Treatment Strategies and Effective Management of Phantom Limb–Associated Pain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Substance P: Transmitter O. Nociception (Minireview)
ENDOCRINE REGULATIONS, Vol. 34,195201, 2000 195 SUBSTANCE P: TRANSMITTER O NOCICEPTION (MINIREVIEW) M. ZUBRZYCKA1, A. JANECKA2 1Department of Physiology and 2Department of General Chemistry, Institute of Physiology and Biochemistry, Medical University of Lodz, Lindleya 3, 90-131 Lodz, Poland E-mail: [email protected] Substance P plays the role of a neurotransmitter immunoreactive fibers has also been detected in lam- and neuromodulator in the central and peripheral ina V of the dorsal horn (LJUNGDAHL et al. 1978), lam- nervous system. The presence of substance P in de- ina X surrounding the central canal (LAMOTTE and myelinated sensory fibres, as well as in the small SHAPIRO 1991), the nucleus dorsalis, interomediolat- and medium-sized neurons of spinal dorsal horn sub- eral cell column, and the ventral horn (PIORO et stantia gelatinosa gives a structural basis for the al.1984). Electric stimulation of the dorsal root, or hypothesis that SP plays an important role of peripheral nerve endings, causes a substantial release a mediator in the processing of nociceptive informa- of SP within the substantia gelatinosa of spinal dor- tion. In this paper recent advances on the effect of sal horns (OTSUKA and KANISHI 1976). SP on conduction and modulation of nociceptive In the dorsal regions of the spinal dorsal horn, impulsation are reviewed. The studies concerning the besides SP also large quantities of gamma-aminobu- role of SP in the prevertebral ganglia and spinal dor- tyric acid (GABA) are present, but reduction of sal horns has been presented, including the distribu- GABA levels has no effect on the SP content, and tion of SP in the spinal cord, as well as its pre- and similarly, reduction of SP levels does not cause any postsynaptic actions on excitatory and inhibitory decrease of GABA concentration in this region of postsynaptic potentials (EPSP and IPSP) and the ef- the spinal cord (TAKAHASHI and OTSUKA 1975). -
Recognition and Alleviation of Distress in Laboratory Animals
http://www.nap.edu/catalog/11931.html We ship printed books within 1 business day; personal PDFs are available immediately. Recognition and Alleviation of Distress in Laboratory Animals Committee on Recognition and Alleviation of Distress in Laboratory Animals, National Research Council ISBN: 0-309-10818-7, 132 pages, 6 x 9, (2008) This PDF is available from the National Academies Press at: http://www.nap.edu/catalog/11931.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: x Download hundreds of free books in PDF x Read thousands of books online for free x Explore our innovative research tools – try the “Research Dashboard” now! x Sign up to be notified when new books are published x Purchase printed books and selected PDF files Thank you for downloading this PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll- free at 888-624-8373, visit us online, or send an email to [email protected]. This book plus thousands more are available at http://www.nap.edu. Copyright © National Academy of Sciences. All rights reserved. Unless otherwise indicated, all materials in this PDF File are copyrighted by the National Academy of Sciences. Distribution, posting, or copying is strictly prohibited without written permission of the National Academies Press. Request reprint permission for this book. Recognition and Alleviation of Distress in Laboratory Animals http://www.nap.edu/catalog/11931.html Recognition and Alleviation of Distress in Laboratory Animals Committee on Recognition and Alleviation of Distress in Laboratory Animals Institute for Laboratory Animal Research Division on Earth and Life Studies THE NATIONAL ACADEMIES PRESS Washington, D.C. -
Nociceptors – Characteristics?
Nociceptors – characteristics? • ? • ? • ? • ? • ? • ? Nociceptors - true/false No – pain is an experience NonociceptornotNoNo – –all nociceptors– TRPV1 nociceptorsC fibers somata is areexpressed may alsoin have • Nociceptors are pain fibers typically associated with Typically yes, but therelowsensorynociceptorsinhave manyisor ahigh efferentsemantic gangliadifferent thresholds and functions mayproblemnot cells, all befor • All C fibers are nociceptors nociceptoractivationsmallnociceptorsincluding or large non-neuronalactivation are in Cdiameter fibers tissue • Nociceptors have small diameter somata • All nociceptors express TRPV1 channels • Nociceptors have high thresholds for response • Nociceptors have only afferent (sensory) functions • Nociceptors encode stimuli into the noxious range Nociceptors – outline Why are nociceptors important? What’s a nociceptor? Nociceptor properties – somata, axons, content, etc. Nociceptors in skin, muscle, joints & viscera Mechanically-insensitive nociceptors (sleeping or silent) Microneurography Heterogeneity Why are nociceptors important? • Pain relief when remove afferent drive • Afferent is more accessible • With peripherally restricted intervention, can avoid many of the most deleterious side effects Widespread hyperalgesia in irritable bowel syndrome is dynamically maintained by tonic visceral impulse input …. Price DD, Craggs JG, Zhou Q, Verne GN, et al. Neuroimage 47:995-1001, 2009 IBS IBS rectal rectal placebo lidocaine rectal lidocaine Time (min) Importantly, areas of somatic referral were -
Monitoring the Nociception Level Intraoperatively - an Initial Experiences
Research Article J Anest & Inten Care Med Volume 7 Issue 2 - July 2018 Copyright © All rights are reserved by Pether Jildenstål DOI: 10.19080/JAICM.2018.07.555709 Monitoring the Nociception Level Intraoperatively - An Initial Experiences Pether Jildenstål1,2*, Katarina Hallén2, Katarina Almskog3, Johan Sand3 and Margareta Warren Stomberg1 1Institute of Health and Care Sciences, University of Gothenburg, Sweden 2Department of Anesthesiology, Surgery and Intensive Care, Sahlgrenska University Hospital, Sweden 3Department of Anesthesiology and Intensive care, Queen Silvia Children’s Hospital, Sweden Submission: July 5, 2018; Published: July 25, 2018 *Corresponding author: Pether Jildenstål, Institute of Health and Care Sciences, University of Gothenburg, Sweden, Email: Abstract Background: when vasopressors are used as well. There is an increasing interest during general anesthesia to understand how optimal anesthesia changes by Estimating pain stimuli in the anesthetized patient can be difficult when based solely upon physiological parameters, especially its exact use in routine clinical practice is still not well proven. The aim of this study was to identify relationships between PMD 200 monitoring, Nociceptionthe level of noxious Level (NOL-index) stimulation. and Objectively, monitored noxious known stimulation physiological measurement signs as well monitoring as outcomes techniques during general are gaining anesthesia. interest. Although currently, Method: during the intraoperativeEight patients period. between the ages of 43 and 83 years old and scheduled for major head and neck surgery under general anesthesia were observed in this study. NoL index sensor was placed on one of the patient’s fingers before anesthesia was induced, and values were extracted Results: of the bladder, and with surgical skin incision. -
Somatosensory Cortical Plasticity in Carpal Tunnel Syndrome Treated by Acupuncture
᭜ Human Brain Mapping 28:159–171(2007) ᭜ Somatosensory Cortical Plasticity in Carpal Tunnel Syndrome Treated by Acupuncture Vitaly Napadow,1,2* Jing Liu,1 Ming Li,1 Norman Kettner,2 Angela Ryan,3 Kenneth K. Kwong,1 Kathleen K.S. Hui,1 and Joseph F. Audette3 1Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 2Department of Radiology, Logan College of Chiropractic, Chesterfield, Missouri 3Spaulding Rehabilitation Hospital, Boston, Massachusetts ᭜ ᭜ Abstract: Carpal tunnel syndrome (CTS) is a common entrapment neuropathy of the median nerve characterized by paresthesias and pain in the first through fourth digits. We hypothesize that aberrant afferent input from CTS will lead to maladaptive cortical plasticity, which may be corrected by appro- priate therapy. Functional MRI (fMRI) scanning and clinical testing was performed on CTS patients at baseline and after 5 weeks of acupuncture treatment. As a control, healthy adults were also tested 5 weeks apart. During fMRI, sensory stimulation was performed for median nerve innervated digit 2 (D2) and digit 3 (D3), and ulnar nerve innervated digit 5 (D5). Surface-based and region of interest (ROI)-based analyses demonstrated that while the extent of fMRI activity in contralateral Brodmann Area 1 (BA 1) and BA 4 was increased in CTS compared to healthy adults, after acupuncture there was a significant decrease in contralateral BA 1 (P Ͻ 0.005) and BA 4 (P Ͻ 0.05) activity during D3 sensory stimulation. Healthy adults demonstrated no significant test–retest differences for any digit tested. While D3/D2 separation was contracted or blurred in CTS patients compared to healthy adults, the D2 SI representation shifted laterally after acupuncture treatment, leading to increased D3/D2 separation. -
Influence of Sensory and Proprioceptive Impairment on The
Anesthesiology 2004; 100:979–86 © 2004 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Influence of Sensory and Proprioceptive Impairment on the Development of Phantom Limb Syndrome during Regional Anesthesia Xavier Paqueron, M.D.,* Morgan Leguen, M.D.,† Marc E. Gentili, M.D.,‡ Bruno Riou, M.D., Ph.D.,§ Pierre Coriat, M.D.,ʈ Jean Claude Willer, M.D., Ph.D.# Background: The relation between impairment of sensorimo- frequently report perception of position of the anesthe- tor function and occurrence of phantom limb syndrome (PLS) tized limb that does not match its real position, and this during regional anesthesia has not been described. This study assessed the temporal relation between PLS and the progres- illusory position moves and changes until the limb be- sion of sensorimotor impairment during placement of a bra- comes motionless. At this point, most patients report the Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/100/4/979/354665/0000542-200404000-00032.pdf by guest on 01 October 2021 chial plexus nerve block. final phantom position of their anesthetized limb in a Methods: Fifty-two patients had their arm randomly placed similar and stereotyped position. either alongside their body (group A) or in 90° abduction Several previous studies devoted to phantom limb syn- (group B) immediately after brachial plexus nerve block place- ment. Responses to pin prick, cold, heat, touch, propriocep- drome during regional anesthesia have reported that the tion, and voluntary movement were assessed every 5 min for 60 former is related to the functional alteration of large- min. Meanwhile, patients described their perceptions of the diameter sensory fibers and to the disappearance of size, shape, and position of their anesthetized limb. -
The Reality of Phantom Limbsl
The Reality of Phantom Limbsl Joel Katzz This paper ualuates the joint influence of peripheral neurophysiological factors and higher-order cognitive and ffictive processes in trigeing or madulating a variety of phantow limb uperiences, includ.ing pain. Part I outlines one way in whbh the sympathetic nervaw rystem may influence phantom limb pain- A model involving a sympathetic-efferent somatic-afferent cycle is presented to oeplain fluctuations in the intensity of sewations refer"d to the phantorn limb. In part 2, the model b stended to explain the puzzling futding that only after amputatinn are thaughts and feelings capable of evaking referred sensati.ons to the (phantom) limb. While phantom pains and other sensations frequently are tigered by though* and feelings, there is no evidence that the painful or painl.ess phantom limb is a symptom of a psychological disorder. In part 3, the concept of a pain "memory" is introduced and descibed with examples. The data show that pain expeienced pior to amputation rnay percist in the form of a memory refened to the phantom limb causing continued suffeing and distress. It is argued that two independent and potentially dissocinble memoty components underlie the unified expertence of a pain memory. This conceptualization is evaluated in the context of the suryical arena, raising the possibility that under ceriain conditions postoperative pain may, in part, reflect the persistent central neural memory trace Ieft by the surgical procedure. It is concluded that the experience of a phantom lirnb is determined by a comple,r interection of inputs fram the periphery and widespreael reginns af the brain subserving sensoty, cognitive, and afective processes. -
Reduced Inflammatory Hyperalgesia with Preservation of Acute Thermal Nociception in Mice Lacking Cgmp-Dependent Protein Kinase I
Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMP-dependent protein kinase I Irmgard Tegeder*†, Domenico Del Turco‡, Achim Schmidtko*, Matthias Sausbier§, Robert Feil¶, Franz Hofmann¶, Thomas Deller‡, Peter Ruth§, and Gerd Geisslinger* *pharmazentrum frankfurt and ‡Institut fu¨r Klinische Neuroanatomie, Klinikum der Johann Wolfgang Goethe-Universita¨t, 60590 Frankfurt am Main, Germany; §Pharmakologie und Toxikologie, Pharmazeutisches Institut, Universita¨t Tu¨ bingen, 72076 Tu¨bingen, Germany; and ¶Institut fu¨r Pharmakologie und Toxikologie der Technischen Universita¨t, 80802 Munich, Germany Edited by Joseph A. Beavo, University of Washington School of Medicine, Seattle, WA, and approved December 18, 2003 (received for review July 1, 2003) cGMP-dependent protein kinase I (PKG-I) has been suggested to tion on the PNAS web site.) Hence, the exact role of PKG-I in contribute to the facilitation of nociceptive transmission in the nociception remains elusive. spinal cord presumably by acting as a downstream target of nitric In the present study we used PKG-IϪ/Ϫ mice to clearly assess oxide. However, PKG-I activators caused conflicting effects on the role of PKG-I in nociception. Because these mice have a nociceptive behavior. In the present study we used PKG-I؊/؊ mice defective regulation of smooth muscle contraction with vascular to further assess the role of PKG-I in nociception. PKG-I deficiency and intestinal dysfunctions (17, 18), the overall constitution of Ϫ Ϫ was associated with reduced nociceptive behavior in the formalin homozygous PKG-I / mice deteriorates between 5 and 6 weeks assay and zymosan-induced paw inflammation. However, acute of age (17). -
Ion Channels of Nociception
International Journal of Molecular Sciences Editorial Ion Channels of Nociception Rashid Giniatullin A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland; Rashid.Giniatullin@uef.fi; Tel.: +358-403553665 Received: 13 May 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: The special issue “Ion Channels of Nociception” contains 13 articles published by 73 authors from different countries united by the main focusing on the peripheral mechanisms of pain. The content covers the mechanisms of neuropathic, inflammatory, and dental pain as well as pain in migraine and diabetes, nociceptive roles of P2X3, ASIC, Piezo and TRP channels, pain control through GPCRs and pharmacological agents and non-pharmacological treatment with electroacupuncture. Keywords: pain; nociception; sensory neurons; ion channels; P2X3; TRPV1; TRPA1; ASIC; Piezo channels; migraine; tooth pain Sensation of pain is one of the fundamental attributes of most species, including humans. Physiological (acute) pain protects our physical and mental health from harmful stimuli, whereas chronic and pathological pain are debilitating and contribute to the disease state. Despite active studies for decades, molecular mechanisms of pain—especially of pathological pain—remain largely unaddressed, as evidenced by the growing number of patients with chronic forms of pain. There are, however, some very promising advances emerging. A new field of pain treatment via neuromodulation is quickly growing, as well as novel mechanistic explanations unleashing the efficiency of traditional techniques of Chinese medicine. New molecular actors with important roles in pain mechanisms are being characterized, such as the mechanosensitive Piezo ion channels [1]. Pain signals are detected by specialized sensory neurons, emitting nerve impulses encoding pain in response to noxious stimuli. -
Headache and Musculoskeletal Pain in School Children Are Associated with Uncorrected Vision Problems and Need for Glasses
www.nature.com/scientificreports OPEN Headache and musculoskeletal pain in school children are associated with uncorrected vision problems and need for glasses: a case–control study Hanne‑Mari Schiøtz Thorud*, Rakel Aurjord & Helle K. Falkenberg Musculoskeletal pain and headache are leading causes of years lived with disability, and an escalating problem in school children. Children spend increasingly more time reading and using digital screens, and increased near tasks intensify the workload on the precise coordination of the visual and head‑ stabilizing systems. Even minor vision problems can provoke headache and neck‑ and shoulder (pericranial) pain. This study investigated the association between headaches, pericranial tenderness, vision problems, and the need for glasses in children. An eye and physical examination was performed in twenty 10–15 year old children presenting to the school health nurse with headache and pericranial pain (pain group), and twenty age‑and‑gender matched classmates (control group). The results showed that twice as many children in the pain group had uncorrected vision and needed glasses. Most children were hyperopic, and glasses were recommended mainly for near work. Headache and pericranial tenderness were signifcantly correlated to reduced binocular vision, reduced distance vision, and the need for new glasses. That uncorrected vision problems are related to upper body musculoskeletal symptoms and headache, indicate that all children with these symptoms should have a full eye examination to promote health -
A Surgical Opinion on Hyperalgesia/Nociception
Send Orders of Reprints at [email protected] Current Immunology Reviews, 2012, 8, 275-286 275 A Surgical Opinion on Hyperalgesia/Nociception, Inflammatory/Neurogenic Pain and Anti-inflammatory Responses and Drug Interventions Revisited: Current Breakthroughs and Views John J. Haddad* Cellular and Molecular Physiology and Immunology Signaling Research Group, Biomedical Laboratory and Clinical Sciences Division, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon Abstract: All sensory modalities are essentially important, but pain serves a protective function and is indispensable for survival, and, technically, pain is considered one of the most common symptoms of injuries and related diseases. Inflammatory cells and inflammatory mediators are crucially involved in the propensity, genesis, persistence and severity of pain, commonly known as nociception or hyperalgesia, following trauma, infection, or nerve injury. When it pins down to the essential understanding of pain/hyperalgesia pathways and their intricate interactions with myriad probabilities of milieu of inflammatory cytokines and related molecules, the amicable concept of specificity and complexity remains a major dilemma. Various hyperalgesic models have been established to investigate this intricate relationship between pain perception and inflammatory responses. Illness-induced hyperalgesia, for instance, is one of the most common aspects of pain related-inflammation and therapeutic approach to this pain should aim at interfering with various mediators of the inflammatory reactions, including neuropeptides, eicosanoids and cytokines. In this surgical synopsis, a trajectory of neurochemical events and cascades are delineated and unraveled in terms of the connection that has ostensibly evolved for hyperalgesia-inflammatory responses. The unprecedented intricacy of pain-inflammatory relationship and putative pathways bears surmountable clinical and physiological relevance. -
NOL™ Technology, the PMD-200™ Is a Non-Invasive and Continuous Pain Monitoring Device
™ NOL (Nociception Level) Technology Intraoperative Pain Monitoring for Optimizing Analgesia Accurate & Objective Optimization & Faster Response Time Standardization assessment of Personalization through earlier detection among physicians nociception of analgesic treatment of nociception THE CHALLENGE Assessing Intraoperative Pain Reliably Treating pain is at the heart of medicine. It is an essential role of every clinician, since unmanaged pain can delay recovery, increase morbidity and mortality, and overburden healthcare resources. Nociception - Pain in Anaesthetized Patients During general anaesthesia, a patient’s body reacts to painful stimuli – although it is not consciously recognized. This intraoperative pain can stress the body1-4 and worsen pain after surgery4,5. As the patient can’t communicate – it is hard for clinicians to evaluate. Missing a Piece? While Hypnosis and Immobility are continuously and specifically monitored, analgesia is assessed indirectly ANALGESIA through changes in hemodynamic and clinical parameters (Heart Rate, Blood Pressure, Sweating, Tearing, etc.). These parameters are not specific to nociception, and may change in response to other causes as well. Consequently, patients may be given insufficient analgesia, which may promote postoperative pain4,5, or excessive analgesia, which may cause respiratory HYPNOSIS IMMOBILITY complications1,6, nausea and vomiting7, hyperalgesia8,9, and other complications1-11. Getting the right dose of anti-nociceptive medications matters. Too little, and patients wake up in pain. Too much, and patients are at risk of drug-related complications. Dr. Daniel Sessler, Head of the Department of Outcomes Research, Cleveland Clinic, Ohio, USA. A member of Medasense’s advisory board. 2 Each Year, Worldwide: 3.3 extra days of hospitalization 27% extra cost per patient UP TO of surgical50% patients suffer of surgical 12% patients suffer from moderate to severe from adverse events due 12-13 Increase in post-operative pain .