R. Porrello12,13, Gabriel Cuellar-Partida14, John F. Fraser8,9, Steven Petrou10, Glenn F. King1,16, Peter S. Macdonald2,3,4,16 & Nathan J. Palpant1,16 1Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia 2Victor Chang Cardiac Research Institute, Sydney, Australia 3Cardiopulmonary Transplant Unit, St. Vincent’s Hospital, Sydney, Australia 4Faculty of Medicine, University of New South Wales, Sydney, Australia 5Department of Pharmacology, St. Vincent’s Hospital, Sydney, Australia 6School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia 7School of Medical Science, Griffith University, Southport, Australia 8Faculty of Medicine, The University of Queensland, Brisbane, Australia 9Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, Australia 10Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia 11QIMR Berghofer Medical Research Institute, Brisbane, Australia 12Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia 13Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, Australia 14The University of Queensland Diamantina Institute, Faculty of Medicine and Translational Research Institute, Woolloongabba, Australia 15These authors contributed equally 16Corresponding authors Addresses for correspondence: Dr. Nathan J. Palpant Institute for Molecular Bioscience 306 Carmody Road, Building 80 (Level 4 North) St. Lucia, Queensland, Australia, 4072 T: +61 7 3346 2054; E: [email protected] Professor Glenn F. King Institute for Molecular Bioscience 306 Carmody Road, Building 80 (Level 2 North) St. Lucia, Queensland, Australia, 4072 T: +61 7 3346 2025; E: [email protected] Professor Peter Macdonald Cardiopulmonary Transplant Unit, St. Vincent’s Hospital Darlinghurst, New South Wales, Australia T: +61 2 8382 2641; E: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/869826; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The proton-gated acid-sensing ion channel 1a (ASIC1a) is implicated in the injury response to cerebral ischemia but little is known about its role in cardiac ischemia. We provide genetic evidence that ASIC1a is involved in myocardial ischemia-reperfusion injury (IRI) and show that pharmacological inhibition of ASIC1a yields robust cardioprotection in rodent and human models of cardiac ischemia, resulting in improved post-IRI cardiac viability and function. Consistent with a key role for ASIC1a in cardiac ischemia, we show that polymorphisms in the ASIC1 genetic locus are strongly associated with myocardial infarction. Collectively, our data provide compelling evidence that ASIC1a is a key target for cardioprotective drugs to reduce the burden of disease associated with myocardial ischemia. 2 bioRxiv preprint doi: https://doi.org/10.1101/869826; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Introduction Conditions caused by obstruction of blood flow to the heart, such as myocardial infarction (MI), are the most common emergency manifestation of cardiovascular disease1. Although acute reperfusion therapies have improved patient outcomes, mortality remains high2 and MI is one of the largest attributable risks for heart failure (HF)3. Globally, 1 in 5 people develop HF, with annual healthcare costs of $108B4,5. Heart transplantation remains the most effective treatment option for HF6,7, but 75% of potential donor hearts are discarded, many due to sensitivity of the donor heart to ischemic injury8. Myocardial sensitivity to ischemia-reperfusion injury (IRI) therefore remains a primary point of vulnerability underlying cardiovascular disease, which is the leading cause of morbidity and mortality worldwide9. Despite decades of preclinical therapeutic development, there are currently no drugs that block the acute injury response to cardiac ischemia10. Myocardial IRI is a complex pathophysiological process that underlies the cardiac injury sustained during cardiac surgery, heart transplant, MI, and cardiac arrest. During myocardial ischemia, reduced oxygen availability causes a shift from fatty acid metabolism to anaerobic glycolysis11,12. The resulting lactic acidosis causes the extracellular pH to fall to as low as 6.0– 6.513,14. In patients suffering from acute MI, the severity of acidosis strongly correlates with patient mortality, with pH < 7.35 associated with > 60% mortality15. Ongoing acidosis results in the activation of several transmembrane ion channels and receptors, including the sodium-hydrogen exchanger (NHE), glutamate-gated NMDA receptors, and TRP family of ion channels, each of which are thought to contribute to calcium overload, metabolic dysfunction, and eventually cell death16-18. In line with this, the Expedition Trial showed significant protection against peri-operative MI with the NHE inhibitor, cariporide, in patients undergoing high-risk coronary artery bypass surgery19. While this trial failed due to cerebrovascular complications, it demonstrated that pharmacological conditioning has the capacity to reduce the injury response to myocardial IRI. Acid sensing ion channels (ASICs) are voltage-independent proton-gated cation channels of the degenerin/epithelial sodium channel superfamily20. There are six ASIC isoforms derived from four genes (ACCN1–4), which assemble into homotrimeric or heterotrimeric channels. The pH sensitivity and kinetics of ASICs are determined by their subunit composition21,22. ASICs are involved in extracellular acidification-induced calcium overload in neurons and cardiomyocytes23-25. ASIC1a, a splice variant of the ACCN1 gene, is the most pH-sensitive ASIC channel. Activation begins at pH ≤ 7, with half-maximal activation at pH 6.626,27, and ASIC1a currents are potentiated by numerous metabolic events that 3 bioRxiv preprint doi: https://doi.org/10.1101/869826; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. occur during ischemia including membrane stretch and increased levels of extracellular lactate, pyruvate, and arachidonic acid28,29. ASIC1a plays a critical role in mediating neuronal death after cerebral ischemia, and inhibition of ASIC1a through genetic ablation or pharmacological blockade is neuroprotective in rodent models of ischemic stroke30-32. In this study, we used genetic and pharmacological approaches to demonstrate, for the first time, that ASIC1a is a critical mediator of the injury response to myocardial IRI. We show that venom-derived inhibitors of ASIC1a provide robust cardioprotection across multiple species and model systems from the cellular to whole-organ level, including models of IRI and donor heart preservation. Taken together, our data provide compelling evidence that ASIC1a is an important target for cardioprotective drugs, with potential application in the treatment of MI, cardiac arrest, and the preservation of donor hearts. Results Genetic ablation of ASIC1a improves functional recovery following cardiac IRI. We assessed ASIC isoform expression in the adult mouse heart from transcriptomic data of sorted cardiac cell populations after sham and myocardial infarction (MI)33. In sham hearts, ASIC1 expression was highest in cardiomyocytes, while endothelial cells and fibroblasts expressed both ASIC1 and ASIC3. In all three cell types, ASIC4 and ASIC2 had low and undetectable expression, respectively (Fig. 1a). ASIC1 was not differentially expressed between sham and post-MI conditions in cardiomyocytes or endothelial cells (Supplementary Fig. 1a). ASIC1 encodes two isoforms from the same genetic locus, ASIC1a and ASIC1b, that are genetically conserved among bilateria. As opposed to ASIC1b, which is primarily involved in nociception34, we focused on ASIC1a due to its known role in mediating injury responses resulting from ischemia in the brain22. We subsequently tested whether ASIC1a governs the response to cardiac ischemic injury. To determine whether ASIC1a plays a functional role during cardiac ischemia,
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Targeting Ion Channels in Cancer: a Novel Frontier in Antineoplastic Therapy A
    66 Current Medicinal Chemistry, 2009, 16, 66-93 Targeting Ion Channels in Cancer: A Novel Frontier in Antineoplastic Therapy A. Arcangeli*,1, O. Crociani1, E. Lastraioli1, A. Masi1, S. Pillozzi1 and A. Becchetti2 1Department of Experimental Pathology and Oncology, University of Firenze, Italy; 2Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy Abstract: Targeted therapy is considerably changing the treatment and prognosis of cancer. Progressive understanding of the molecular mechanisms that regulate the establishment and progression of different tumors is leading to ever more spe- cific and efficacious pharmacological approaches. In this picture, ion channels represent an unexpected, but very promising, player. The expression and activity of different channel types mark and regulate specific stages of cancer progression. Their contribution to the neoplastic phenotype ranges from control of cell proliferation and apoptosis, to regulation of invasiveness and metastatic spread. As is being in- creasingly recognized, some of these roles can be attributed to signaling mechanisms independent of ion flow. Evidence is particularly extensive for K+ channels. Their expression is altered in many primary human cancers, especially in early stages, and they frequently exert pleiotropic effects on the neoplastic cell physiology. For instance, by regulating membrane potential they can control Ca2+ fluxes and thus the cell cycle machinery. Their effects on mitosis can also de- pend on regulation of cell volume, usually in cooperation with chloride channels. However, ion channels are also impli- cated in late neoplastic stages, by stimulating angiogenesis, mediating the cell-matrix interaction and regulating cell motil- ity. Not surprisingly, the mechanisms of these effects are manifold.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Citric Acid in Drug Formulations Causes Pain by Potentiating Acid-Sensing Ion Channel 1
    Research Articles: Cellular/Molecular Citric acid in drug formulations causes pain by potentiating acid-sensing ion channel 1 https://doi.org/10.1523/JNEUROSCI.2087-20.2021 Cite as: J. Neurosci 2021; 10.1523/JNEUROSCI.2087-20.2021 Received: 8 August 2020 Revised: 8 December 2020 Accepted: 10 April 2021 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 Yang and Lai This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Citric acid in drug formulations causes pain by potentiating 2 acid-sensing ion channel 1 3 4 Abbreviated title: ASIC1 mediates pain caused by citric acid 5 6 Ya Lan Yang1, Ted Weita Lai1,2,3* 7 8 1Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. 9 2Drug Development Center, China Medical University, Taichung, Taiwan. 10 3Translational Medicine Research Center, China Medical University Hospital, Taichung, 11 Taiwan. 12 13 *Correspondence should be addressed to Ted Weita Lai at [email protected] 14 15 Number of pages: 24 16 17 Number of figures: 9 18 19 Number of words: Abstract, 250; Introduction, 565; Discussion, 1500.
    [Show full text]
  • Chapter 25 Mechanisms of Action of Antiepileptic Drugs
    Chapter 25 Mechanisms of action of antiepileptic drugs GRAEME J. SILLS Department of Molecular and Clinical Pharmacology, University of Liverpool _________________________________________________________________________ Introduction The serendipitous discovery of the anticonvulsant properties of phenobarbital in 1912 marked the foundation of the modern pharmacotherapy of epilepsy. The subsequent 70 years saw the introduction of phenytoin, ethosuximide, carbamazepine, sodium valproate and a range of benzodiazepines. Collectively, these compounds have come to be regarded as the ‘established’ antiepileptic drugs (AEDs). A concerted period of development of drugs for epilepsy throughout the 1980s and 1990s has resulted (to date) in 16 new agents being licensed as add-on treatment for difficult-to-control adult and/or paediatric epilepsy, with some becoming available as monotherapy for newly diagnosed patients. Together, these have become known as the ‘modern’ AEDs. Throughout this period of unprecedented drug development, there have also been considerable advances in our understanding of how antiepileptic agents exert their effects at the cellular level. AEDs are neither preventive nor curative and are employed solely as a means of controlling symptoms (i.e. suppression of seizures). Recurrent seizure activity is the manifestation of an intermittent and excessive hyperexcitability of the nervous system and, while the pharmacological minutiae of currently marketed AEDs remain to be completely unravelled, these agents essentially redress the balance between neuronal excitation and inhibition. Three major classes of mechanism are recognised: modulation of voltage-gated ion channels; enhancement of gamma-aminobutyric acid (GABA)-mediated inhibitory neurotransmission; and attenuation of glutamate-mediated excitatory neurotransmission. The principal pharmacological targets of currently available AEDs are highlighted in Table 1 and discussed further below.
    [Show full text]
  • Current, TTX-Resistant Na؉ Current, and Ca2؉ Current in the Action Potentials of Nociceptive Sensory Neurons
    The Journal of Neuroscience, December 1, 2002, 22(23):10277–10290 Roles of Tetrodotoxin (TTX)-Sensitive Na؉ Current, TTX-Resistant Na؉ Current, and Ca2؉ Current in the Action Potentials of Nociceptive Sensory Neurons Nathaniel T. Blair and Bruce P. Bean Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 20114 Nociceptive sensory neurons are unusual in expressing carry the largest inward charge during the upstroke of the voltage-gated inward currents carried by sodium channels re- nociceptor action potential (ϳ58%), with TTX-sensitive sodium sistant to block by tetrodotoxin (TTX) as well as currents carried channels also contributing significantly (ϳ40%), especially near by conventional TTX-sensitive sodium channels and voltage- threshold, and high voltage-activated calcium currents much dependent calcium channels. To examine how currents carried less (ϳ2%). Action potentials had a prominent shoulder during by each of these helps to shape the action potential in small- the falling phase, characteristic of nociceptive neurons. TTX- diameter dorsal root ganglion cell bodies, we voltage clamped resistant sodium channels did not inactivate completely during cells by using the action potential recorded from each cell as the action potential and carried the majority (58%) of inward the command voltage. Using intracellular solutions of physio- current flowing during the shoulder, with high voltage-activated logical ionic composition, we isolated individual components of calcium current also contributing significantly (39%).
    [Show full text]
  • The Chondrocyte Channelome: a Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2017 The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities Anthony J. Asmar Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Molecular Biology Commons, and the Physiology Commons Recommended Citation Asmar, Anthony J.. "The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities" (2017). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/pyha-7838 https://digitalcommons.odu.edu/biology_etds/19 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES by Anthony J. Asmar B.S. Biology May 2010, Virginia Polytechnic Institute M.S. Biology May 2013, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY BIOMEDICAL SCIENCES OLD DOMINION UNIVERSITY August 2017 Approved by: Christopher Osgood (Co-Director) Michael Stacey (Co-Director) Lesley Greene (Member) Andrei Pakhomov (Member) Jing He (Member) ABSTRACT THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES Anthony J. Asmar Old Dominion University, 2017 Co-Directors: Dr. Christopher Osgood Dr. Michael Stacey Costal cartilage is a type of rod-like hyaline cartilage connecting the ribs to the sternum.
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • On Obtaining Estimates of Parent-Of-Origin Effects Effectively and Their Exploitation in Association Genetic Mapping
    Aus dem Leibniz-Institut für Nutztierbiologie (FBN) Institut für Genetik und Biometrie Dummerstorf ON OBTAINING ESTIMATES OF PARENT-OF-ORIGIN EFFECTS EFFECTIVELY AND THEIR EXPLOITATION IN ASSOCIATION GENETIC MAPPING Dissertation zur Erlangung des Doktorgrades der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von M.Sc. agr. Inga Blunk aus Bad Segeberg, Schleswig-Holstein Dekan: Prof. Dr. Joachim Krieter 1. Berichterstatter: Prof. Dr. Norbert Reinsch 2. Berichterstatter: Prof. Dr. Georg Thaller Tag der mündlichen Prüfung: 6. November 2017 Die Dissertation wurde mit dankenswerter finanzieller Unterstützung der H. Wilhelm Schaumann Stiftung, Hamburg, angefertigt. „Das Schönste, was wir erleben können, ist das Geheimnisvolle. …“ ALBERT EINSTEIN TABLE OF CONTENTS General Introduction ………………………………………………………………………. 1 Chapter 1 ………………………………………………………………………………..…… 12 Genetic variance components when fluctuating imprinting patterns are present Chapter 2 ………………………………………………………………………………..…… 21 A new model for parent-of-origin effect analyses applied to Brown Swiss cattle slaughterhouse data Chapter 3 ………………………………………………………………………………..…… 46 Parsimonious model for analyzing parent-of-origin effects related to beef traits in dual-purpose Simmental Chapter 4 ……………………………………………………………………………………. 72 Scanning the genomes of parents for imprinted loci acting in their ungenotyped progeny General Discussion ………………………………………………………………………. 113 Summary ……………………………………………………………………………………. 123 Zusammenfassung ……………………………………………………………………….
    [Show full text]
  • Transcriptomic Profiling of Ca Transport Systems During
    cells Article Transcriptomic Profiling of Ca2+ Transport Systems during the Formation of the Cerebral Cortex in Mice Alexandre Bouron Genetics and Chemogenomics Lab, Université Grenoble Alpes, CNRS, CEA, INSERM, Bâtiment C3, 17 rue des Martyrs, 38054 Grenoble, France; [email protected] Received: 29 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11–E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ “leak” channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels.
    [Show full text]
  • Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms
    R EVIEW Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms Sergei Sukharev1* and David P. Corey2* (Published 10 February 2004) Mechanosensitive ion channels are the primary and comprise just a few GTP-binding protein (G protein)–cou- transducers that convert mechanical force into an pled receptor second-messenger pathways (1–3). Given these electrical or chemical signal in hearing, touch, and examples, should we be looking for universal mechanotransduc- other mechanical senses. Unlike vision, olfaction, tion mechanisms within these various systems and presume that and some types of taste, which all use similar kinds the primary receiver elements are essentially the same, but are of primary heterotrimeric GTP-binding protein–cou- tuned differently depending on the setting? If not, are there dif- pled receptors, mechanosensation relies on diverse ferent types of mechanoreceptors that use similar biophysical types of transducer molecules. Unrelated types of principles but dissimilar molecular mechanisms, which arose channels can be used for the perception of various independently many times in the course of evolution? The ex- mechanical stimuli, not only in distant groups of or- amples discussed below suggest that the latter scenario is more ganisms, but also in separate locations of the same likely. Although incomplete, the available molecular data sug- organism. The extreme sensitivity of the transduction gest a multiplicity of structural designs and mechanisms of mechanism in the auditory system, which relies on mechanoreceptors not only across the tree of life, but also with- an elaborate structure of rigid cilia, filamentous in single organisms. This diversity implies that careful analysis links, and molecular motors to focus force on trans- of individual systems will be required before generalizations duction channels, contrasts with that of the bacterial can be made.
    [Show full text]
  • Genetic Mapping of ASIC4 and Contrasting Phenotype to Asic1a in Modulating Innate Fear and Anxiety
    European Journal of Neuroscience, Vol. 41, pp. 1553–1568, 2015 doi:10.1111/ejn.12905 BEHAVIORAL NEUROSCIENCE Genetic mapping of ASIC4 and contrasting phenotype to ASIC1a in modulating innate fear and anxiety Shing-Hong Lin,1,2 Ya-Chih Chien,2 Wei-Wei Chiang,3 Yan-Zhen Liu,3 Cheng-Chang Lien4 and Chih-Cheng Chen1,2,3 1Graduate institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 2Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan 3Taiwan Mouse Clinic-National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, Taiwan 4Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan Keywords: ASIC, behavioral phenotyping, Cre, interneuron, knockout mice Abstract Although ASIC4 is a member of the acid-sensing ion channel (ASIC) family, we have limited knowledge of its expression and physiological function in vivo. To trace the expression of this ion channel, we generated the ASIC4-knockout/CreERT2-knockin (Asic4CreERT2) mouse line. After tamoxifen induction in the Asic4CreERT2::CAG-STOPfloxed-Td-tomato double transgenic mice, we mapped the expression of ASIC4 at the cellular level in the central nervous system (CNS). ASIC4 was expressed in many brain regions, including the olfactory bulb, cerebral cortex, striatum, hippocampus, amygdala, thalamus, hypothalamus, brain stem, cer- ebellum, spinal cord and pituitary gland. Colocalisation studies further revealed that ASIC4 was expressed mainly in three types of cells in the CNS: (i) calretinin (CR)-positive and/or vasoactive intestine peptide (VIP)-positive interneurons; (ii) neural/glial anti- gen 2 (NG2)-positive glia, also known as oligodendrocyte precursor cells; and (iii) cerebellar granule cells. To probe the possible role of ASIC4, we hypothesised that ASIC4 could modulate the membrane expression of ASIC1a and thus ASIC1a signaling in vivo.
    [Show full text]