Demand Response Enabling Technology Development
Total Page:16
File Type:pdf, Size:1020Kb
UC Berkeley Controls and Information Technology Title Demand response enabling technology development Permalink https://escholarship.org/uc/item/0971h43j Authors Arens, Edward A Auslander, D. Culler, D. et al. Publication Date 2006-04-04 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Demand Response Enabling Technology Development Phase I Report: June 2003-November 2005 Overview and Reports from the Four Project Groups: Thermostat/Controls Communications/Network Metering/Sensors Energy Scavenging April 4, 2006 Edward Arens: Center for Built Environment, Architecture Dept. David Auslander: Mechanical Engineering Dept. David Culler: Electrical Engineering and Computer Science (EECS) Dept. Cliff Federspiel: Center for the Built Environment, Architecture Dept. Charlie Huizenga: Center for the Built Environment, Architecture Dept. Jan Rabaey: Berkeley Wireless Research Center, EECS Dept. Paul Wright: Mechanical Engineering Dept. Dick White: Berkeley Sensor and Actuator Center, EECS Dept. Graduate Student Researchers: Eric Carleton, Xue Chen, Alex Do, Jonathon Foster, Jaehwi Jang, Florian Jourda, Anna LaRue, Eli Leland, Nate Ota, Therese Peffer, Nate Pletcher, Andrew Redfern, Beth Reilly, Dan Steingard, William Watts Undergraduate Student Researchers: Spencer Ahrens, Vikas Bhargava, Po-kai Chen, Randy Chen, Reman Child, Marc Ramirez, Duncan Wilson, Xin Yang, Yi Yuan The UC Berkeley team formed an interdisciplinary alliance between the four sub-groups listed after the main title. Weekly interactions among and between the sub-groups enabled high- impact experimentally oriented research mission, while focusing on the common 10x10x10 goal of DR-ETD projects. (Namely 10x cheaper, 10x more capable and >10year life). Over the 2 year period we created early prototypes for the mesh networking of wireless meters, wireless thermostats and wireless temperature nodes. When in final production by commercial entities (in the mid-to-late part of this decade) the OEM costs for the meters and thermostats should be in the “few-dollars” range and the cost for the nodes in the “sub-one-dollar” range. P:\DemandRes\UC Papers\DR-Phase1Report-FinalDraftApril24-2006.doc 7/27/2006 Page 1 of 108 Table of Contents A. BACKGROUND................................................................................................................4 INTRODUCTION............................................................................................................4 Need for a New Thermostat ................................................................................................4 Need for New Sensors and Actuators.................................................................................5 Need for Wireless Network Communication.....................................................................5 Need for Energy Scavenging...............................................................................................6 Multidisciplinary DRETD project......................................................................................6 B. THERMOSTAT AND CONTROLS GROUP ...........................................................7 GOALS..............................................................................................................................7 SYSTEM DESIGN...........................................................................................................7 System Architecture.............................................................................................................7 Controller Function .............................................................................................................9 Communications ................................................................................................................10 Sensors ................................................................................................................................10 Actuators.............................................................................................................................11 Data Collection...................................................................................................................12 Controller Implementation ...............................................................................................13 EXPERIMENT ..............................................................................................................14 Physical description ...........................................................................................................14 Sensors Deployment...........................................................................................................15 Actuator Deployment.........................................................................................................17 Procedure............................................................................................................................19 RESULTS .......................................................................................................................20 DISCUSSION .................................................................................................................21 CONCLUSION ..............................................................................................................21 C. NETWORK COMMUNICATIONS GROUP ..........................................................22 OVERVIEW...................................................................................................................22 Tiny0S AS A MESH NETWORKING TOOL............................................................22 PicoRadio AS AN ADVANCED LOW-POWER DEVICE .......................................25 D. METERING/SENSORS GROUP................................................................................27 OVERVIEW...................................................................................................................27 PASSIVE PROXIMITY AC VOLTAGE SENSOR ...................................................27 PASSIVE PROXIMITY AC CURRENT SENSOR ...................................................27 WIRELESSLY CONTROLLED MONITORING-OUTLETS.................................28 WIRELESS MONITORING OF A TEST HOUSE ...................................................28 SOME FINAL OBSERVATIONS FOR SENSORS...................................................29 E. ENERGY SCAVENGING GROUP............................................................................30 OVERVIEW...................................................................................................................30 TinyTempNode (MESOSCALE)..................................................................................30 VIBRATION-POWERED SEMI-ACTIVE RFID......................................................32 ADJUSTING DESIGNS FOR RESONANCE AND MAXIMUM OUTPUT ..........33 MEMS-SCALE ENERGY SCAVENGING BY VIBRATION..................................33 F. REFERENCES USED IN TEXT..................................................................................35 G. PUBLICATIONS.............................................................................................................37 P:\DemandRes\UC Papers\DR-Phase1Report-FinalDraftApril24-2006.doc 7/27/2006 Page 2 of 108 H. APPENDICES ...........................................................................................................42 APPENDIX A: GENERIC MOTE DOCUMENTATION..............................................42 APPENDIX B: MOTION SENSOR................................................................................44 APPENDIX C: WEATHER STATION ..........................................................................45 APPENDIX D: POWER SENSING................................................................................47 APPENDIX E: HVAC RELAY.......................................................................................64 APPENDIX F: THERMOSTAT SWITCH .....................................................................66 APPENDIX G: DATABASE STRUCTURE ..................................................................68 APPENDIX H: MZEST...................................................................................................73 APPENDIX I: COMMUNICATIONS DATA STRUCTURE........................................75 APPENDIX J: TABLE OF POWER SCAVENGING ENERGY SOURCES................78 APPENDIX K: PRICE SIGNAL SIMULATION – PRICE GENERATOR ..................79 APPENDIX L: WIRELESS NETWORK PERFORMANCE IN A RESIDENCE.........85 APPENDIX M: DEMAND RESPONSE SUBMETER CONTROL OUTLET..............94 APPENDIX N: STOP LIGHT NODE DOCUMENTATION.......................................107 Table of Figures Figure 1: Schematic of the Demand Response Electrical Appliance Manager in a Home. 7 Figure 2: Moteiv ‘T-mote Sky’ 8 Figure 3: Temperature and Occupancy Data from Mote 12 Figure 4: Control Hierarchy Layering 13 Figure 5: Portability of Java Control Code 14 Figure 6: Plan of test house showing location of motes and sensors. 15 Figure 7: Left- Mote in house with motion sensor "eye", globe temperature sensor (ping pong ball), and air temperature sensor (shielded with low-emissivity Mylar). Right- Mote with cover off, showing sensor board. See Appendix A. 16 Figure 8: Left: Closed breaker box and mote enclosure. Right: Open breaker box showing CTs and communication cable. 17 Figure 9: HVAC relay. See Appendix E. 17 Figure 10: Thermostat switch device (center) changes control of HVAC