Upper and lower Bounds on Sizes of Finite Bisimulations of Pfaffian Dynamical Systems ⋆ Margarita Korovina1 and Nicolai Vorobjov2 1 Fachbereich Mathematik, Theoretische Informatik, Universit¨atSiegen, Germany, and IIS SB RAS, Novosibirsk, Russia
[email protected], http://www.brics.dk/~korovina 2 Department of Computer Science, University of Bath, Bath BA2 7AY, England
[email protected], http://www.bath.ac.uk/~masnnv Abstract. In this paper we study a class of dynamical systems defined by Pfaffian maps. It is a sub-class of o-minimal dynamical systems which capture rich continuous dynamics and yet can be studied using finite bisimulations. The existence of finite bisimulations for o-minimal dy- namical and hybrid systems has been shown by several authors (see e.g. [2, 3, 11]). The next natural question to investigate is how the sizes of such bisimulations can be bounded. The first step in this direction was done in [9] where a double exponential upper bound was shown for Pfaf- fian dynamical and hybrid systems. In the present paper we improve this bound to a single exponential upper bound. Moreover we show that this bound is tight in general, by exhibiting a parameterized class of systems on which the exponential bound is attained. The bounds provide a ba- sis for designing efficient algorithms for computing bisimulations, solving reachability and motion planning problems. 1 Introduction One of the main complexities in the reasoning about dynamical systems arises from their uncountably infinite state spaces. To overcome this difficulty bisim- ulation by simpler systems was introduced. Informally, two dynamical systems are bisimilar if their behaviors are indistinguishable with respect to the prop- erties we consider.