Mangrove Plant Ceriops Decandra

Total Page:16

File Type:pdf, Size:1020Kb

Mangrove Plant Ceriops Decandra EXCLI Journal 2016;15:103-112 – ISSN 1611-2156 Received: December 12, 2015, accepted: January 24, 2016, published: February 09, 2016 Original article: PARTIAL PURIFICATION AND CHARACTERIZATION OF AN ANTIMICROBIAL ACTIVITY FROM THE WOOD EXTRACT OF MANGROVE PLANT CERIOPS DECANDRA Aritra Simlai1, Kalishankar Mukherjee2, Anurup Mandal4, Kashinath Bhattacharya3, Amalesh Samanta4, Amit Roy1* 1 Department of Biotechnology, Visva-Bharati University, Santiniketan, West Bengal, India 2 Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal, India 3 Department of Botany, Visva-Bharati University, Santiniketan, West Bengal, India 4 Division of Microbiology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India * Corresponding author: E-mail: [email protected], Telephone: +91-3463-261101 http://dx.doi.org/10.17179/excli2015-741 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). ABSTRACT The development of resistance towards the antibiotics in use today has been a source of growing concern in the modern healthcare system around the world. To counter this major threat, there is an urgent need for discovery of new antimicrobials. Many plants, like mangroves, possess highly diversified list of natural phytochemicals which are known to have wide range of bioactivities. These phytochemicals can be good sources for the discov- ery of new drugs. In this study, we report the partial phytochemical characterization and antimicrobial activities of a semi-purified fraction isolated from the wood tissue of Ceriops decandra, a mangrove plant. This fraction named CD-3PM was chromatographically separated from C. decandra wood extract and was subjected to dif- ferent spectral analyses to determine its partial chemical nature. The structural investigation indicates the pres- ence of two diterpenoids, i) 3β, 13β-Dihydroxy-8-abietaen-7-one and ii) 3β-Hydroxy-8,13-abietadien-7-one in the CD-3PM fraction. The antimicrobial potential of this fraction was evaluated by microdilution-MTT assay against several organisms. Among the nine microorganisms found to be sensitive to the CD-3PM fraction, six organisms are reported to be pathogenic in nature. The CD-3PM fraction with broad spectrum antimicrobial efficacy revealed the presence of two diterpenoids and possesses potential applications in drug discovery process and food processing industries. Keywords: antimicrobial activity, bioactivity guided fractionation, Ceriops decandra, diterpenoids, human pathogens, mangroves INTRODUCTION hibitory potential of a semi-purified phyto- chemical fraction from this plant. The frac- Antimicrobial properties reported earlier in the tissue extracts of Ceriops decandra tion named CD-3PM has been isolated from (Vadlapudi and Naidu, 2009; Chandrasekar- the wood tissue of this plant using chroma- an et al., 2009; Ravikumar et al., 2010; Sim- tographic methods. Ceriops decandra lai and Roy, 2012), have led us to investigate (Griff.) Ding Hou is a shrubby mangrove the partial structural nature and growth in- species of the Rhizophoraceae family found in the Sundarban estuary in India. The spe- 103 EXCLI Journal 2016;15:103-112 – ISSN 1611-2156 Received: December 12, 2015, accepted: January 24, 2016, published: February 09, 2016 cies has been reported to be used by tradi- (Prominence, Shimadzu) using a C-18 col- tional healers as relief for wounds, boils, umn (Phenomenex Luna, 4.6 × 250 mm, hepatitis, ulcers, angina, diabetes, diarrhea 5 µm) at a flow rate of 1 mL/min with sol- and dysentery (Watt and Breyer-Brandwijk, vents acetonitrile and water. The semi- 1962; Duke and Wain, 1981; Kathiresan and purified fraction was subjected to GC-MS Ramanathan, 1997; Bandaranayake, 1998; analysis on a gas chromatograph (Trace GC Simlai and Roy, 2013). Previously a number Ultra, Thermo Scientific) hyphenated to of phytochemicals have been isolated and mass spectrometer (Polaris Q, Thermo Sci- identified from C. decandra (Wu et al., entific). The sample was injected into a 2008; Wang et al., 2012; Nebula et al., Thermo TR-WaxMS column (30 m × 2013), but these compounds have not been 0.25 mm, 0.25 µm) and helium gas linked with the antimicrobial activities re- (99.999 %) at a flow rate of 1 mL/min was ported from the crude tissue extracts of this used as the carrier gas. For MS detection, the species (Vadlapudi and Naidu, 2009; Chan- ion source temperature was maintained at drasekaran et al., 2009; Ravikumar et al., 230 °C, electron ionization (EI) was per- 2010; Simlai and Roy, 2012). Vundru et al. formed with an ionization energy of 70 eV (2013) revealed the presence of a wide range and mass range at m/z 40 – 600. The Fourier of phytochemicals as indicated by gas chro- transform infrared (FTIR) analysis was car- matography–mass spectrometry (GC-MS) ried out on a Spectrum 100 FTIR spectrome- analysis in C. decandra crude leaf extracts ter (Perkin Elmer) by taking 1 mg of the with antifungal and larvicidal properties. A sample in thin film of potassium bromide study by Sakagami et al. (1998) is the only (KBr). The FTIR spectra were recorded report in which the authors used fractionated within the range of 450 – 4000 cm-1. Nuclear leaf extracts of the plant containing lignin- magnetic resonance (NMR) data for both 1H like polyphenolic structures demonstrating and 13C spectra were recorded on a Bruker its protective effect in mice infected with le- spectrometer (400 MHz) using deuterated thal dose of E. coli. Apart from the observa- chloroform (CDCl3) as the solvent. tions made by Sakagami et al. (1998), we have not come across any other scientific Plant materials report that assigns the observed antimicrobi- Ceriops decandra (Griff.) Ding Hou al activities seen in this plant to one or more wood samples were collected from phytochemical components in a pure or Sundarban estuary, West Bengal. The dried semi-pure state (Wu et al., 2008; Wang et al., specimen of this plant after proper identifica- 2012; Nebula et al., 2013). In this study, we tion was deposited at the Herbarium of have described the isolation and partial Botany department, Visva-Bharati Universi- chemical characterization of a substantially ty (Accession no. VB/BH/01861). The wood purified phytochemical fraction named CD- from the plant was washed thoroughly under 3PM from the wood tissue of C. decandra. tap water and then with distilled water and The present study also shows growth inhibi- air-dried in shade for several weeks. The tis- tory potential of the fraction CD-3PM on sue were then ground into fine powder using some microbes, some of which are tradition- an electric grinder and stored at room tem- ally considered as threats to human health. perature until use. MATERIALS AND METHODS Extraction and bioactivity guided isolation General experimental procedures of CD-3PM fraction The extracted antimicrobial fraction, CD- Powdered wood (1.35 kg) of C. decandra 3PM, obtained from preparative thin layer was sequentially extracted with hexane, ben- chromatography (TLC) plates (described be- zene and chloroform in increasing order of low) was analyzed by doing high perfor- polarity for approximately 46 h using a 5 L mance liquid chromatography (HPLC) soxhlet apparatus. The temperature for ex- 104 EXCLI Journal 2016;15:103-112 – ISSN 1611-2156 Received: December 12, 2015, accepted: January 24, 2016, published: February 09, 2016 tractions was 72 °C for hexane and benzene Structural characterization and 61 °C for chloroform. The extracts ob- Partial structural characterization of the tained were filtered using Whatman No. 1 CD-3PM fraction was carried out using ana- filter paper. The filtered extracts were then lytical techniques like GC-MS, FTIR, 1H and concentrated under reduced pressure using a 13C NMR as described above. rotary evaporator and left at room tempera- ture for drying. Test microorganisms These extracts were tested for their anti- The evaluation of the antimicrobial activ- microbial activities using disc diffusion as- ity in this study was performed using seven say (Bauer et al., 1966) as described previ- Gram-positive bacterial strains viz., Bacillus ously (Simlai and Roy, 2012). The benzene subtilis (MTCC 121), Bacillus coagulans, extract which seemed to indicate maximum Bacillus cereus (ATCC 11778), Bacillus antimicrobial activity, was subjected to fur- polymyxa (NCTC 4747), Bacillus pumilus ther separation using preparative TLC meth- (ATCC 14884), Micrococcus luteus (ATCC od in the next step. For most preparative 10240), Staphylococcus aureus (ATCC TLC runs, the plates were prepared using 29737); eight Gram-negative bacterial strains Silica gel 60 PF254 containing gypsum viz., Shigella sonnei (NK 4010), Klebsiella (Merck) as the matrix. BEA [benzene: etha- pneumoniae (ATCC 10031), Bordetella nol: ammonia (18:2:0.2)] was used as the bronchiseptica (ATCC 4617), Pseudomonas mobile phase. After the separation, the TLC aeruginosa (ATCC 25619), Providencia plates were allowed to dry at room tempera- spp., Salmonella choleraesuis (NCTC 36), ture so that no residue of the mobile phase Salmonella typhimurium (NCTC 74), Sal- remained in the plate. One of these prepara- monella F 14669 and four fungal strains tive TLC chromatograms was used for ac- Saccharomyces cerevisiae, Candida albi- tivity-guided bioautography (Gupta et al., cans, Microsporum gypseum, Cryptococcus 2010) in an attempt to identify the major an- spp. For the last three fungal strains, spores tibacterial
Recommended publications
  • Complete Chloroplast Genome Sequence of the Mangrove Species Kandelia Obovata and Comparative Analyses with Related Species
    Complete chloroplast genome sequence of the mangrove species Kandelia obovata and comparative analyses with related species Yong Yang1, Ying Zhang2, Yukai Chen1, Juma Gul1, Jingwen Zhang1, Qiang Liu1 and Qing Chen3 1 Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China 2 Life Sciences and Technology School, Lingnan Normal University, Zhanjiang, China 3 Bawangling National Nature Reserve, Changjiang, Hainan Province, China ABSTRACT As one of the most cold and salt-tolerant mangrove species, Kandelia obovata is widely distributed in China. Here, we report the complete chloroplast genome sequence K. obovata (Rhizophoraceae) obtained via next-generation sequencing, compare the general features of the sampled plastomes of this species to those of other sequenced mangrove species, and perform a phylogenetic analysis based on the protein-coding genes of these plastomes. The complete chloroplast genome of K. obovata is 160,325 bp in size and has a 35.22% GC content. The genome has a typical circular quadripartite structure, with a pair of inverted repeat (IR) regions 26,670 bp in length separating a large single-copy (LSC) region (91,156 bp) and a small single-cope (SSC) region (15,829 bp). The chloroplast genome of K. obovata contains 128 unique genes, including 80 protein-coding genes, 38 tRNA genes, 8 rRNA genes and 2 pseudogenes (ycf1 in the IRA region and rpl22 in the IRB region). In addition, a simple sequence repeat (SSR) analysis found 108 SSR loci in the chloroplast genome of K. obovata, most of which are A/T rich.
    [Show full text]
  • RHIZOPHORACEAE Ceriops Tagal(Perr.) C.B. Rob. Synonyms
    Mangrove Guidebook for Southeast Asia Part 2: DESCRIPTIONS – Trees & shrubs 1'(9./'.1 "$ $ 235 "¨π∞∂∑∫ª®Æ®≥ /¨ππ "! 1∂© Synonyms : Ceriops australis White, Ceriops boiviniana Tul., Ceriops candolleana Arn., Ceriops candolleana var. sasakii Hayata, Ceriops candolleana var. spathulata Blume, Ceriops forsteniana, Ceriops lucida Miq., Ceriops pauciflora Benth., Ceriops somalensis Chiovenda, Ceriops tagal var. australis White, Ceriops timoriensis Domin, Mangium caryophylloides Rumph., Rhizophora candel (non L.) Blanco, Rhizophora tagal Perr., Rhizophora timoriensis DC. Vernacular name(s) : Tengar, Tengah (Mal.), Tangar, Tingih, Palun, Parun, Bido-bido (Ind.), Magtongod, Pakat, Rungon, Tagasa, Tangal, Tanggal, Tangal lalaki, Tigasan, Tungod - Tangal (Phil.), Madame (Myan.), Dà vôi (Viet.), Prong, Prong daeng (Thai.), Smerkrohorm (Camb.) Description : Small tree or shrub up to 6 m tall, occasionally to 15(-25) m, with a grey, occasionally brown, smooth bark and with a flanged stem base. The tree often has small stilt roots. The rounded, glossy-green leaves measure 5.5-10 by 2-3.5 cm, are obovate-elliptic and often have an inwardly-curled margin. The 5-10 flowered, pendulous flower head measures 2 by 10-20. It has a long, slender stalk, is resinous and occurs at the ends of new shoots or in the axils on older ones. Calyx lobes are erect in flower, recurved in fruit, 4-5 mm long, with a 2 mm long tube. Flowers are white and soon turn brown. Petals are linked via marginal hairs and have a top that bears three trumpet-shaped lobes, 0.5 mm across. The stamens have long, slender filaments that extend far beyond the blunt anthers.
    [Show full text]
  • The 'Mangrove Reference Database and Herbarium'
    Plant Ecology and Evolution 143 (2): 225–232, 2010 doi:10.5091/plecevo.2010.439 SHORT COMMUNICATION The ‘Mangrove Reference Database and Herbarium’ Sergi Massó i Alemán1,2,8, Carine Bourgeois1, Ward Appeltans3, Bart Vanhoorne3, Nathalie De Hauwere3, Piet Stoffelen4, André Heughebaert5 & Farid Dahdouh-Guebas1,6,7,8,* 1Laboratory of Complexity and Dynamics of Tropical Systems, Department of Organism Biology, Faculty of Sciences, Université Libre de Bruxelles (U.L.B.) - CP 169, Avenue F. D. Roosevelt 50, BE-1050 Brussels, Belgium 2GreB, Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, ES-08028 Barcelona, Catalonia, Spain 3Vlaams Instituut voor de Zee/Flanders Marine Institute (VLIZ), Wandelaarkaai 7, BE-8400 Oostende, Belgium 4National Botanic Garden of Belgium, Bouchout Domain, Nieuwelaan 38, BE-1860 Meise, Belgium 5Belgian Biodiversity Platform, Université Libre de Bruxelles (U.L.B.) - CP 257, BE-1050 Brussels, Belgium 6Biocomplexity Research Focus, Laboratory of Plant Biology and Nature Management, Vrije Universiteit Brussel (V.U.B.), Pleinlaan 2, BE-1050 Brussels, Belgium 7BRLU Herbarium et Bibliothèque de Botanique africaine, Faculté des Sciences, Université Libre de Bruxelles (U.L.B.), 50 Avenue F. D. Roosevelt, CP 169, BE-1050 Brussels, Belgium 8Equally contributing authors *Author for correspondence: [email protected] Background – In the light of loss of mangrove forests and related biodiversity world-wide the overall objective of the online ‘Mangrove Reference Database and Herbarium’ is to give a current and historic overview of the global, regional and particularly the local distribution of true mangrove species. Databasing and website construction – All data are based on records containing species location information of all mangrove species (approximately 75).
    [Show full text]
  • A NOVEL GREGARIOUS PHYTO MEDICINE for DIABETES Kanika Arora*, Meenu Nagpal, Upendra Jain, R.C
    International Journal of Research and Development in Pharmacy and Life Sciences Available online at http//www.ijrdpl.com October - November, 2014, Vol. 3, No.6, pp 1231-1244 ISSN: 2278-0238 Review Article MANGROVES: A NOVEL GREGARIOUS PHYTO MEDICINE FOR DIABETES Kanika Arora*, Meenu Nagpal, Upendra Jain, R.C. Jat, Suman Jain Department of Pharmaceutics; Chandigarh College of Pharmacy, Landran, Mohali (Punjab)- India *Corresponding Author: Email [email protected] (Received: May 14, 2012; Accepted: July 19, 2012) ABSTRACT The current review is a appraisal that gives a general idea of diabetic mellitus, its cure using mangrove plants as herbal drugs. Despite substantial progress in the treatment of diabetes by oral hypoglycemic agents, hunt for newer drugs continues because the existing synthetic drugs have quite a few limitations. The herbal mangrove plants with antidiabetic activity are yet to be commercially formulated as modern medicines, even though the drugs have been acclaimed for their therapeutic properties in the traditional systems of medicine. This chapter highlights diverse mangrove plants available in Indian coastal areas and its antidiabetic activities. Keywords: Mangrove plants, Herbal drugs, Anti-diabetic activity. INTRODUCTION mellitus rates could mount to two or three folds than the The primordial literature revealed that the diabetes was present rates4. fairly known and well conceived as an entity in India as DIABETES – AN OVERVIEW “madhumeha”. The awareness of system of diabetes mellitus, Diabetes has been a experimental model for general as the history reveals, existed with the Indians since medicine. The primary fault in fuel metabolism resulted in prehistoric age. Madhumeha is a disease in which a patient prevalent, multiorgan complications that finallycover virtually passes sweet urine and exhibits sweetness all over the body every system of the body and every specialty of medicine5, including sweat, mucus, breath, blood etc1, 2.
    [Show full text]
  • Mangrove Guidebook for Southeast Asia
    RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat.
    [Show full text]
  • Some Observations on Mangrove Species, Aegiceras Corniculatum (L.) Blanco of Pakistan with Reference to Propagule, Sapling and Sapling Leaf
    INT. J. BIOL. BIOTECH., 18 (2): 389-406, 2021. SOME OBSERVATIONS ON MANGROVE SPECIES, AEGICERAS CORNICULATUM (L.) BLANCO OF PAKISTAN WITH REFERENCE TO PROPAGULE, SAPLING AND SAPLING LEAF D. Khan1, M. Javed Zaki1 and S. Viqar Ali2 1Department of Botany, University of Karachi, Karachi – 75270, Pakistan. 2 Environment, Climate Change and Costal Development Department, Government of Sindh, Karachi, Pakistan. ABSTRACT Some observations on propagular-size, sapling growth in tidal marsh and macro- and micromorphology of sapling leaves of a true mangrove species, Aegiceras corniculatum (L.) Blanco grown in a coastal nursery by planting propagules in tidal marsh of Shah Bunder, Indus delta, are described. Growth included such parameters as net growth (between top of propagule to the end of shoot), number of leaves per sapling, number of internodes in new growth, and photosynthetic area of the sapling. There were crystals containing cells in cortical cells. Spherocrystals and cystoliths also occurred in the cortical cells. In addition to the internal structure of leaves, the morphometric and architectural parameters such as leaf length (LL) and breadth (LB), leaf area measured graphically (LAM), apex and basal angles and aspect ratio (LB / LL) were determined. Lamina area was determined arithmetically using multiplying coefficient K (determined for this species to be 0.6573) for equation, Leaf area = K (LL x LB) and also statistically by developing regression equations for simple (linear and power models) and multiple correlation and regression. Surface micromorphological studies were undertaken with respect to the stomatal types, their density and occurrence of cork warts. On the basis of Dilcher’s (1974) stomatal classificatory scheme, paracytic, brachyparacytic, anisocytic and cyclocytic arrangement of subsidiaries was recorded.
    [Show full text]
  • Running Head 'Biology of Mangroves'
    BIOLOGY OF MANGROVES AND MANGROVE ECOSYSTEMS 1 Biology of Mangroves and Mangrove Ecosystems ADVANCES IN MARINE BIOLOGY VOL 40: 81-251 (2001) K. Kathiresan1 and B.L. Bingham2 1Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608 502, India 2Huxley College of Environmental Studies, Western Washington University, Bellingham, WA 98225, USA e-mail [email protected] (correponding author) 1. Introduction.............................................................................................. 4 1.1. Preface........................................................................................ 4 1.2. Definition ................................................................................... 5 1.3. Global distribution ..................................................................... 5 2. History and Evolution ............................................................................. 10 2.1. Historical background ................................................................ 10 2.2. Evolution.................................................................................... 11 3. Biology of mangroves 3.1. Taxonomy and genetics.............................................................. 12 3.2. Anatomy..................................................................................... 15 3.3. Physiology ................................................................................. 18 3.4. Biochemistry ............................................................................. 20 3.5. Pollination
    [Show full text]
  • Evaluation of Antioxidant Polyphenols from Selected Mangrove Plants of India
    Asian Journal of Chemistry Vol. 20, No. 2 (2008), 1311-1322 Evaluation of Antioxidant Polyphenols from Selected Mangrove Plants of India GOVINDASAMY A GORAMOORTHY, FU-AN CHEN, VENUGOPALAN V ENKATESALU†, DAIH-HUANG KUO and PO-CHUEN SHEA* Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan E-mail: [email protected] Mangroves and halophytes are a unique group of vascular plants that occur in saline coastal habitats. Some mangroves and halophytes are used for a wide range of conditions including bacterial, fungal and viral diseases. These specialized plants are known to tolerate extreme environmental conditions. However, little is known on the antioxidant potentials of India's mangroves and halophytes. We have evaluated 5 halophytic plants (Arthrocnemum indicum, Suaeda monoica, S. mar- itima, Sesuvium portulacastrum and Ipomoea pes-caprae) and 8 man- grove plants (Avicennia officinalis, Bruguiera cylindrica, Ceriops decandra, Rhizophora apiculata, R. mucronata, Aegiceras corniculatum, Excoecaria agallocha and Acanthus ilicifolius) collected from Tamil Nadu (India) to determine total polyphenol content and antioxidant activity (by 2,2-diphenyl-1,1-picrylhydrazyl DPPH free radical scav- enging assay against α-tocopherol). The total polyphenol content ranged from 23.5 to 384.2 mg/g dry weight and the highest free radical scav- enging activity was found in E. agallocha (30.3 µg/mL). Moreover, higher DPPH radical scavenging activity was also found in species such as B. cylindrica (42.9 µg/mL), C. decandra (51.9 µg/mL), R. apiculata (64.9 µg/mL), A. corniculatum (74.3 µg/mL), R. mucronata (79.7 µg/ mL) and I. pes-caprae (83.7 µg/mL), respectively.
    [Show full text]
  • Bab Iv Hasil Penelitian Dan Pembahasan
    BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Hasil Penelitian Tahap I (Komposisi Keanekaragaman Vegetasi Mangrove Cengkrong Trenggalek) 1. Komposisi Keanekeragaman vegetasi Mangrove Hutan mangrove cengkrong Trenggalek terletak di desa Karanggandu, kecamatan Watulimo. Hutan mangrove merupakan sebuah hutan yang didalamnya terdapat aliran air laut, selain itu juga terdapat vegetasi mangrove yang sangat lebat. Vegetasi mangrove ini di pengaruhi oleh beberapa faktor abiotik, diantaranya adalah suhu, pH, salinitas, tipe substrat dan kelembapan. Jenis tipe substrat pada lokasi penelitian ada 2 yaitu, tipe substrat lumpur berair, dan tipe substrat kering. Untuk lebih jelasnya dapat dilihat pada gambar 4.1. (a) (b) Gambar 4.1 Tipe Substat Lokasi Penelitian: (a) Lumpur berair, (b) Lumpur kering (Dokumen Pribadi) Hasil pengukuran faktor abiotik yang terdapat di lokasi penelitian dapat dijelaskan dalam tabel 4.1. 75 76 Tabel 4.1 Hasil pengukuran faktor abiotik Stasiun Plot Faktor Abiotik Suhu pH Salinitas Kelembapan Tipe (°C) (°C) Substrat 1 1 30 7,9 4,2 27,8 Lumpur berair 2 32 7,8 4,1 27,3 Lumpur berair 3 32 7,7 4,2 27,1 Lumpur berair 2 1 30 7,5 4,0 29,9 Lumpur berair 2 32 7,8 4,6 29,6 Lumpur kering 3 31 7,9 4,5 28,2 Lumpur kering 3 1 32 7,6 4,4 28,5 Lumpur berair 2 32 7,8 4,8 26,7 Lumpur berair 3 31 7,7 4,7 26,9 Lumpur berair Rata-rata 31,3 7,7 4,3 28 Lumpur berair Dari hasil pengukuran faktor abiotik diatas diketahui bahwa suhu rata-rata adalah 31,3ºC, suhu sekian dapat membantu proses pertumbuhan mangrove dengan baik.
    [Show full text]
  • On the Flora of Australia
    L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.
    [Show full text]
  • Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae)
    University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 7-30-2008 Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae) Patrick Wayne Sweeney University of Missouri-St. Louis Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Biology Commons Recommended Citation Sweeney, Patrick Wayne, "Systematics and Floral Evolution in the Plant Genus Garcinia (Clusiaceae)" (2008). Dissertations. 539. https://irl.umsl.edu/dissertation/539 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. SYSTEMATICS AND FLORAL EVOLUTION IN THE PLANT GENUS GARCINIA (CLUSIACEAE) by PATRICK WAYNE SWEENEY M.S. Botany, University of Georgia, 1999 B.S. Biology, Georgia Southern University, 1994 A DISSERTATION Submitted to the Graduate School of the UNIVERSITY OF MISSOURI- ST. LOUIS In partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in BIOLOGY with an emphasis in Plant Systematics November, 2007 Advisory Committee Elizabeth A. Kellogg, Ph.D. Peter F. Stevens, Ph.D. P. Mick Richardson, Ph.D. Barbara A. Schaal, Ph.D. © Copyright 2007 by Patrick Wayne Sweeney All Rights Reserved Sweeney, Patrick, 2007, UMSL, p. 2 Dissertation Abstract The pantropical genus Garcinia (Clusiaceae), a group comprised of more than 250 species of dioecious trees and shrubs, is a common component of lowland tropical forests and is best known by the highly prized fruit of mangosteen (G. mangostana L.). The genus exhibits as extreme a diversity of floral form as is found anywhere in angiosperms and there are many unresolved taxonomic issues surrounding the genus.
    [Show full text]
  • Comparative Systematic Study of Colleters and Stipules of Rhizophoraceae with Implications for Adaptation to Challenging Environments
    bs_bs_banner Botanical Journal of the Linnean Society, 2013, 172, 449–464. With 7 figures Comparative systematic study of colleters and stipules of Rhizophoraceae with implications for adaptation to challenging environments CHIOU-RONG SHEUE1*, PETER CHESSON1,2, YING-JU CHEN1, SZU-YANG WU1, YEH-HUA WU1, JEAN W. H. YONG3, TE-YU GUU1, CHUNG-LU LIM4, RAZAFIHARIMINA MARIE AGNÈS RANDRIANASOLO5, MIALY HARINDRA RAZANAJATOVO5,6 and YUEN-PO YANG7 1Department of Life Sciences & Research Center for Global Change Biology, National Chung Hsing University, Taichung, 402, Taiwan 2Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, AZ, USA 3Singapore University of Technology and Design, Singapore 138682, Singapore 4Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor Darul Ehsan, Malaysia 5Department of Biology and Ecology, Antananarivo University, Antananarivo, 101, Madagascar 6Department of Biology, University of Konstanz, 78457 Konstanz, Germany 7Department of Bioresources, Dayeh University, 168 University Rd., Dacun, Changhua 515, Taiwan Received 29 October 2012; revised 16 December 2012; accepted for publication 7 April 2013 Colleters are multicellular secretory structures found on various organs in flowering plants. Colleters on the adaxial sides of stipules have been hypothesized to play a role in protecting the developing shoot. Rhizophoraceae is a stipulate family with a broad distribution from mangrove to montane environments, which makes the family well suited for the examination of this hypothesis, but the colleters of Rhizophoraceae are not well known. We compared species from all three tribes of Rhizophoraceae, including five inland genera and all four mangrove genera. In all species, several to hundreds of colleters, sessile or stalked, arranged in rows aggregated in genus-specific shapes, are found at the adaxial bases of open and closed stipules.
    [Show full text]