Bernoulli 20(2), 2014, 775–802 DOI: 10.3150/13-BEJ506 Maximum likelihood characterization of distributions MITIA DUERINCKX1,*, CHRISTOPHE LEY1,** and YVIK SWAN2 1D´epartement de Math´ematique, Universit´elibre de Bruxelles, Campus Plaine CP 210, Boule- vard du triomphe, B-1050 Bruxelles, Belgique. * ** E-mail:
[email protected];
[email protected] 2 Universit´edu Luxembourg, Campus Kirchberg, UR en math´ematiques, 6, rue Richard Couden- hove-Kalergi, L-1359 Luxembourg, Grand-Duch´ede Luxembourg. E-mail:
[email protected] A famous characterization theorem due to C.F. Gauss states that the maximum likelihood es- timator (MLE) of the parameter in a location family is the sample mean for all samples of all sample sizes if and only if the family is Gaussian. There exist many extensions of this re- sult in diverse directions, most of them focussing on location and scale families. In this paper, we propose a unified treatment of this literature by providing general MLE characterization theorems for one-parameter group families (with particular attention on location and scale pa- rameters). In doing so, we provide tools for determining whether or not a given such family is MLE-characterizable, and, in case it is, we define the fundamental concept of minimal necessary sample size at which a given characterization holds. Many of the cornerstone references on this topic are retrieved and discussed in the light of our findings, and several new characterization theorems are provided. Of particular interest is that one part of our work, namely the intro- duction of so-called equivalence classes for MLE characterizations, is a modernized version of Daniel Bernoulli’s viewpoint on maximum likelihood estimation.