Phd Thesis the Role of Wiskott-Aldrich Syndrome Protein

Total Page:16

File Type:pdf, Size:1020Kb

Phd Thesis the Role of Wiskott-Aldrich Syndrome Protein Università degli Studi di Trieste Graduate School in MOLECULAR BIOMEDICINE PhD Thesis The role of Wiskott-Aldrich Syndrome protein- mediated actin dynamics in controlling type-I IFN production in plasmacytoid dendritic cells Candidate: Francesca Prete Thesis supervisor: Dr. Federica Benvenuti XXIV cycle – Academic Year 2011 Alla famiglia, ad Eu, Fabio, Giulia, Michela, Roberta, Gabriele. A chi, anche se lontano, resta. In everything I seek to grasp The fundamental: The daily choice, the daily task, The sentimental. To plumb the essence of the past, The first foundations, The crux, the roots, the inmost hearts, The explanations. And, puzzling out the weave of fate, Events observer, To live, feel, love and meditate And to discover. Boris Pasternak CONTENTS INTRODUCTION .................................................................................................................... 1 1.1 Innate immunity vs adaptive immunity ............................................................................ 2 1.1.1 Toll-like receptors.................................................................................................... 2 1.2 Dendritic cells general features .................................................................................. 4 1.2.1 The “Langerhans cells paradigm” ............................................................................ 5 1.2.2 DCs classification ..................................................................................................... 6 1.3 Plasmacytoid dendritic cells (pDCs) ............................................................................. 11 1.3.1 PDCs in the immune response: general features .................................................... 11 1.3.2 Phenotypic characterization of pDCs ..................................................................... 14 1.3.3 PDCs development ................................................................................................. 14 1.3.4 PDCs localization and migration ............................................................................ 15 1.3.5 PDCs are professional type-I interferon-producing cells ....................................... 17 1.3.6 Regulation of IFN synthesis in pDCs ..................................................................... 19 1.3.7 TLR-mediated activation of pDCs.......................................................................... 19 1.4 PDCs-derived type-I IFNs in linking innate and adaptive immunity ........................ 23 1.4.1 pDCs regulate the function of cDCs by type-I IFN ................................................ 23 1.4.2 Regulation of B cell function by pDCs .................................................................. 24 1.4.3 Regulation of T and NK cell function by pDCs ..................................................... 25 1.4.4 pDCs/type-I IFN in autoimmunity ......................................................................... 25 1.5 Wiskott-Aldrich Syndrome (WAS) .............................................................................. 30 1.5.1 The cytoskeleton ..................................................................................................... 31 1.5.2 Actin filament assembly and disassembly .............................................................. 31 1.5.3 Immune cellular functions dependent on actin cytoskeletal dynamics ................... 33 1.5.4 Nucleation-promoting factors: the WASp family ................................................... 35 1.5.5 Wiskott-Aldrich syndrome, general traits ............................................................... 37 1.5.6 Cellular defects in WAS ......................................................................................... 38 1.5.7 Autoimmune manifestations in WAS ..................................................................... 41 AIMS ................................................................................................................................... 44 2 MATERIALS AND METHODS ......................................................................................... 45 3 RESULTS............................................................................................................................. 56 3.1 Analysis of the pDCs compartment in WKO mice ......................................................... 57 3.1.1 PDCs frequency, absolute numbers and turnover rate ............................................ 58 3.1.2 Basal activation state of pDCs ................................................................................ 60 3.1.3 WKO pDCs constitutively secrete type-I IFN ........................................................ 60 3.2 Analysis of the response to TLR9 stimulation by WASp-null pDCs .............................. 61 3.2.1 Progressive exhaustion of the TLR9/IFN-α pathway in pDCs from WKO mice ... 62 3.2.2 Analysis of the constitutive pDCs activation in WKO mice .................................. 66 3.2.3 WKO pDCs are intrinsically more responsive to TLR9 ......................................... 67 3.2.4 WASp plays a cell-autonomous role in pDCs ........................................................ 69 3.2.4 WASp-mediated actin dynamics selectively control TLR9/IFN-α axis in pDCs ... 71 3.3 Analysis of the endocytic pathway in WASp-null pDCs ................................................ 72 3.3.1 WASp-mediated actin dynamics regulate accumulation of CpG-A in early endosomes ....................................................................................................................... 73 3.3.2 WASp regulates the correct organization of the endocytic pathway ...................... 75 3.4 PDCs/type-I IFN alterations in WAS patients ............................................................... 78 3.4.1 PDCs in spleen and peripheral blood of WAS patients .......................................... 79 3.4.2 Type-I IFN signature in WAS patients ................................................................... 81 3.5 Evidences of a link between dysregulated PDCs/type-I IFN axis and altered innate and adaptive immunity in WKO mice .................................................................................. 83 3.5.1 Conventional DC (cDCs) phenotype in WKO mice ............................................... 84 3.5.2 cDCs functionality in WKO mice........................................................................... 86 3.5.3 B cells phenotype in WKO mice ............................................................................ 87 3.5.4 CD4+ T cell responses in WKO mice .................................................................... 87 3.5.5 CD8+ T cell responses in WKO mice ..................................................................... 90 4 DISCUSSION ........................................................................................................... 93 5 REFERENCES ....................................................................................................... 103 ABSTRACT Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency characterized by recurrent infections, and a marked predisposition to develop autoimmune phenomena. The disease is caused by mutations in WASp, a key regulator of actin polymerization expressed only in hematopoietic cells. A general impairment of hematopoietic cell functions contributes to the pathogenesis of the disease. Neutrophils, B cells, T cells and DCs deficient for WASp were all shown to have impaired homing ability, a cellular function that strictly depends on spatio-temporal regulation of actin polymerization. WASp null T cells present severe impairment in coupling TCR stimulation to proliferation and fail to organize signaling molecules within the immunological synapse (Badour et al., 2004; Dupre et al., 2002; Sims et al., 2007). B cells intrinsic defects include altered B cell receptor clustering, defective homeostasis of mature B cells and a specific reduction in the expression of the complement receptor (Park et al., 2005; Simon et al., 1992; Westerberg et al., 2001). WASp null DCs fail to assemble podosomes and display late migration from the periphery to lymph nodes (de Noronha et al., 2005). Moreover, WASp expression in DCs is critical to organize the dynamic cytoskeletal changes that facilitate DC-T cell interaction during antigen presentation (Pulecio et al., 2008; Bouma et al., 2011). Together, these cellular alterations provided clues to understand the reduced response to pathogens and the immunodeficiency of WAS patients. However, the mechanisms by which perturbation of actin dynamics promote autoimmune phenomena are less clear. Autoimmune complications occur in 40-72% of children with severe WAS phenotype. The most common autoimmune features that develop in WAS patients include hemolytic anemia, vasculitis, renal disease, and arthritis (Dupuis-Girod et al., 2003; Sullivan et al., 1994; Humblet- baron et al., 2007). Impairment of T and B cell tolerance have been reported in WAS patients and in Was-/- mice, but the exact cellular mechanisms that link loss of WASp function to autoimmunity have not been fully elucidated yet (Becker-Herman et al., 2011; Recher et al., 2012; Marangoni et al., 2007; Maillard et al., 2007; Humblet-Baron et al., 2007). It is increasingly recognized that excessive activation of pDCs and elevated type-I interferon (IFN) levels are pathogenic in several human autoimmune diseases such as SLE, psoriasis, Sjogren’s syndrome. Since WAS autoimmune manifestations partially overlap
Recommended publications
  • Unsheathing WASP's Sting
    news and views required for Swallow-mediated localiza- Cytoplasmic dynein is implicated in Minneapolis 55455, Minnesota, USA tion within the oocyte. many biological processes, including ves- e-mail:[email protected] The interaction between Swallow and icle and organelle transport, mitotic- Roger Karess is at the CNRS Centre de Génétique Dlc is a significant finding and provides spindle function and orientation, and Moléculaire, Ave de la Terrasse, 91198 Gif-sur- the basis for a model in which the dynein- now RNA transport and localization. It is Yvette, France motor complex is responsible for the important to emphasize that a single iso- e-mail: [email protected] anterior localization of bicoid RNA within form of the dynein-motor subunit is 1. St Johnston, D. Cell 81, 167–170 (1995). the oocyte. Interestingly, the transient known to be targeted to several cellular 2. Bashirullah, A., Cooperstock, R. & Lipshitz, H. Annu. Rev. localization of Swallow to the oocyte functions and molecular cargoes within Biochem. 67, 335–394 (1998). anterior occurs at a time when most of the individual cells. Thus it is those molecules 3. Oleynikov, Y. & Singer, R. Trends Cell Biol. 8, 381–383 dynein-motor subunits are concentrated with adaptor functions, such as those pro- (1998). 13 4. Wilhelm, J. & Vale, R. J. Cell Biol. 123, 269–274 (1993). at the posterior of the oocyte . This raises posed here for Swallow, that must 5. Schnorrer, F., Bohmann, K. & Nusslein-Volhard, C. Nature Cell the possibility that at least two distinct account for the functional specificity of Biol.
    [Show full text]
  • UCSD MOLECULE PAGES Doi:10.6072/H0.MP.A002549.01 Volume 1, Issue 2, 2012 Copyright UC Press, All Rights Reserved
    UCSD MOLECULE PAGES doi:10.6072/H0.MP.A002549.01 Volume 1, Issue 2, 2012 Copyright UC Press, All rights reserved. Review Article Open Access WAVE2 Tadaomi Takenawa1, Shiro Suetsugu2, Daisuke Yamazaki3, Shusaku Kurisu1 WASP family verprolin-homologous protein 2 (WAVE2, also called WASF2) was originally identified by its sequence similarity at the carboxy-terminal VCA (verprolin, cofilin/central, acidic) domain with Wiskott-Aldrich syndrome protein (WASP) and N-WASP (neural WASP). In mammals, WAVE2 is ubiquitously expressed, and its two paralogs, WAVE1 (also called suppressor of cAMP receptor 1, SCAR1) and WAVE3, are predominantly expressed in the brain. The VCA domain of WASP and WAVE family proteins can activate the actin-related protein 2/3 (Arp2/3) complex, a major actin nucleator in cells. Proteins that can activate the Arp2/3 complex are now collectively known as nucleation-promoting factors (NPFs), and the WASP and WAVE families are a founding class of NPFs. The WAVE family has an amino-terminal WAVE homology domain (WHD domain, also called the SCAR homology domain, SHD) followed by the proline-rich region that interacts with various Src-homology 3 (SH3) domain proteins. The VCA domain located at the C-terminus. WAVE2, like WAVE1 and WAVE3, constitutively forms a huge heteropentameric protein complex (the WANP complex), binding through its WHD domain with Abi-1 (or its paralogs, Abi-2 and Abi-3), HSPC300 (also called Brick1), Nap1 (also called Hem-2 and NCKAP1), Sra1 (also called p140Sra1 and CYFIP1; its paralog is PIR121 or CYFIP2). The WANP complex is recruited to the plasma membrane by cooperative action of activated Rac GTPases and acidic phosphoinositides.
    [Show full text]
  • Tracking Melanosomes Inside a Cell to Study Molecular Motors and Their Interaction
    Tracking melanosomes inside a cell to study molecular motors and their interaction Comert Kural*, Anna S. Serpinskaya†, Ying-Hao Chou†, Robert D. Goldman†, Vladimir I. Gelfand†‡, and Paul R. Selvin*§¶ *Center for Biophysics and Computational Biology and §Department of Physics, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and †Department of Cell and Molecular Biology, Northwestern University School of Medicine, Chicago, IL 60611 Communicated by Gordon A. Baym, University of Illinois at Urbana–Champaign, Urbana, IL, January 9, 2007 (received for review June 4, 2006) Cells known as melanophores contain melanosomes, which are membrane organelles filled with melanin, a dark, nonfluorescent pigment. Melanophores aggregate or disperse their melanosomes when the host needs to change its color in response to the environment (e.g., camouflage or social interactions). Melanosome transport in cultured Xenopus melanophores is mediated by my- osin V, heterotrimeric kinesin-2, and cytoplasmic dynein. Here, we describe a technique for tracking individual motors of each type, both individually and in their interaction, with high spatial (Ϸ2 nm) and temporal (Ϸ1 msec) localization accuracy. This method enabled us to observe (i) stepwise movement of kinesin-2 with an average step size of 8 nm; (ii) smoother melanosome transport (with fewer pauses), in the absence of intermediate filaments (IFs); and (iii) motors of actin filaments and microtubules working on the same cargo nearly simultaneously, indicating that a diffusive step is not needed between the two systems of transport. In concert with our previous report, our results also show that dynein-driven retro- grade movement occurs in 8-nm steps. Furthermore, previous studies have shown that melanosomes carried by myosin V move 35 nm in a stepwise fashion in which the step rise-times can be as long as 80 msec.
    [Show full text]
  • Cytoplasmic Dynein Pushes the Cytoskeletal Meshwork Forward During Axonal Elongation
    ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 3593–3602 doi:10.1242/jcs.152611 RESEARCH ARTICLE Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation Douglas H. Roossien1, Phillip Lamoureux2 and Kyle E. Miller2,* ABSTRACT were not a species-specific phenomenon, but rather a broadly conserved mechanism for elongation. From this, a new model for During development, neurons send out axonal processes that can axonal elongation has emerged, termed ‘stretch and intercalation’ reach lengths hundreds of times longer than the diameter of their (SAI) (Suter and Miller, 2011), in which forces cause the cell bodies. Recent studies indicate that en masse microtubule microtubule-rich central domain (C-domain) of the growth cone translocation is a significant mechanism underlying axonal to advance in bulk. This is paired with stretching of the axon, elongation, but how cellular forces drive this process is unknown. which is followed by intercalated mass addition along the axon Cytoplasmic dynein generates forces on microtubules in axons to to prevent thinning (Lamoureux et al., 2010). In terms of the power their movement through ‘stop-and-go’ transport, but whether cytoskeleton, stretching presumably occurs because filaments are these forces influence the bulk translocation of long microtubules sliding apart either through pulling or pushing forces generated embedded in the cytoskeletal meshwork has not been tested. by molecular motors (Suter and Miller, 2011; Lu et al., 2013; Here, we use both function-blocking antibodies targeted to Roossien et al., 2013). It is worth noting that because adhesions the dynein intermediate chain and the pharmacological dynein along the axon dissipate forces generated in the growth inhibitor ciliobrevin D to ask whether dynein forces contribute to en cone (O’Toole et al., 2008), these en masse movements of bloc cytoskeleton translocation.
    [Show full text]
  • Transiently Structured Head Domains Control Intermediate Filament Assembly
    Transiently structured head domains control intermediate filament assembly Xiaoming Zhoua, Yi Lina,1, Masato Katoa,b,c, Eiichiro Morid, Glen Liszczaka, Lillian Sutherlanda, Vasiliy O. Sysoeva, Dylan T. Murraye, Robert Tyckoc, and Steven L. McKnighta,2 aDepartment of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; bInstitute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555 Chiba, Japan; cLaboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520; dDepartment of Future Basic Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan; and eDepartment of Chemistry, University of California, Davis, CA 95616 Contributed by Steven L. McKnight, January 2, 2021 (sent for review October 30, 2020; reviewed by Lynette Cegelski, Tatyana Polenova, and Natasha Snider) Low complexity (LC) head domains 92 and 108 residues in length are, IF head domains might facilitate filament assembly in a manner respectively, required for assembly of neurofilament light (NFL) and analogous to LC domain function by RNA-binding proteins in the desmin intermediate filaments (IFs). As studied in isolation, these IF assembly of RNA granules. head domains interconvert between states of conformational disor- IFs are defined by centrally located α-helical segments 300 to der and labile, β-strand–enriched polymers. Solid-state NMR (ss-NMR) 350 residues in length. These central, α-helical segments are spectroscopic studies of NFL and desmin head domain polymers re- flanked on either end by head and tail domains thought to be veal spectral patterns consistent with structural order.
    [Show full text]
  • The Kinesin Walk: a Dynamic Model with Elastically Coupled Heads
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 6775-6779, June 1996 Biophysics The kinesin walk: A dynamic model with elastically coupled heads IMRE DERENYI AND TAMA'S VICSEK Department of Atomic Physics, Eotvos University, Budapest, Puskin u 5-7, 1088 Hungary Communicated by Leo P. Kadanoff, University of Chicago, Chicago, IL, February 26, 1996 (received for review November 28, 1995) ABSTRACT Recently individual two-headed kinesin mol- of the related transport phenomena. These models (12-19), ecules have been studied in in vitro motility assays revealing a except that of Ajdari (20), consider cases in which the internal number of their peculiar transport properties. In this paper degree of freedom of the molecular motors is not taken into we propose a simple and robust model for the kinesin stepping account. The purpose of the present work is to define and process with elastically coupled Brownian heads that show all investigate a dynamic model for the kinesin walk that has an of these properties. The analytic and numerical treatment of internal degree of freedom and results in a full agreement with our model results in a very good fit to the experimental data the experimental data for the range of its parameters allowed and practically has no free parameters. Changing the values by the known estimates for the lower and upper bounds of ofthe parameters in the restricted range allowed by the related these parameters. experimental estimates has almost no effect on the shape of There are two basic classes of possible models for the the curves and results mainly in a variation of the zero load stepping of kinesin (21).
    [Show full text]
  • Kinesin Motility Is Driven by Subdomain Dynamics Wonmuk Hwang1,2,3*, Matthew J Lang4,5*, Martin Karplus6,7*
    RESEARCH ARTICLE Kinesin motility is driven by subdomain dynamics Wonmuk Hwang1,2,3*, Matthew J Lang4,5*, Martin Karplus6,7* 1Department of Biomedical Engineering, Texas A&M University, College Station, United States; 2Department of Materials Science & Engineering, Texas A&M University, College Station, United States; 3School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea; 4Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States; 5Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States; 6Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States; 7Laboratoire de Chimie Biophysique, ISIS, Universite´ de Strasbourg, Strasbourg, France Abstract The microtubule (MT)-associated motor protein kinesin utilizes its conserved ATPase head to achieve diverse motility characteristics. Despite considerable knowledge about how its ATPase activity and MT binding are coupled to the motility cycle, the atomic mechanism of the core events remain to be found. To obtain insights into the mechanism, we performed 38.5 microseconds of all-atom molecular dynamics simulations of kinesin-MT complexes in different nucleotide states. Local subdomain dynamics were found to be essential for nucleotide processing. Catalytic water molecules are dynamically organized by the switch domains of the nucleotide binding pocket while ATP is torsionally strained. Hydrolysis products are ’pulled’ by switch-I, and a new ATP is ’captured’ by a concerted motion of the a0/L5/switch-I trio. The dynamic and wet kinesin-MT interface is tuned for rapid interactions while maintaining specificity. The proposed *For correspondence: mechanism provides the flexibility necessary for walking in the crowded cellular environment. [email protected] (WH); DOI: https://doi.org/10.7554/eLife.28948.001 [email protected] (MJL); [email protected] (MK) Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • Microtubule-Associated Protein Tau (Molecular Pathology/Neurodegenerative Disease/Neurofibriliary Tangles) M
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 4051-4055, June 1988 Medical Sciences Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule-associated protein tau (molecular pathology/neurodegenerative disease/neurofibriliary tangles) M. GOEDERT*, C. M. WISCHIK*t, R. A. CROWTHER*, J. E. WALKER*, AND A. KLUG* *Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and tDepartment of Psychiatry, University of Cambridge Clinical School, Hills Road, Cambridge CB2 2QQ, United Kingdom Contributed by A. Klug, March 1, 1988 ABSTRACT Screening of cDNA libraries prepared from (21). This task is made all the more difficult because there is the frontal cortex ofan zheimer disease patient and from fetal no functional or physiological assay for the protein(s) of the human brain has led to isolation of the cDNA for a core protein PHF. The only identification so far possible is the morphol- of the paired helical fiament of Alzheimer disease. The partial ogy of the PHFs at the electron microscope level, and here amino acid sequence of this core protein was used to design we would accept only experiments on isolated individual synthetic oligonucleotide probes. The cDNA encodes a protein of filaments, not on neurofibrillary tangles (in which other 352 amino acids that contains a characteristic amino acid repeat material might be occluded). One thus needs a label or marker in its carboxyl-terminal half. This protein is highly homologous for the PHF itself, which can at the same time be used to to the sequence ofthe mouse microtubule-assoiated protein tau follow the steps of the biochemical purification.
    [Show full text]
  • Neurofilaments: Neurobiological Foundations for Biomarker Applications
    Neurofilaments: neurobiological foundations for biomarker applications Arie R. Gafson1, Nicolas R. Barthelmy2*, Pascale Bomont3*, Roxana O. Carare4*, Heather D. Durham5*, Jean-Pierre Julien6,7*, Jens Kuhle8*, David Leppert8*, Ralph A. Nixon9,10,11,12*, Roy Weller4*, Henrik Zetterberg13,14,15,16*, Paul M. Matthews1,17 1 Department of Brain Sciences, Imperial College, London, UK 2 Department of Neurology, Washington University School of Medicine, St Louis, MO, USA 3 a ATIP-Avenir team, INM, INSERM , Montpellier university , Montpellier , France. 4 Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom 5 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada 6 Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada. 7 CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada 8 Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland. 9 Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA. 10Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, 11 Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA. 12Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA 13 University College London Queen Square Institute of Neurology, London, UK 14 UK Dementia Research Institute at University College London 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden 16 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 17 UK Dementia Research Institute at Imperial College, London * Co-authors ordered alphabetically Address for correspondence: Prof.
    [Show full text]
  • Tension on the Linker Gates the ATP-Dependent Release of Dynein from Microtubules
    ARTICLE Received 4 Apr 2014 | Accepted 3 Jul 2014 | Published 11 Aug 2014 DOI: 10.1038/ncomms5587 Tension on the linker gates the ATP-dependent release of dynein from microtubules Frank B. Cleary1, Mark A. Dewitt1, Thomas Bilyard2, Zaw Min Htet2, Vladislav Belyy1, Danna D. Chan2, Amy Y. Chang2 & Ahmet Yildiz2 Cytoplasmic dynein is a dimeric motor that transports intracellular cargoes towards the minus end of microtubules (MTs). In contrast to other processive motors, stepping of the dynein motor domains (heads) is not precisely coordinated. Therefore, the mechanism of dynein processivity remains unclear. Here, by engineering the mechanical and catalytic properties of the motor, we show that dynein processivity minimally requires a single active head and a second inert MT-binding domain. Processivity arises from a high ratio of MT-bound to unbound time, and not from interhead communication. In addition, nucleotide-dependent microtubule release is gated by tension on the linker domain. Intramolecular tension sensing is observed in dynein’s stepping motion at high interhead separations. On the basis of these results, we propose a quantitative model for the stepping characteristics of dynein and its response to chemical and mechanical perturbation. 1 Biophysics Graduate Group, University of California, Berkeley, California 94720, USA. 2 Department of Physics, University of California, Berkeley, California 94720, USA. Correspondence and requests for materials should be addressed to A.Y. (email: [email protected]). NATURE COMMUNICATIONS | 5:4587 | DOI: 10.1038/ncomms5587 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5587 ytoplasmic dynein is responsible for nearly all microtubule dynein’s MT-binding domain (MTBD) is located at the end of a (MT) minus-end-directed transport in eukaryotes1.In coiled-coil stalk10.
    [Show full text]
  • Stable Tug-Of-War Between Kinesin-1 and Cytoplasmic Dynein Upon Different ATP and Roadblock Concentrations Gina A
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs249938. doi:10.1242/jcs.249938 RESEARCH ARTICLE Stable tug-of-war between kinesin-1 and cytoplasmic dynein upon different ATP and roadblock concentrations Gina A. Monzon1, Lara Scharrel2, Ashwin DSouza2, Verena Henrichs2,3, Ludger Santen1,* and Stefan Diez2,4,* ABSTRACT and dynein motors are known to be often simultaneously bound to The maintenance of intracellular processes, like organelle transport and the cargo (Gennerich and Schild, 2006; Welte, 2004; Soppina et al., cell division, depend on bidirectional movement along microtubules. 2009; Hendricks et al., 2010). Without any regulatory mechanism These processes typically require kinesin and dynein motor proteins, the cargo might be transported in the kinesin or dynein direction, which move with opposite directionality. Because both types of motors might randomly switch direction or might get stuck at a random are often simultaneously bound to the cargo, regulatory mechanisms are position. However, regulatory mechanisms ensuring targeted required to ensure controlled directional transport. Recently, it has transport remain poorly understood. been shown that parameters like mechanical motor activation, ATP In the past, different regulatory mechanisms have been proposed. concentration and roadblocks on the microtubule surface differentially One mechanism suggests coordinating the motor activity (Gross, influence the activity of kinesin and dynein motors in distinct manners. 2004). In this model, motors are assumed to be a priori in a passive However, how these parameters affect bidirectional transport state. By activating one motor team, targeted cargo transport occurs systems has not been studied. Here, we investigate the regulatory in the direction of the active team (Gross, 2004).
    [Show full text]
  • INITIAL EXPRESSION of NEUROFILAMENTS and VIMENTIN in the CENTRAL and PERIPHERAL NERVOUS SYSTEM of the MOUSE EMBRYO in Vivol
    0270-6474/84/0408-2080$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 8, pp. 2080-2094 Printed in U.S.A. August 1984 INITIAL EXPRESSION OF NEUROFILAMENTS AND VIMENTIN IN THE CENTRAL AND PERIPHERAL NERVOUS SYSTEM OF THE MOUSE EMBRYO IN VIVOl PHILIPPE COCHARD’ AND DENISE PAULIN* Institut d%mbryologie du Centre National de la Recherche Scientifique et du Collkge de France, 94130 Nogent-sur-Marne, France and *Laboratoire de Gdn&ique Cellulaire, Institut Pasteur, 75015 Paris, France Received December 9,1983; Accepted February 9, 1984 Abstract The appearance of neurofilaments (NFs) and vimentin (Vim) in the nervous system of the mouse embryo was documented using immunohistochemical techniques. The three NF protein subunits appear early and simultaneously in central and peripheral neurons at 9 to 10 days of gestation. The onset of NF expression is concomitant with axon elongation and correlates extremely well with neurofibrillar differentiation and, in the case of autonomic ganglia, with the expression of adrenergic neurotransmitter properties. In the central and peripheral nervous system, NF expression is preceded by that of Vim, and both types of intermediate filaments coexist within the same cell for a short period of time. Specific markers of neuronal and glial cell types are powerful cases, they have revealed common epitopes shared by the tools for studying the mechanisms generating cellular diversi- various classes of IF (Pruss et al., 1981; Dellagi et al., 1982; fication in the nervous system. In recent years, intermediate Gown and Vogel, 1982 and, in the NF class, by the various NF filaments (IFS), a particular class of cytoskeletal proteins, have subunits (Willard and Simon, 1981; Lee et al., 1982; Goldstein attracted much interest, largely because of their polymorphism; et al., 1983).
    [Show full text]