Glycogenome Expression Dynamics During Mouse C2C12 Myoblast
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Down Regulation of Membrane-Bound Neu3 Constitutes a New
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows IJC International Journal of Cancer Down regulation of membrane-bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells Chandan Mandal1, Cristina Tringali2, Susmita Mondal1, Luigi Anastasia2, Sarmila Chandra3, Bruno Venerando2 and Chitra Mandal1 1 Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt of India, 4, Raja S. C. Mullick Road, Kolkata 700032, India 2 Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, and IRCCS Policlinico San Donato, San Donato, Milan, Italy 3 Department of Hematology, Kothari Medical Centre, Kolkata 700027, India Membrane-linked sialidase Neu3 is a key enzyme for the extralysosomal catabolism of gangliosides. In this respect, it regulates pivotal cell surface events, including trans-membrane signaling, and plays an essential role in carcinogenesis. In this report, we demonstrated that acute lymphoblastic leukemia (ALL), lymphoblasts (primary cells from patients and cell lines) are characterized by a marked down-regulation of Neu3 in terms of both gene expression (230 to 40%) and enzymatic activity toward ganglioside GD1a (225.6 to 30.6%), when compared with cells from healthy controls. Induced overexpression of Neu3 in the ALL-cell line, MOLT-4, led to a significant increase of ceramide (166%) and to a parallel decrease of lactosylceramide (255%). These events strongly guided lymphoblasts to apoptosis, as we assessed by the decrease in Bcl2/ Bax ratio, the accumulation of Neu3 transfected cells in the sub G0–G1 phase of the cell cycle, the enhanced annexin-V positivity, the higher cleavage of procaspase-3. -
Congenital Disorders of Glycosylation from a Neurological Perspective
brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations -
A Novel Frameshift Pathogenic Variant in ST3GAL5 Causing Salt
www.nature.com/hgv DATA REPORT OPEN A novel frameshift pathogenic variant in ST3GAL5 causing salt and pepper developmental regression syndrome (SPDRS): A case report 1,2 3 2,3 4 fi4 4 Jamal Manoochehri , Seyed Alireza Dastgheib , Hossein Jafari Khamirani , Maryam Mollaie , Zahra Shari , Sina Zoghi✉ , Seyed Mohammad Bagher Tabei3,5, Sanaz Mohammadi2, Fatemeh Dehghanian2, Zahra Farbod2 and Mehdi Dianatpour3,6 © The Author(s) 2021 GM3 synthase deficiency is associated with salt and pepper developmental regression syndrome (SPDRS), a rare genetic disorder. Herein, we report the first Iranian patient with SPDRS. We detected a novel pathogenic variant of ST3GAL5 (NM_003896.4: c.1030_1031del, p.Ile344Cysfs*11). The proband had intellectual disability (ID), failure to thrive, cerebral atrophy, microcephaly, and atonic seizures. The main future challenge proceeding from the results of this study is the prenatal detection of the newly discovered variant; the next step would involve further studies to elucidate the phenotypic spectrum of SPDRS and detect new variants that could cause symptoms ranging from mild to severe. Human Genome Variation; https://doi.org/10.1038/s41439-021-00164-8 GM3 synthase is the first enzyme involved in the biosynthesis of a- occurrence of a set of complications and poor adherence by the and b-series gangliosides. Pathogenic variants in ST3GAL5 that family. Afterward, the dietary interventions were resumed. result in a complete lack of GM3 activity lead to the elimination of The first symptoms were recorded during the first 2 months of all of its downstream biosynthesis products. SPDRS, a rare life, primarily comprising irritability, poor feeding, and failure to neurological disorder caused by GM3 synthase deficiency, leads thrive. -
GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. -
Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling
UC Davis UC Davis Previously Published Works Title Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling. Permalink https://escholarship.org/uc/item/0nk8n7xb Journal Scientific reports, 6(1) ISSN 2045-2322 Authors Arabyan, Narine Park, Dayoung Foutouhi, Soraya et al. Publication Date 2016-07-08 DOI 10.1038/srep29525 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling Received: 09 February 2016 Narine Arabyan1, Dayoung Park2, Soraya Foutouhi1, Allison M. Weis1, Bihua C. Huang1, Accepted: 17 June 2016 Cynthia C. Williams2, Prerak Desai1,†, Jigna Shah1,‡, Richard Jeannotte1,3,§, Nguyet Kong1, Published: 08 July 2016 Carlito B. Lebrilla2,4 & Bart C. Weimer1 Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p < 0.05) alter infection. During infection, Salmonella used its two GHs sialidase nanH and amylase malS for internalization by targeting different glycan structures. The host glycans were altered during Salmonella association via the induction of N-glycan biosynthesis pathways leading to modification of host glycans by increasing fucosylation and mannose content, while decreasing sialylation. -
Neuraminidase Inhibitor Zanamivir Ameliorates Collagen-Induced Arthritis
International Journal of Molecular Sciences Article Neuraminidase Inhibitor Zanamivir Ameliorates Collagen-Induced Arthritis Bettina Sehnert 1,*, Juliane Mietz 1, Rita Rzepka 1, Stefanie Buchholz 1, Andrea Maul-Pavicic 1, Sandra Schaffer 1, Falk Nimmerjahn 2 and Reinhard E. Voll 1,* 1 Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; [email protected] (J.M.); [email protected] (R.R.); [email protected] (S.B.); [email protected] (A.M.-P.); [email protected] (S.S.) 2 Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; [email protected] * Correspondence: [email protected] (B.S.); [email protected] (R.E.V.); Tel.: +49-761-270-71021 (B.S.); +49-761-270-34490 (R.E.V.) Abstract: Altered sialylation patterns play a role in chronic autoimmune diseases such as rheumatoid arthritis (RA). Recent studies have shown the pro-inflammatory activities of immunoglobulins (Igs) with desialylated sugar moieties. The role of neuraminidases (NEUs), enzymes which are responsible for the cleavage of terminal sialic acids (SA) from sialoglycoconjugates, is not fully understood in RA. We investigated the impact of zanamivir, an inhibitor of the influenza virus neuraminidase, and mammalian NEU2/3 on clinical outcomes in experimental arthritides studies. The severity of arthritis was monitored and IgG titers were measured by ELISA. (2,6)-linked SA was determined on IgG by ELISA and on cell surfaces by flow cytometry. Zanamivir at a dose of 100 mg/kg (zana- Citation: Sehnert, B.; Mietz, J.; 100) significantly ameliorated collagen-induced arthritis (CIA), whereas zana-100 was ineffective Rzepka, R.; Buchholz, S.; in serum transfer-induced arthritis. -
GM3 Synthase Deficiency
GM3 synthase deficiency Description GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first few weeks after birth, affected infants become irritable and develop feeding difficulties and vomiting that prevent them from growing and gaining weight at the usual rate. Seizures begin within the first year of life and worsen over time. Multiple types of seizures are possible, including generalized tonic-clonic seizures (also known as grand mal seizures), which cause muscle rigidity, convulsions, and loss of consciousness. Some affected children also experience prolonged episodes of seizure activity called nonconvulsive status epilepticus. The seizures associated with GM3 synthase deficiency tend to be resistant (refractory) to treatment with antiseizure medications. GM3 synthase deficiency profoundly disrupts brain development. Most affected children have severe intellectual disability and do not develop skills such as reaching for objects, speaking, sitting without support, or walking. Some have involuntary twisting or jerking movements of the arms that are described as choreoathetoid. Although affected infants can likely see and hear at birth, vision and hearing become impaired as the disease worsens. It is unknown how long people with GM3 synthase deficiency usually survive. Some affected individuals have changes in skin coloring (pigmentation), including dark freckle-like spots on the arms and legs and light patches on the arms, legs, and face. These changes appear in childhood and may become more or less apparent over time. The skin changes do not cause any symptoms, but they can help doctors diagnose GM3 synthase deficiency in children who also have seizures and delayed development. -
Bovine NK-Lysin: Copy Number Variation and PNAS PLUS Functional Diversification
Bovine NK-lysin: Copy number variation and PNAS PLUS functional diversification Junfeng Chena, John Huddlestonb,c, Reuben M. Buckleyd, Maika Maligb, Sara D. Lawhona, Loren C. Skowe, Mi Ok Leea, Evan E. Eichlerb,c, Leif Anderssone,f,g, and James E. Womacka,1 aDepartment of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843; bDepartment of Genome Sciences, University of Washington, Seattle, WA 98195; cHoward Hughes Medical Institute, University of Washington, Seattle, WA 98195; dSchool of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; eDepartment of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843; fDepartment of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE 75123, Sweden; and gDepartment of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, SE 75007, Sweden Contributed by James E. Womack, November 20, 2015 (sent for review November 5, 2015; reviewed by Denis M. Larkin and Harris A. Lewin) NK-lysin is an antimicrobial peptide and effector protein in the host compared with humans and mice. These include genes coding innate immune system. It is coded by a single gene in humans and AMPs such as the cathelicidins and β-defensins, members of most other mammalian species. In this study, we provide evidence the IFN gene family, C-type lysozyme, and lipopolysaccharide- for the existence of four NK-lysin genes in a repetitive region on binding protein (ULBP) (23–28). Expansion of these gene fam- cattle chromosome 11. The NK2A, NK2B,andNK2C genes are tan- ilies potentially can give rise to new functional paralogs with demly arrayed as three copies in ∼30–35-kb segments, located implications in the unique gastric physiology of ruminants or in 41.8 kb upstream of NK1. -
The MER41 Family of Hervs Is Uniquely Involved in the Immune-Mediated Regulation of Cognition/Behavior-Related Genes
bioRxiv preprint doi: https://doi.org/10.1101/434209; this version posted October 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The MER41 family of HERVs is uniquely involved in the immune-mediated regulation of cognition/behavior-related genes: pathophysiological implications for autism spectrum disorders Serge Nataf*1, 2, 3, Juan Uriagereka4 and Antonio Benitez-Burraco 5 1CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France. 2 University of Lyon 1, Lyon, France. 3Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France. 4Department of Linguistics and School of Languages, Literatures & Cultures, University of Maryland, College Park, USA. 5Department of Spanish, Linguistics, and Theory of Literature (Linguistics). Faculty of Philology. University of Seville, Seville, Spain * Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/434209; this version posted October 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Interferon-gamma (IFNa prototypical T lymphocyte-derived pro-inflammatory cytokine, was recently shown to shape social behavior and neuronal connectivity in rodents. STAT1 (Signal Transducer And Activator Of Transcription 1) is a transcription factor (TF) crucially involved in the IFN pathway. -
Genomic Diagnostics Within a Medically Underserved Population: Efficacy and Implications
© American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Genomic diagnostics within a medically underserved population: efficacy and implications Kevin A. Strauss, MD1, Claudia Gonzaga-Jauregui, PhD2, Karlla W. Brigatti, MS1, Katie B. Williams, MD, PhD1, Alejandra K. King, PhD2, Cristopher Van Hout, PhD2, Donna L. Robinson, CRNP1, Millie Young, RNC1, Kavita Praveen, PhD2, Adam D. Heaps, MS1, Mindy Kuebler, MS1, Aris Baras, MD2, Jeffrey G. Reid, PhD2, John D. Overton, PhD2, Frederick E. Dewey, MD2, Robert N. Jinks, PhD3, Ian Finnegan, BA3, Scott J. Mellis, MD, PhD2, Alan R. Shuldiner, MD2 and Erik G. Puffenberger, PhD1 Purpose: We integrated whole-exome sequencing (WES) and Compared to trio analysis, “family” WES (average seven exomes chromosomal microarray analysis (CMA) into a clinical workflow per proband) reduced filtered candidate variants from 22 ± 6to to serve an endogamous, uninsured, agrarian community. 5 ± 3 per proband. Nineteen (51%) alleles were de novo and 17 Methods: Seventy-nine probands (newborn to 49.8 years) who (46%) inherited; the latter added to a population-based diagnostic presented between 1998 and 2015 remained undiagnosed after panel. We found actionable secondary variants in 21 (4.2%) of 502 biochemical and molecular investigations. We generated WES data subjects, all of whom opted to be informed. for probands and family members and vetted variants through Conclusion: CMA and family-based WES streamline and rephenotyping, segregation analyses, and population studies. economize diagnosis of rare genetic disorders, accelerate novel Results: The most common presentation was neurological disease gene discovery, and create new opportunities for community-based (64%). Seven (9%) probands were diagnosed by CMA. -
A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.